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Abstract
Effective use of communication networks is critical to the perfor-
mance and scalability of parallel applications. Partitioned Global
Address Space languages like UPC bring the promise of perfor-
mance and programmer productivity. Studies of well-tuned pro-
grams have suggested that PGAS languages are effective at uti-
lizing modern networks because their one-sided communication is
a good match to the underlying network hardware. An open ques-
tion is whether the manual optimizations required to achieve good
performance can be performed automatically by the compiler in a
performance portable manner.

In this paper we present a compiler and runtime optimization
framework for loops containing communication operations. Our
framework performs compile time message vectorization and strip-
mining and defers until runtime the selection of the actual commu-
nication operations. At runtime, the communication requirements
of the program are analyzed, and communication is instantiated
and scheduled based on highly tuned network and application per-
formance models. The runtime analysis takes into account network
control flow and quality-of-service restrictions, and it is able to se-
lect from a large class of available communication primitives the
communication schedule best suited for the dynamic combination
of input size and system parameters. The results indicate that our
framework produces code that scales and performs better than that
of manually optimized implementations. Our approach not only
improves performance, but increases programmer productivity as
well.

1. Introduction
As high end computing systems continue to scale in CPU compu-
tational power and overall node count, optimization techniques that
can reduce communication overhead have proven important [7, 10,
36]. Communication optimizations have been explored in the con-
text of parallelizing compilers and data parallel languages. Most
of these studies have traditionally been performed using MPI as
the communication library and at a time when networks had a rel-
atively high latency and low bandwidth. As a result, most tech-
niques [8, 22] concentrate on eliminating redundant messages and
reducing message count through aggregation. Research [3, 12] on
recent networks has shown that significant performance improve-
ments can be achieved using fine grained communication decom-
position and overlap.

Manual application of communication optimizations affects
programmer productivity as these transformations are tedious and
error-prone. Multiple communication code generation schemes are
available for a given loop nest, and the best performance depends
on a large set [19] of architecture and application parameters that
cannot be estimated statically. Optimizations need to account for
control flow network restrictions and the quality of service pro-

vided at a given system scale. It is thus difficult for programmers to
generate code that can achieve good performance under different
application input sets or on different cluster systems.

Partitioned Global Address Space (PGAS) languages, such as
UPC [33], Titanium [35] and Co-Array Fortran [26], have recently
emerged as a promising alternative to increasing programmer pro-
ductivity. They integrate communication directly into the language
and provide direct access to lightweight one-sided communication.
An open research question is whether the manual optimizations re-
quired to achieve best performance can be performed automatically
by the compiler.

In this paper, we present a loop optimization framework de-
signed to achieve both efficient communication/computation over-
lap and performance portability. The framework has been imple-
mented in the Berkeley UPC compiler [9] and uses a combina-
tion of compile time analysis and runtime mechanisms. We extend
the compiler to perform message vectorization and message strip
mining optimizations. At compile time loop nests are analyzed,
their communication requirements determined, and the computa-
tion overhead estimated. The compiler passes analysis information
to the runtime, and performance portability is achieved by decou-
pling data movement from local computation and using system spe-
cific models for communication instantiation. We generate template
code that uses the transferred data without making any assumptions
about the communication mechanism. At each loop boundary the
generated code contains callbacks into a runtime analysis module.
Based on actual application and network parameters, the runtime
analysis phase selects the most efficient communication operations
for a loop nest. For this we use a performance model and heuris-
tics to determine dynamic application characteristics, such as com-
putational and communication load. The communication schedule
computed by our analysis takes into account control flow restric-
tions, network quality of service and application communication
topology. For any given scenario, the analysis is able to select dy-
namically between contiguous communication primitives (put, get)
and gather/scatter primitives implemented using Active Messages.
We explore several mechanisms to further increase performance:
caching of the communication schedule, caching of transfered data,
and data reshaping mechanisms.

Experimental results indicate that our framework produces code
that is faster, more scalable, and exhibits more performance porta-
bility than that of manually optimized implementations. We have
observed an average speedup of 9.5% over manually optimized
implementations for application kernels from the NAS Parallel
Benchmarks suite. The average speedup is as high as 17% for some
kernels for a large class of configurations evaluated. To our knowl-
edge, this is the first compiler research effort able to exploit non-
blocking communication in such a scalable manner. Since our ap-
proach is mostly transparent to the user, it not only improves per-
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Figure 1. Overall design.
formance and scalability but increases programmer productivity as
well.

2. Design
UPC [33] is a parallel extension of the ISO C programming
language aimed at supporting high performance scientific appli-
cations. The language adopts the Single-Program-Multiple-Data
(SPMD) programming model and provides a shared memory space
abstraction. Communication in UPC is either explicit through li-
brary calls or implicit through shared variable accesses. The lan-
guage provides a relaxed memory consistency model [34] that al-
lows for aggressive reordering of communication operations and
caching of remote data.

The Berkeley UPC compiler performs source-to-source trans-
lation, by converting UPC source code to C code augmented with
runtime calls for data management and communication. The com-
piler is implemented using the Open64 [27] infrastructure. The
Berkeley UPC runtime delegates communication operations to the
GASNet [5] communication layer, which provides a uniform inter-
face for low-level communication primitives on a large variety of
networks. GASNet provides efficient point-to-point Put/Get prim-
itives that operate on contiguous data as well as higher level op-
erations that perform aggregation of operations targeting disjoint
memory regions.

Our goal is to provide performance portable loop optimizations
in the presence of communication: for any given loop nest we need
to select the best sequence of transformations to provide good se-
rial performance and to hide communication latency. Even for sim-
ple cases, communication performance depends on a variety of dy-
namic factors described in Section 4, and a static compile time ap-
proach alone cannot determine the best performing optimizations.
This problem is compounded by the fact that for each system, there
is a wide set of communication interfaces available for code gener-
ation, each with different performance characteristics.

We analyze and transform programs written in a shared memory
style, with fine-grained remote array accesses. Figure 1 presents the
overall design of our approach. We decouple the static serial opti-
mizations from the communication optimizations. After serial op-
timizations, the communication requirements of a loop nest are an-
alyzed, and code that describes them to the runtime is generated. A
runtime analysis module instantiates communication based on per-
formance models and carefully tuned heuristics. A major challenge
of such approach is designing a lightweight yet efficient code gen-
erator for an optimization space with many dimensions. We achieve
this by using an expressive program representation and by enforc-
ing as little hardware awareness as possible1. Our work makes con-
tributions in the areas of: 1) code generation strategies for loops
containing one-sided communication; and 2) runtime mechanisms
for performance portability and adaptation at high concurrency
across a large variety of communication interfaces.

1 We try to minimize the number of hardware related performance parame-
ters incorporated in any model.

3. Performance Portable Loop Optimizations
Consider the code in Figure 2-(1) that performs a multiplication be-
tween a local vector b and a remote matrix a. In this unoptimized
code, the remote accesses in every iteration of the loop add signif-
icant overhead. Message vectorization eliminates the overhead of
fine-grained transfers by fetching the remote data in a single bulk
copy outside the loop nest. The transformed code is presented in
Figure 2-(2). The serial code has been blocked for cache and con-
tains a triple-nested loop.

Message vectorization offers significant speedup over the fine-
grained version by saving on the per-message overhead. It alone
usually does not achieve optimal performance because it does not
exploit the potentials of communication and computation over-
lap. A more aggressive optimization called message strip-mining,
shown in Figure 2-(5), can be applied to further reduce the com-
munication overhead. Message strip-mining divides the commu-
nication and computation of a loop nest into sub-blocks (strips)
and pipelines the communication. In this particular example, strip-
mining is performed at the granularity of B elements, imposed by
the cache blocking. Compared to the vectorized code, the optimiza-
tion increases the number of messages and thus the startup over-
head, but could hide communication latencies through the overlap
of non-blocking transfers with independent computation.

The effectiveness of message strip-mining clearly depends on
the strip size; an overly coarse-grained decomposition means in-
sufficient overlap, while an overly fine-grained decomposition may
result in excessive message start-up costs. For this particular exam-
ple, it might be the case that the optimal strip size contains multiple
rows of N elements and does not naturally match the cache block-
ing.
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Figure 3. (A) Communication schedule for strip-mining; (B)
Communication schedule with pipelining and strip-mining.

After choosing the decomposition granularity, the optimizer
needs to choose a communication schedule. This schedule has to
satisfy all the data dependences of the original program, and it in-
dicates the locations in the program where communication oper-
ations are initiated and retired. Figure 3 shows two interleavings
of communication operations that can be used for the strip-mined
transformed code. Depending on the problem settings and the sys-
tem, any of the two schedules can perform better in practice.

The optimal strip size and communication schedule for a given
loop nest are determined by both architectural parameters (e.g.,
latency and bandwidth) and application characteristics (e.g., data
volume, local computation overhead, and communication pattern),
and the optimizer could very easily choose an under-performing
transformation.
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for(i=0; i<M; i++)
   for(j=0; j<N; j++)
      c[i] += a[i*N+j]*b[j];

Get(temp, a, M*N);
for(j=0; j<N/B; j++)
   for(i=0; i<M; i++)
      for(jj=0; jj<B; jj++)
         c[i] += temp[i*N + j*B + jj]*b[j*B+jj];

h[0] = Get_nb(…B);
h[1] = Get_nb(…B);
…
h[M*N/B] =Get_nb(…B);
for(j=0; j<N/B; j++)
   Cj = …;
   for(i=0; i<M; i++)
      Sync(h[j]);
      Ci = ..;
      for(jj=0; jj<B; jj++)
         c[i] += a[i*Ci + j*Cj + jj]*b[j*B+jj];

(1)                                                   (2)
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Figure 2. (1) Fine-grained loop; (2) Loop after message vectorization and cache blocking; (3) Memory order for cache blocked loop; (4)
Possible memory order for packed communication; (5) Code for strip-mined loop;

Another complication is that many applications perform non-
contiguous remote sub-array accesses, either due to strided ac-
cesses or accesses to a rectangular section of multi-dimensional
arrays as a result of tiling optimizations (e.g., Figure 2-(4)). For
these disjoint memory regions, the optimizer has two choices for
data communication. One option is to copy each contiguous region
individually and use communication pipelining to overlap their la-
tencies, and the alternative is to perform packing and unpacking in
the runtime to aggregate the non-contiguous regions. The perfor-
mance for both approaches again is highly sensitive to the network
and application parameters.

For optimal performance, the optimizer needs to determine pre-
cisely the communication granularity and schedule for a given set-
ting. For performance portability, the transformed code needs to be
able to accommodate different granularities and schedules. For our
example, the transformed nest in Figure 2-(5) needs to be able to
initiate and retire an arbitrary number of communication operations
in the prologue of any of the outer two loops.

4. Network Performance
For efficient optimizations, an understanding of the variation of
performance parameters across both small and large time scales is
required. In [19], we examine the variation of the LogGP [1, 11]
network performance parameters for one-sided Put/Get primitives
on the Infiniband and Elan networks. The model parameters are o,
the send overhead of a message; L, round-trip network latency; and
G, the inverse network bandwidth.

On each network, the overhead of initiating non-blocking com-
munication is minimized for a certain number of consecutive op-
erations. The overhead of initiating communication operations is
payload dependent. Network resource constraints matter and appli-
cation level optimizations should work their way around such con-
straints. Examples are network control flow and memory footprint
of communication operations. Network Interface Cards (NIC) have
a limit on the number of outstanding communication operations al-
lowed. Issuing additional operations over this threshold will block
the CPU execution until some previous operation has completed.
Some network cards (Elan) have an on-board TLB and whenever
the footprint of the outstanding communication operations exceeds
the TLB footprint, the latency of all operations is adversely af-
fected.

The fairness of the bandwidth allocation provided by the net-
work varies with system scale and load. For communication pat-
terns that require full bisection, there is a large difference in the
bandwidth observed by communicating processor pairs and end-

to-end application performance is directly determined by this band-
width repartition.

In our implementation, we achieve performance portability by
using some of the models presented in [19], which we extend with
runtime techniques for instantaneous system load estimation. Our
runtime mechanisms take into account the variation of communica-
tion initiation overhead with payload and number of back-to-back
messages: o = o(b, S), where S is payload and b is the number of
consecutive messages. The fairness of bandwidth allocation at scale
is captured by the bandwidth parameters Gh(P, S) and Gl(P, S):
the upper and lower bound of the service level achieved at each de-
gree of concurrency (P is the number of nodes). For the purposes
of this work we extend the network performance study with an ex-
ploration of overlap when using higher level communication prim-
itives and incorporate these primitives in performance models.

The networking layer used for the Berkeley UPC compiler pro-
vides efficient scatter-gather style communication primitives [6]
which are collectively referred to as Vector-Index-Strided (VIS)
functions. VIS calls transfer efficiently non-contiguous memory re-
gions and are implemented using Active Messages (AM) and data
packing. Communication layers that support asynchronous one-
sided VIS style operations use different mechanisms to ensure re-
mote end cooperation. The default operation of the GASNet layer
is in polling mode. In this setting, asynchronous events, such as
AMs, that occur inside the networking layer, are not serviced until
the application explicitly enters the communication library. Other
communication layers such as ARMCI [25] offload data packing
to the NIC, provide progress threads, or support an interrupt mode
inside the networking layer.

Efficient implementations of data packing primitives pipeline
and overlap data packing with data transmission operations and
usually provide a static value for the unit2 of packing and communi-
cation. Depending on the application communication requirements
this static decision is not necessarily the most efficient.

The polling mode used by GASNet also raises the concern of
application attentiveness to the network: if a particular end-point
does not enter the network layer for a period of time, its incom-
ing AMs are unpredictably delayed. Attentiveness to the network
directly impacts overlap performance across all networks. This is
a problem common to all communication layers that use asyn-
chronous events; incorporating progress is still an open research
area 3 and is beyond the scope of this work.

2 In the GASNet this is referred to as AMSize.
3 X10, one of the proposed DARPA HPCS languages provides asyn-
chronous remote execution.
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Figure 4. Overlap potential for VIS operations. Color-map represents the speed-up of the VIS implementation when compared with an
optimized point-to-point pipelined implementation. Values lower than 1 indicate that the VIS implementation is faster. V OL = length of
contiguous region in doubles, DEPTH = number of regions. Left: communication only. Center: overlap with “lightweight” computation.
Right: overlap with heavyweight computation.

For our runtime mechanisms we develop heuristics to choose
dynamically between instantiating communication using pipelined
Put/Get operations and VIS calls, based on the problem settings.
To understand the overlap behavior of VIS operations we com-
pare the performance of a VIS call followed by computation on the
transfered data with the performance of the same problem imple-
mented and optimized using point to point operations. Our micro-
benchmark performs communication and computation on a num-
ber of disjoint memory regions. We examine different computation
loads since they directly determine network attentiveness. We also
consider multiple memory footprints to capture possible TLB ef-
fects. In Figure 4 the number of regions is labeled DEPTH and the
length of a region is labeled VOL. The graph shows the evolution
of TV IS

TP IP ELINE
.

Figure 4 presents the trends observed for the Infiniband net-
work. We have also examined the Elan4 and Cray XT3 networks.
The sequence of the graphs shows how the effectiveness of the VIS
implementations is gradually affected by lack of attentiveness. The
leftmost graph corresponds directly to a data redistribution opera-
tion. The results for Elan networks are not shown for lack of space,
but they indicate that the VIS implementation is also very sensitive
to the total memory footprint, i.e. the length of a contiguous mem-
ory region and the distance between two regions. The default unit
for VIS packing and communication in GASNet is AMSize=1500
bytes. On all networks, the results show that a pipelined implemen-
tation will outperform a packing implementation for many cases
where the length of the contiguous region is well below this thresh-
old. These cases are network dependent.

We incorporate the performance profiles obtained from our
micro-benchmarks directly into the runtime mechanisms described
in Section 6.3. Experiences with Co-Array Fortran [14] and ARMCI
in application settings, indicate the potential performance advan-
tages of VIS style operations when applied to redistributions and
“bulk synchronous” operations. They also report noisy perfor-
mance results on some targets when these primitives are used.

5. Compile Time Analysis and Transformations
Open64 contains a rich loop optimization infrastructure, capable
of performing unimodular, tiling and cross nest transformations
which we have extended to perform communication aware anal-
yses and optimizations. The supported optimizations are message
vectorization and message strip-mining. The compile time analysis
also extracts information about the serial overhead of loop bodies.
We have also written an analysis pass able to recognize data re-
distribution operations. These cases need to be handled separately
since the target communication buffers are already provided in the
application.

Most of the Open64 loop transformations use convex region
representations, and we convert these to Linear Memory Access
Descriptors (LMAD) during the vectorization process. Paek [29]
introduced the LMAD as a representation designed to capture pre-
cisely the access region of a loop nest and to enable analysis tech-
niques that expose the simple memory footprint of an access region.
The access patterns are characterized by two factors: stride and
span. The stride records the distance traveled in memory when a
loop index is incremented. The span records the total distance trav-
eled in memory due to the variation of a single index, with the other
indices constant. They distinguish the following types of LMADs:
1) coalescible where the number of dimensions within the LMAD
can be reduced; 2) interleaved which combine address streams with
different strides and 3) contiguous where the combination of all the
address streams describes a contiguous region. The constraints on
the loop induction variables are represented by a polytope.

For each nest that has been vectorized we generate template
code with entries into the runtime analysis layer. The code for each
nest contains the loop description, the LMADs that describe com-
munication and place holders for communication synchronization
operations. The generated code resembles the interface for a com-
munication iterator, and Figure 5 shows the generated code for a
reduction operation.

The first calls describe the polytope and the LMADs involved in
communication operations. Selection of the actual communication
primitive is deferred until runtime. The call analyze transfers
performs LMAD simplification operations, determining for the
communication operations required their granularity and sched-
ule. Communication operations can be instantiated or retired inside
any of the calls: analyze transfers,
advance dim(level), finalize dim(level). For multiple
loop nests, each nesting level contains calls into the runtime
(advance dim and finalize dim) that can be used for communi-
cation synchronization. With this abstract description the runtime
can choose to instantiate either pattern A or B described in Fig-
ure 3. Temporary communication buffers are managed by the run-
time (get local address). The calls start nest and end nest
are hooks into a runtime layer that caches the loop descriptions and
analysis results.

To provide potential for communication overlap, we automati-
cally strip-mine singly nested loops at compile time, as shown in
Figure 5 ( get strips call). Since the strip size is not determined
until execution time, the runtime analysis is able to determine the
cases where this optimization is not actually profitable and set the
number of strips to one. For deeper loop nests, overlap is already
present due to the loop structure. However, it might be the case that
long innermost loops can benefit from further blocking. Accord-
ingly, we always strip-mine innermost loops with unit stride. Loops
containing references with non-unit stride are likely to require VIS
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ln = start_nest( key);
add_polytope_dim(ln, DEPTH, LB, UB, STRIDE);
br = new_base_ref(ln, ALIAS, element_size;
lmad = new_lmad(ln, br, base_ptr, READ);
add_sos_dim(ln, br, lmad, 0, stride, span);
refvect = analyze_transfers(ln);
if(refvect== 1) {
   lbase = (double *) get_local_address(ln, br, lmad);
   sd = get_strips(ln);
   for(oidx = 0; oidx <= ((N-1 / sd) -1); oidx = oidx + 1) {
        advance_dim(ln, DEPTH);
        for(iidx = 0; iidx <= (sd -1); iidx = iidx + 1) {
          i = iidx + oidx * sd;
          sumv =lbase[i] + sumv;

    //patch-up code
      finalize_dim(ln, 0);
      end_nest(ln);
  else {
       //fallback code - shared memory version

Figure 5. Optimized Code

calls and are not currently blocked. If we find a motivating appli-
cation, future extensions to this work will consider decomposition
and overlap across VIS calls.

Our approach for discovering and exploiting overlap is dy-
namic. We are aware of only one other compiler effort to exploit
overlap for loop nests using one sided communication. This is work
performed by Paek and presented in his PhD Thesis. He only con-
siders a static approach where overlap is provided at a compile time
static nesting level.

The data indexing sequence into the communication buffers is
determined either statically by compile time analysis or dynami-
cally by runtime analysis. For most loops encountered in practice,
compile time analysis can determine statically that the initial data
memory layout and the application access order will match the lay-
out inside the communication buffers. This corresponds to loops
where the LMADs synthesized for communication operations have
the general property that span(i − 1) ≤ stride(i)||span(i −
1) == 0, for each dimension i. The first clause captures the case
where where the regions accessed in any loop iteration are disjoint.
This has been the case in all of our benchmark applications. The
second clause captures the case where a loop index does not appear
in the original index and occurs in practice in tiled loops.

There are cases where assuming a certain layout might pro-
hibit the optimal communication plans or the compile time analysis
cannot determine statically the communication buffer indexing se-
quence. Examples are: 1) tiling of multidimensional arrays, where
the runtime might choose to use either VIS or point-to-point calls,
and the data layout into the communication buffers cannot be stat-
ically predicted; and 2) some contiguous4 LMADs. In these cases
we use runtime computed coefficients instead of compile time co-
efficients. The coefficients Ci and Cj in Figure 2-(5) illustrate this
situation. In order to minimize the register pressure we use the same
coefficients for all the references within an Uniformly Generated
Set5. We have not encountered this situation in the applications we
have examined. Also, note that this case can be handled by compile
time analysis and redundant data transfers.

The runtime analysis is allowed to fail. In this case the code re-
verts to executing the slow but correct fine-grained version. Fail-
ure occurs due to the limitations of the dependency analysis in
Open64 and limitations in our runtime analysis and index gener-
ation. Paek [29] shows that dependency analysis using the LMAD
representation is more powerful than the analysis using convex re-
gions. Failures occur when a loop has read and write sets that are
remote, and the compile time analysis cannot determine their in-
tersection and has to be conservative. In these cases, our LMAD

4 See examples in [29].
5 Same index expression in each dimension except for constants

based runtime analysis might be able to prove that the two regions
are disjoint or simplify their union/intersection into a more manage-
able form. However there may be cases where we cannot compute
the index expression for both references to capture exactly the in-
tersection of the two regions. We do not expect to encounter this
case in practice.

One question we had to answer during our implementation was
the level of integration between the serial loop optimization frame-
work and the communication optimization framework. High level6

serial loop transformations are guided by a uniprocessor machine
model and oblivious of a UPC loop’s communication requirement.
These transformations are mostly designed to increase spatial and
temporal locality and are guided by machine specific parameters,
such as cache size, cache miss latency. Increasing spatial and tem-
poral locality is also beneficial for communication transformations,
however, the latter are guided by network specific parameters. De-
coupling the two optimization stages might result in non-optimal
code.

However, our empirical experience indicates that the runtime
communication mechanisms we provide are good enough to over-
come any possible performance penalties. For cache blocking
transformations, even for L1 caches7, the block granularities cho-
sen match well enough the optimal communication granularity. It
is either the case that the cache blocks are large enough or the la-
tency of the loop body is high and the loop is computation bound.
Our dynamic scheduling strategy is also able to mitigate between
the differences in granularities. For example, for the code in Fig-
ure 2-(5) blocking for the L1 cache with block size B, will result
in a runtime choice of a good communication strategy. Some se-
rial transformations (e.g., fission) have the potential of introducing
redundant communication operations. For these cases we provide
runtime mechanisms such as caching of transferred data.

Therefore, in our framework we enable all the existing Open64
serial loop transformations in a communication agnostic manner
and have a separate pass for the communication optimizations.
So far, based on our empirical observations we believe that this
separation of optimization stages does not lead to a significant
decrease in optimization efficiency.

6. Runtime Analysis
The runtime analysis part of our framework is responsible for
instantiating the communication operations and determining their
granularity and schedule. The first step of the runtime analysis is
an estimation of the computation present in a loop. The model used
for this task is presented in Section 6.1 and this estimation is an
input for the communication performance models.

The second step of the runtime analysis is detection of the com-
munication requirements for the loop nest. The compile time anal-
ysis groups together all application level LMADs with the same
base reference. For each group, the runtime analysis applies coa-
lescing to all the LMADs, followed by tests to determine whether
pairs of LMADs are contiguous or interleaved. At each recombina-
tion operation the analysis keeps track of the dependence distance
which is needed when strip-mining communication. At the end of
this stage, the runtime has a list of communication LMADs. The
original computational LMADs are associated to the communica-
tion LMADs that subsumes them.

The theoretical complexity of each LMAD simplification oper-
ation is in most cases O(dlogd), where d represents the number
of dimensions. Computing the “optimal” solution for the simplifi-
cation of arbitrary LMAD sets is an NP-hard [28] problem. How-

6 No code scheduling transformations such as software pipelining or register
blocking.
7 On processors used in the HPC systems we studied.
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ever, the study in [29] for the SPEC [13] and Perfect [4] bench-
mark suites indicates that a significant amount of simplification is
easily achieved in practice. This study reports statistics for compile
time symbolic manipulation only. At runtime the information about
the structure and the total span of LMADs is precise. We sort the
LMADs within one base reference group by increasing spans and
attempt simplifications only for overlapping pairs. The additional
complexity of this operation is O(N logN), where N is the base
reference set cardinality. Furthermore, the number of remote refer-
ences inside a loop is expected to be small and our experimental
results indicate that the analysis is not a significant source of over-
head in this case.

Paek [28] explores communication generation only for very
simple cases and restricted communication interfaces. Our avail-
able communication interfaces are a lot more generic and during
this work we have developed new operations for multi-dimensional/multi-
index reshaping used for generating communication for complex
data redistributions and for generating induction variable coeffi-
cients.

At the end of the communication analysis stage, the runtime has
a global view of the loop transfer requirements. Based on the per-
formance models, the runtime determines the instantiation of com-
munication operations, granularity of decomposition and schedule.
The result of this step is a communication plan. A communication
plan can be viewed as a tuple:

CP = (Type, Comm Args, N, S, B Issue,

Init Level, Sync Level, B Sync) (1)

Inside a communication plan Type can be either a point-
to-point operation or a VIS operation, Comm Args hold the
actual arguments, N is the number of total operations, S is
the transfer granularity, B Issue is the burst length for issuing
communication operations. Init Level indicates the nest depth
where communication should be issued and is associated to the
advance dim/finalize dim calls. Sync Level indicates the nest
depth where communication is retired and finally B Sync indi-
cates the number of communication operations retired in one step.

6.1 Estimating Loop Overhead
In order to solve the communication optimization problem, our
runtime mechanisms require an estimation of the computation per-
formed inside a loop nest. Loop execution overhead is mostly deter-
mined by the number of cache misses, and several compile [16, 23]
time approaches to estimate the memory traffic of a loop nest have
been described. However, it is not clear how well symbolic esti-
mation correlates with actual performance, since execution time is
also determined by the initial cache contents.

We designed our estimation to require minimal hardware aware-
ness and be very computationally lightweight. This design ap-
proach is based on the properties of the performance models used in
the runtime: 1) regardless of the type of erroneous decision, under-
estimation of computation time always produces better solutions
that overestimation; 2) for communication/computation balanced
loops or computationally lightweight loops, the models predict the
same solution with an upper bound in the underestimation error
of roughly 50% and 3) there is a large range of good decomposi-
tions for computationally intensive loops, and the models are able
to make good predictions with very coarse computation time esti-
mates.

We estimate computation overhead based on similarity with
common operations which we measure directly on the target pro-
cessors. These operations are vector reductions (sum+=a[i]),
vector-to-vector operations (a[i]+=b[i]), and the raw perfor-
mance of ALU operations. We record the latency of these type of

operations for different data types, operators ( + or / ), and memory
footprints with both cold and hot caches.

The compile time analysis gathers the information about remote
references and counts the number of operations inside a loop nest.
Loop optimizations happen before the global scalar optimization
phase which performs common subexpression elimination. The
operation counting is conservative, e.g., indexing expressions are
counted only once. Local references are also analyzed at compile
time and separated into locality groups. The information passed
to the runtime consists of the number of local references and the
number of operators and can be viewed as a tuple:

LC = (NLocal Ref , NInt ALU , NFP ALU , NDiv) (2)

After a communication operation, computing on the transferred
data is guaranteed to miss in the cache, and we use the remote
references as indicators of the loop body overhead. Based on the
communication descriptor LMADs and the additional computation
information LC, the estimator combines ALU operations with ref-
erences and incrementally synthesizes vector reduction and vector-
to-vector operations. Reuse information is inferred from the poly-
tope description and the communication descriptors. For example,
for the matrix-vector multiply operation in Figure 2, assuming that
the vector is remote, the synthesized formula is

T (M, N) = T out
red (M) + (N − 1) ∗ T in

red(M) + N ∗ T in
vec(M) +

0 ∗ Talu(M ∗N), (3)

where T out
red (M) is the time for an out of cache reduction of length

M and T in
vec(N) is the time for a in cache vector-to-vector opera-

tion.
This approach is computationally lightweight and satisfies all

model requirements. It is accurate for communication dominated
loops, it underestimates for computation dominated loops and the
error range is lower than the precision required by the network
models. We have obtained good results for the estimator on various
loops including some of the Livermore [15] loops. At this time,
we have not experimented with estimators for loops with non-unit
inner stride. For these cases the runtime will automatically choose
VIS calls which we do not decompose.

6.2 Estimating Communication Load
Load estimation is perhaps the most important source of error in the
performance models. For each communicating pair of processors
the estimator computes a communication distance (CD) measure,
defined as the distance between the ranks of the endpoints. The
heuristic to choose the bandwidth profile based on CD is:

if(CD < MIN THRESH)
choose Gh(P, S)

else if(MIN THRESH < CD < P
2

)

choose Gl(P
2

, S)
else

choose Gl(P, S)

The value MIN THRESH for the fat-tree networks we inves-
tigated is chosen to be the number of ports of the first level of
switches and the heuristic to estimate the communication distance
works well in practice for the benchmarks we have examined. For
the XT3 network we choose this value based on visual inspection
of the bandwidth profiles at different concurrencies. For loop nests
with a large number of independent remote references a weighted
average communication distance might be required but we have not
encountered this situation in the applications we have examined.

6.3 Instantiating Communication
For LMADs that require the transfer of a single contiguous region,
the runtime analysis uses the models presented in [19] to choose the
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communication granularity and schedule. The initiation and syn-
chronization of communication calls are dynamically associated
with the entry points for the loop prologue or epilogue at the ap-
propriate nesting level.

For LMADs that require the transfer of multiple disjoint mem-
ory regions, the runtime chooses between pipelining Put/Get calls
or synthesizes a VIS call using a model based on the performance
profiles described in Section 4. We consider the three types of sce-
narios presented in Figure 4: redistributions, lightweight computa-
tion and heavyweight computation. Problems are classified based
on the computational load as belonging to one of these classes and
the choice is made by positioning the problem into the optimization
space. On Infiniband and Elan networks, the two subspaces are well
separated and we describe the boundary in the optimization space
with a simple polygonal shape. This shape, presented in Figure 4, is
derived using manual inspection of the performance data and delin-
eates the two implementations. On the Cray XT3 network, where
the two subspaces are sparse, we use the whole performance pro-
files extracted from the tuning micro-benchmarks.

6.4 Memory Management
The runtime is responsible for managing the required communi-
cation buffer space and for eliminating redundant communication.
Compilers [8, 14] that perform message vectorization usually man-
age communication buffers at loop nest granularity, or array state-
ment in Fortran language derivatives, and rely on complicated com-
pile time analysis for redundancy elimination. The presence of the
UPC memory model, combined with the powerful runtime LMAD
representation, allows us to implement coarser grained manage-
ment and caching techniques.

We use dynamic management from a memory pool that is live
between two synchronization operations (barriers, locks, etc.). This
scope is also the caching lifetime. Communication LMADs cor-
responding to previous transfers are associated with the contents
of the memory pool, and redundant communication operations are
served from the cache whenever possible. Reusing the same com-
munication pool across synchronization points is beneficial for the
networks whose performance is affected by the communication
memory footprint.

7. Training the Models
The performance database contains the network specific parame-
ters {o(b, S), Gl(P, S), Gh(P, S)}, the processor specific parame-
ters {T in

red(S), T out
red (S), T in

vec(S), T out
vec (S), Talu(S)}, and the de-

scription of the boundary in the problem space where VIS imple-
mentations are chosen: {Polycomm = {(V1, N1)...}, Polylight =
{...}, Polyheavy = {...}}.

We provide a set of micro-benchmarks to determine all these pa-
rameters. The benchmarks have been carefully chosen to minimize
the number of experiments required and the total running time. The
serial experiments run in minutes, and the parallel experiments run
in a matter of hours.

Currently, the data analysis step is performed manually, and it is
the most time consuming step. Even with partial “automation” and
after performing the analysis for several systems, this step requires
weeks of effort.

We have considered providing profiles for new systems based on
processor and network families. This approach works well for prob-
lems with very large communication volumes but, it fails some-
times for the medium sized transfers which are often encountered
in applications. For any new hardware system, our framework will
perform only vectorization and automatic synthesis of VIS opera-
tions.

The heuristics involved in the choice of the VIS implementa-
tions are coarse grained. The effects of computational intensity are

System Network CPU type
AMD cluster [20] Infiniband 4x 640 x 2.2GHz Opteron

AMD cluster Elan4 16 x 2.2 Ghz Opteron
Cray XT3 Custom 2068 x 2.6 Ghz Opteron

Table 1. Systems Used for Benchmarks

captured reasonably well by our classification, refinements are pos-
sible in the description of the boundary shape. One important factor
for TLB based networks is the total memory footprint of the oper-
ation which we currently handle in a very coarse manner. A future
area of research is improving this classification with machine learn-
ing. Techniques used to support vector machines are applicable in
this case, but they will have to be adapted to minimize the com-
plexity of the description of the proposed solution.

8. Experiments
We validate our compiler and runtime optimization framework
using the CG, MG, SP, BT, IS and FT application kernels from the
NAS [24] Parallel Benchmarks suite. Table 1 presents the systems
used in our experiments. We evaluate three different networks:
a small departmental cluster with an Elan4 network, a mid-size
Infiniband cluster and a large scale Cray XT3 system [2]. The
Infiniband and Elan networks are connected in a fat-tree topology,
while the Cray system has a torus network architecture. On the
Cray XT3 system we report an incomplete set of results which
we will extend for the final version of the paper. Some missing
results are due to slow queue turnaround on the system, some to
implementation problems: the GASNet implementation is still in
the testing stage; and we are still validating the models and the
runtime implementation.

We compare the performance of a manually optimized version
of the benchmarks with the performance achieved by our compiler
and runtime optimizations. All versions are based on the officially
released UPC implementation [33] of the NAS benchmarks, which
we use as a performance baseline. The selected benchmarks cover
a wide range of communication patterns. CG (get) and MG (put)
perform point to point contiguous communication. In CG the gran-
ularity of communication for a given call site is fixed by the prob-
lem and system size. In MG, the communication granularity varies
dynamically at each call site. SP (put) and BT (put and get) issue a
very large number of messages to a given processor, and the count
and granularity of these messages varies with problem and system
size. IS and FT perform all-to-all communication operations with
granularity determined by the problem and system size.

Figure 6 presents the performance results obtained on the In-
finiband and the Cray XT3 systems. We report PBASE/POPT ,
where PBASE represents the performance of the baseline imple-
mentation, which uses manually vectorized blocking communica-
tion. The bars labeled HAND show the performance of the manual
optimizations. For each benchmark we manually modify the imple-
mentation to use non-blocking communication for maximal over-
lap without any other source modifications. In particular, we do
not perform manual strip-mining. The bars labeled OPT show the
performance of the programs compiled within our optimizations
framework. For these implementations we replace all bulk com-
munication calls in the original program with shared memory style
code. If the target buffer of a communication operation is used at
multiple sites, we do not perform redundant communication elim-
ination. For the IS and FT benchmarks we had to manually break
data dependences and introduce a double-buffering scheme directly
in the application. Thus, these two benchmarks execute additional
serial work.

The cumulative effect of the techniques we employ is directly
observable in the benchmark behavior. The performance of CG, IS,
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Figure 6. Results for NAS application kernels. Class A on 4 and 8 processors, Class B on 16 and 32 processors and Class C on 64 and 128
processors.

and FT benefits from strip-mining and depends on the estimation of
computation and system load. The messages exchanged in CG have
short to medium size and the benefits of our optimizations are more
pronounced on the Infiniband and Elan systems. These systems
have a lower overhead for communication initiation combined with
a lower effective bandwidth than on the Cray XT3 system. The
bars labeled FT-NLE show how the benefits of strip-mining are
diminished at higher concurrency (32, 64) when load estimation
is not performed. The choice of an uncongested bandwidth profile
in the performance models leads to a finer grained decomposition
and a larger number of independent transfers. At high concurrency,
the latency of transfers is adversely affected by congestion.

The torus network in the XT3 system responds differently to
congestion than the fat-tree networks. On this system, the perfor-
mance of the manually optimized implementations for the bench-
marks that perform all-to-all communication (FT,IS) is very un-
even and degrades at high concurrencies. For example, the ratio
PBASE/PHAND is equal to 2.05 when running the IS benchmark
on 128 processors. The application of our techniques improves con-
siderably the performance of the non-blocking implementations, al-
beit the improvements over the baseline blocking implementation
are modest. We are still examining the heuristics involved in the
choice of bandwidth profiles for this system, but we believe that
topology aware communication scheduling might be required in or-
der to exploit the full potential of non-blocking communication.

The performance of MG, SP, and BT depends on the dynamic
selection of pipelining communication over VIS calls. The SP and
MG benchmarks communicate a large number of contiguous re-
gions whose length exceeds the unit of data packing (1500 bytes)
in the VIS implementation and the implementation automatically
chooses pipelining over packing. The BT benchmark transfers re-

gions whose length is in the tens of doubles range and the VIS
implementation will automatically choose data packing. For the SP
and MG benchmarks the dynamic selection of pipelining communi-
cation leads to very modest observable performance improvements
in the 1% range. On the Infiniband network, for the BT benchmark
the dynamic selection of pipelining leads to additional performance
improvements over data packing in the 7% range (7.3% for 32 pro-
cessors, 6.7% for 64 processors). Note that the results in Figure 6
correspond to statically choosing the VIS calls.

The results on the Elan network are qualitatively similar to the
results on the Infiniband network for all benchmarks except CG.
This network is more efficient at fine-grained overlap and the CG
benchmark exhibits modest (2% − 3%) speedups even at the low
concurrencies examined (4,8,16).

On all systems, the overhead of the dynamic runtime analysis is
very small and for all benchmarks it amounts to a small fraction of
a percent of the total running time. We split the analysis overhead in
the time to describe the problem and the time to analyze the prob-
lem. For all systems and problems we observe average overheads
of 5µs for the problem description and 3µs for the analysis and
communication plan generation. Caching of analysis results will
eliminate the latter overhead. For reference, the round trip latency
of the Infiniband system is 14 µs and the round-trip latency of the
Elan4 system is 9 µs.

The results indicate that the compiler based approach outper-
forms in most cases the manually optimized implementations. The
performance provided by our approach scales well with system
and problem size: best speedups are obtained at high concurrency.
The optimization parameters chosen for each instance vary dynami-
cally with the problem setting and system architecture. The average
speedup over the manual version is 9.5% across all experiments,
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the average speedup per benchmark is as high as 17% for some
classes, and the maximum8 speedup observed over all experiments
is 27%.

9. Future Work
There are several research and implementation directions that we
can pursue to improve the effectiveness and the usability of our
framework. The serial performance of our runtime analysis can
be further improved and we expect some additional performance
benefits from exposing control over analysis at the application
level. We also need to finish the experimentation and modeling
work on the XT3 system.

We are examining techniques to optimize highly unstructured
applications. The applications we have available are a computa-
tional fluid dynamics code and a parallel Delaunay triangulation
code. In these applications communication is performed inside un-
structured while loops, and a framework for compile time analysis
and cross loop communication scheduling is required. The analy-
sis also needs to be able to handle loops containing conditionals.
Our initial results indicate that in order to exploit the full benefit
of non-blocking communication on the Cray XT systems, appli-
cation level mechanisms for global communication scheduling are
required. We will explore extending the loop optimization frame-
work of our UPC compiler with transformations and runtime mech-
anisms for global scheduling.

We believe that our compiler technology can be used for the
implementation of high performance collective operations such as
reductions, ALLTOALL and ALLTOALLV, eliminating some the
need for significant implementation and tuning efforts. The heuris-
tics involved in dynamically choosing between data packing or
communication pipelining can be also moved within the commu-
nication layer.

Another interesting future research area is to understand better
the impact of decoupling serial loop optimizations from communi-
cation optimizations. Our initial evaluation indicates that this can
be done without overall loss of performance. Auto-tuning parallel
libraries can benefit from this approach, as they can employ sep-
arate serial performance and communication performance tuning
cycles.

10. Related Work
Communication optimizations for parallel programs have been
studied extensively in the context of data parallel languages [17, 18,
21, 30, 31]. Initial efforts focused on array optimizations and per-
formed message vectorization and coalescing on a loop nest basis.
More recent efforts focus on global program analysis. Chakrabarti
et al. [7] present a global algorithm for communication analysis and
placement implemented in the IBM pHPF compiler using control
flow graph analysis. Kandemir et al. [21, 22] present data flow tech-
niques for global communication scheduling for HPF programs,
assuming either MPI communication or one-sided communication.
They perform message vectorization, message coalescing and re-
dundancy elimination across multiple loop nests. One common
characteristic of these efforts is that they focus on minimizing the
number and volume of communication operations. These tech-
niques worked well at the time due to the high latency and the low
bandwidth of the networks. For contemporary networks, studies
have shown that a finer-grained interleaving of communication and
computation operations is able to provide better overlap. Further-
more, until very recently, the performance of MPI implementations

8 For IS and FT at very high concurrencies we obtain speedups of 80%.
This behavior is caused by un-tuned all-to-all implementations. We have
discarded these results in computing the averages.

was relatively system agnostic, and previous research did not target
performance portability as a goal.

Communication optimizations have also been studied in the
context of parallelizing compilers. Of these efforts, most relevant
to our work is the approach taken in the Polaris compiler. Paek et
al. [29] introduce the Linear Memory Access Descriptor (LMAD),
which is used to efficiently represent generic array regions. In par-
ticular, Paek discusses code generation for loops containing com-
munication operations using a one-sided communication model. He
presents simple heuristics for placement of communication opera-
tions in order to optimize memory consumption and achieve com-
munication pipelining. His approach is static and does not discuss
how to achieve optimal overlap.

The existing compilers for PGAS languages perform various
communication optimizations. The Co-Array Fortran compiler [14]
supports message vectorization but does not perform code genera-
tion using higher level data packing and unpacking primitives. It
also does not perform strip-mining or other compile time optimiza-
tions to exploit non-blocking communication. The Titanium com-
piler and runtime provide array copy libraries that can select either
contiguous or data packing calls. This selection is static and the
compiler does not perform communication and computation over-
lap transformations. Su and Yelick [32] describe a compile and run-
time approach for inspector-executor based programs. They pro-
vide models for data packing latency estimation and selection of
communication strategies.

11. Conclusion
Effective use of communication networks is critical to the perfor-
mance and scalability of parallel applications. Partitioned Global
Address Space languages have proven effective at utilizing modern
networks because their one-sided communication is a good match
to underlying network hardware. These languages also provide the
means to leverage communication overlap for latency hiding, how-
ever the use of split-phase communication operations has primarily
been applied manually by programmers.

In this paper we have presented a compiler and runtime opti-
mization framework for loops containing communication opera-
tions. Our framework performs compile time message vectoriza-
tion and strip-mining, and defers until runtime the instantiation of
the actual communication operations. At runtime, the communica-
tion requirements of the program are analyzed, and communica-
tion is instantiated and scheduled based on highly tuned network
and application performance models. The runtime analysis is able
to select from a large class of available communication interfaces
the interface and communication schedule best suited for the dy-
namic combination of input size and system load. The results in-
dicate that our framework produces code that is better performing
and more scalable than manually optimized implementations. The
dynamic optimization approach used in our system increases both
programmer productivity and performance portability.

We believe that our results are of interest to application devel-
opers as well as communication library implementors and language
designers. Compiler assisted techniques might be able to produce
well performing implementations of some classes of collective
communication calls such as reductions and ALLTOALLs, thereby
either reducing the implementation effort or completely eliminat-
ing the need for such primitives in communication libraries. Imple-
mentors of auto-tuning parallel libraries could use our optimization
approach and decouple the serial optimizations from the communi-
cation optimizations.
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