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LBMHD 
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LBMHD 

  Lattice Boltzmann Magnetohydrodynamics (CFD+Maxwell’s Equations) 
  Plasma turbulence simulation via Lattice Boltzmann Method for simulating 

astrophysical phenomena and fusion devices 
  Three macroscopic quantities: 

  Density 
  Momentum (vector) 
  Magnetic Field (vector) 

  Two distributions: 
  momentum distribution (27 scalar components) 
  magnetic distribution (15 Cartesian vector components) 

momentum distribution 
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LBMHD 

  Code Structure 
  time evolution through a series of collision( ) and stream( ) functions 

  When parallelized, stream( ) should constitute 10% of the runtime. 
  collision( )’s Arithmetic Intensity: 

  Must read 73 doubles, and update 79 doubles per lattice update (1216 bytes) 
  Requires about 1300 floating point operations per lattice update 
  Just over 1.0 flops/byte (ideal architecture) 
  Suggests LBMHD is memory-bound on the XT4. 

  Structure-of-arrays layout (component’s are separated) ensures that cache 
capacity requirements are independent of problem size 

  However, TLB capacity requirement increases to >150 entries 

  periodic boundary conditions 
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Auto-tuning LBMHD 
on Multicore SMPs 

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, 
"Lattice Boltzmann Simulation Optimization on Leading Multicore Platforms", 
International Parallel & Distributed Processing Symposium (IPDPS), 2008.  
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LBMHD Performance 
(reference implementation) 

  Generally, scalability looks 
good 

  Scalability is good 
  but is performance good? 

*collision() only  

Reference+NUMA 
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Lattice-Aware Padding 

  For a given lattice update, the requisite velocities can be mapped to 
a relatively narrow range of cache sets (lines). 

  As one streams through the grid, one cannot fully exploit the 
capacity of the cache as conflict misses evict entire lines. 

  In an structure-of-arrays format, pad each component such that 
when referenced with the relevant offsets (±x,±y,±z) they are 
uniformly distributed throughout the sets of the cache 

  Maximizes cache utilization and minimizes conflict misses. 

8 
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LBMHD Performance 
(lattice-aware array padding) 

9 

  LBMHD touches >150 
arrays. 

  Most caches have limited 
associativity 

  Conflict misses are likely 
  Apply heuristic to pad 

arrays 

+Padding 

Reference+NUMA 
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Vectorization 

  Two phases with a lattice method’s collision() operator: 
  reconstruction of macroscopic variables 
  updating discretized velocities 

  Normally this is done one point at a time. 
  Change to do a vector’s worth at a time (loop interchange + tuning) 

10 
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LBMHD Performance 
(architecture specific optimizations) 

  Add unrolling and reordering of 
inner loop 

  Additionally, it exploits SIMD 
where the compiler doesn’t 

  Include a SPE/Local Store 
optimized version 

*collision() only  

+Explicit SIMDization 

+SW Prefetching 

+Unrolling 

+Vectorization 

+Padding 

Reference+NUMA 

+small pages 
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3x 130x 
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Limitations 

  Ignored MPP (distributed) world 
  Kept problem size fixed and cubical 
  When run with only 1 process per SMP, maximizing threads per 

process always looked best 

13 



LAWRENCE BERKELEY NATIONAL LABORATORY 

F U T U R E   T E C H N O L O G I E S   G R O U P 

14 

Hybrid MPI+Pthreads 
Implementation 
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Flat MPI 

  In the flat MPI world, there is one 
process per core, and only one thread 
per process 

  All communication is through MPI 

15 
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Hybrid MPI + Pthreads/OpenMP 

  As multicore processors already provide cache 
coherency for free, we can exploit it to reduce 
MPI overhead and traffic. 

  We examine using pthreads and OpenMP for 
threading (other possibilities exist) 

  For correctness in pthreads, we are required to 
include a intra-process (thread) barrier between 
function calls for correctness.   
 (we wrote our own) 

  Implicitly, OpenMP will barrier via the #pragma 

  We can choose any balance between processes/
node and threads/process 
 (we explored powers of 2) 

  Initially, we did not assume a thread-safe MPI 
implementation (many versions return 
MPI_THREAD_SERIALIZED).  As such, only 
thread 0 performs MPI calls 
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Distributed, Hybrid  
Auto-tuning 
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The Distributed 
Auto-tuning Problem 

  We believe that even for relatively large problems, auto-tuning only  
the local computation (e.g. IPDPS’08) will deliver sub-optimal MPI 
performance. 

  Want to explore MPI/Hybrid decomposition as well 
  We have a combinatoric explosion in the search space coupled with 

a large problem size (number of nodes) 

18 

benchmark 
for all code unrollings/reorderings 

for all vector lengths 
for all prefetching 

for all coding styles (reference, vectorized, vectorized+SIMDized) 
for all data structures 

for all thread grids 

for all aspect ratios 
at each concurrency: 

for all process/thread balances 
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Our Approach 

  We employ a resource-efficient 3-stage greedy algorithm that 
successively prunes the search space: 

19 
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Stage 1 

20 

XT4 (Franklin)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

re
fe

re
n
c
e

v
e
c
to

ri
z
e
d

v
e
c
t+

S
S
E

re
fe

re
n
c
e

v
e
c
to

ri
z
e
d

v
e
c
t+

S
S
E

no padding lattice-aware padding

G
F
L
O

P
s
/

c
o

r
e

+Tuned Prefetch
+Tuned Unrolling/DLP

+Tuned VL
baseline parameters

  In stage 1, we prune the code generation space. 
  We ran this as a 1283 problem with 4 threads. 
  As VL, unrolling, and  

 reordering may be problem 
 dependent, we only prune: 
  padding 
  coding style 
  prefetch distance 

  We observe that vectorization 
 with SIMDization, and a 
 prefetch distance of 64 Bytes 
 worked best 
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Stage 2 

  Hybrid Auto-tuning requires we mimic the SPMD 
environment 

  Suppose we wish to explore this color-coded 
optimization space. 

  In the serial world (or fully threaded nodes),  
 the tuning is easily run 

  However, in the MPI or hybrid world a problem 
arises as processes are not guaranteed to be 
synchronized. 

  As such, one process may execute some 
optimizations faster than others simply due to 
fortuitous scheduling with another processes’ trials 

  Solution: add an MPI_barrier() around each trial 
 (a configuration with 100’s of iterations) 
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Stage 2 (continued) 

  We create a database of optimal VL/unrolling/DLP parameters for 
each thread/process balance, thread grid, and aspect ratio 
configuration 
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Stage 3 

  Given the data base from Stage 2,  
  we run few large problem using the best known parameters/thread 

grid for different thread/process balances. 

  We select the parameters based on minimizing 
  overall local time 
  collision( ) time 
  local stream( ) time 

23 
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Results 
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XT4 Results 
(5123 problem on 512 cores) 

  Finally, we present the best data 
for progressively more aggressive 
auto-tuning efforts 

  Note each of the last 3 bars may 
have unique MPI decompositions 
as well as VL/unroll/DLP 

  Observe that for this large problem, 
auto-tuning flat MPI delivered 
significant boosts (2.5x) 

  However, expanding auto-tuning to 
include the domain decomposition 
and balance between threads and 
processes provided an extra 17% 

  2 processes with 2 threads was 
best 
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What about OpenMP ? 
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Conversion to OpenMP 

  Converting the auto-tuned pthreads implementation to OpenMP 
seems relatively straightforward (#pragma omp parallel for) 

  We modified code to be single source that supports: 
  Flat MPI 
  MPI+pthreads 
  MPI+OpenMP 

  However, it is imperative (especially on NUMA SMPs) to correctly 
utilize the available affinity mechanisms: 
  on XT, aprun has options to handle this 
  on linux clusters (like NERSC’s Carver), user must manage it: 

#ifdef _OPENMP 

  #pragma omp parallel 

  {Affinity_Bind_Thread( MyFirstHWThread+omp_get_thread_num());} 

#else 

   Affinity_Bind_Thread( MyFirstHWThread+Thread_Rank); 

#endif 

  use both to be safe 
  Failure to miss these or other key pragmas can cut performance in 

half (or 90% in one particularly bad bug) 
27 
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Optimization of Stream() 

  In addition, we further optimized the stream() routine along 3 axes: 
1.  messages could be blocked (24 velocities/direction/phase/process) or 

aggregated (1/direction/phase/process) 
2.  packing could be sequential (thread 0 does all the work) or 

 thread parallel (using pthreads/openMP) 
3.  MPI calls could be serialized (thread 0 does all the work) or  

 parallel (MPI_THREAD_MULTIPLE) 
  Of these eight combinations, we implemented 4: 

  aggregate, sequential packing, serialized MPI  
  blocked, sequential packing, serialized MPI  
  aggregate, parallel packing, serialized MPI (simplest openMP code) 
  blocked, parallel packing, parallel MPI (simplest pthread code) 

  Threaded MPI on Franklin requires using 
  threaded MPICH 
  calling using MPI_THREAD_MULTIPLE 
  setting MPICH_MAX_THREAD_SAFETY=multiple 

28 
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MPI vs. MPI+Pthreads vs. MPI+OpenMP 

  When examining overall 
performance per core (5123 
problem with cores), we see 
choice made relatively little 
difference 

  MPI+pthreads was slightly 
faster with 2thread/process 

  MPI+OpenMP was slightly 
faster with 4 threads/process 

  choice of best stream() 
optimization is dependent on 
thread concurrency and 
threading model 
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MPI vs. MPI+Pthreads vs. MPI+OpenMP 

  When we look at collision 
time, we see that surprisingly 
2 threads per process 
delivered slightly better 
performance for pthreads, but 
4 threads per process was 
better for OpenMP. 

  Interestingly, threaded MPI 
resulted in slower compute 
time 
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MPI vs. MPI+Pthreads vs. MPI+OpenMP 

  Variation in stream time was 
dramatic with 4 threads. 

  Here the blocked 
implementation was far 
faster. 

  Interestingly, pthreads was 
faster for 2 threads, openMP 
was faster for 4 threads. 
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Summary & Discussion 
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Summary 

  Multicore cognizant auto-tuning dramatically improves (2.5x) flat 
MPI performance. 

  Tuning the domain decomposition and hybrid implementations 
yielded almost an additional 20% performance boost.  

  Although hybrid MPI promises improved performance through 
reduced communication, the observed benefit is thus far small.   

  Moreover, the performance difference among hybrid models is 
small. 

  Initial experiments on the XT5 (Hopper) and the Nehalem cluster 
(Carver) show similar results (little trickier to get good OpenMP 
performance on the linux cluster) 

  LBM’s probably will not make the case for hybrid programming 
models (purely concurrent with no need for collaborative behavior) 

35 
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Questions? 
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BACKUP SLIDES 
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Memory access patterns for Stencils 

  Laplacian, Divergence, and Gradient 
  Different reuse, Different #’s of read/write arrays 
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LBMHD Stencil 

  Simple example reading from 9 arrays and writing to 9 arrays 
  Actual LBMHD reads 73, writes 79 arrays 
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?
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Arithmetic Intensity 

  True Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes 

  Some HPC kernels have an arithmetic intensity that scales with problem 
size (increased temporal locality), but remains constant on others 

  Arithmetic intensity is ultimately limited by compulsory traffic 
  Arithmetic intensity is diminished by conflict or capacity misses. 

A r i t h m e t i c  I n t e n s i t y 

O( N ) 
O( log(N) ) 

O( 1 ) 

SpMV, BLAS1,2 

Stencils (PDEs) 

Lattice Methods 

FFTs 
Dense Linear Algebra 

(BLAS3) 
Particle Methods 
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Kernel Arithmetic Intensity 
and Architecture 
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  For a given architecture, one may calculate its flop:byte ratio. 
  For a 2.3GHz Quad Core Opteron (like in the XT4),  

  1 SIMD add + 1 SIMD multiply per cycle per core 
  12.8GB/s of DRAM bandwidth 
  = 36.8 / 12.8 ~ 2.9 flops per byte 

  When a kernel’s arithmetic intensity is substantially 
 less than the architecture’s flop:byte ratio, transferring 
 data will take longer than computing on it  
  memory-bound 

  When a kernel’s arithmetic intensity is substantially greater than the 
architecture’s flop:byte ratio, computation will take longer than data 
transfers  
  compute-bound 


