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< Lattice Boltzmann Magnetohydrodynamics (CFD+Maxwell’'s Equations)

< Plasma turbulence simulation via Lattice Boltzmann Method for simulating
astrophysical phenomena and fusion devices
< Three macroscopic quantities:
= Density
=  Momentum (vector)
» Magnetic Field (vector)

< Two distributions:
=  momentum distribution (27 scalar components)
= magnetic distribution (15 Cartesian vector components)
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macroscopic variables momentum distribution magnetic distribution

Top 40% at T = 40k
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< Code Structure
= time evolution through a series of collision( ) and stream( ) functions

> When parallelized, stream( ) should constitute 10% of the runtime.

» collision( )’'s Arithmetic Intensity:

= Must read 73 doubles, and update 79 doubles per lattice update (1216 bytes)
» Requires about 1300 floating point operations per lattice update

= Just over 1.0 flops/byte (ideal architecture)

» Suggests LBMHD is memory-bound on the XT4.

>

L)

L)

>

L)

L)

< Structure-of-arrays layout (component’s are separated) ensures that cache
capacity requirements are independent of problem size

> However, TLB capacity requirement increases to >150 entries

>

L)

L)
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L)

» periodic boundary conditions

L)
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Auto-tuning LBMHD
on Multicore SMPs

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick,
"Lattice Boltzmann Simulation Optimization on Leading Multicore Platforms",
International Parallel & Distributed Processing Symposium (IPDPS), 2008.
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‘.ﬁ LBMHD Performance

(reference implementation)
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Generally, scalability looks
good

Scalability is good
but is performance good?

Reference+NUMA
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==} Lattice-Aware Padding

» For a given lattice update, the requisite velocities can be mapped to
a relatively narrow range of cache sets (lines).

» As one streams through the grid, one cannot fully exploit the
capacity of the cache as conflict misses evict entire lines.

< In an structure-of-arrays format, pad each component such that
when referenced with the relevant offsets (+x,ty,xz) they are
uniformly distributed throughout the sets of the cache

» Maximizes cache utilization and minimizes conflict misses.
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(lattice-aware array padding)
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Vectorization

< Two phases with a lattice method’s collision() operator:
» reconstruction of macroscopic variables
» updating discretized velocities
< Normally this is done one point at a time.
< Change to do a vector’'s worth at a time (loop interchange + tuning)
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(architecture specific optimizations)
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(architecture specific optimizations)

1.6X 4x

3X 130x
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< Ignored MPP (distributed) world
< Kept problem size fixed and cubical

< When run with only 1 process per SMP, maximizing threads per
process always looked best
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Hybrid MPI+Pthreads
Implementation
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< In the flat MPI world, there is one e S L e T
process per core, and only one thread
collision() collision() collision() collision()
per process
o A” Commun|cat|0n |S thrOugh MPI | pack() | | pack() | | pack() | | pack() |
MPI() MPI() MPI() MPI()
| unpack() | | unpack() | | unpack() | | unpack() |
| pack) | | pack) | | pack) | | pack() |
MPI() MPI() MPI() MPI()
| unpack() | | unpack() | | unpack() | | unpack() |
| pack) | | pack) | | packy | | packy |
MPI() MPI() MPI() MPI()
| unpack() | | unpack() | | unpack() | | unpack() |
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Hybrid MPI + Pthreads/OpenMP

rocess 0

< As multicore processors already provide cache thread  fhreac]  tread2  threads
coherency for free, we can exploit it to reduce arrier()
MPI Overhead and trafﬁc- collision() | | collision() | | collision() | | collision()
arrier()
% We examine using pthreads and OpenMP for pack) | [ pack() | [ pack() | [ pack) |
threading (other possibilities exist) arder)
% For correctness in pthreads, we are required to MPIO
include a intra-process (thread) barrier between ariar)
function calls for correctness. unpack() | | unpack() | | unpack() | | unpack() |
arrier()
(we wrote our own) pack() | | pack() || pack() || pack() |
< Implicitly, OpenMP will barrier via the #pragma amisr)
MPI()
< We can choose any balance between processes/ arricr)
node and threads/process unpack() | [ unpack() | | unpack() | | unpack() |
arrier()
(we explored powers of 2) pack) | | packQ || pack0 | | pack) |
arrier()
< Initially, we did not assume a thread-safe MPI MPI()
implementation (many versions return 3
MP'_THREAD_SER'AL'ZED) As SUCh, only unpack() | | unpack() | | unpack() | | unpack() |
thread 0 performs MPI calls baier)
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Auto-tuning Problem

<+ We believe that even for relatively large problems, auto-tuning only
the local computation (e.g. IPDPS’08) will deliver sub-optimal MPI
performance.

< Want to explore MPI/Hybrid decomposition as well

<+ We have a combinatoric explosion in the search space coupled with
a large problem size (number of nodes)

at each concurrency:
for all aspect ratios
for all process/thread balances
for all thread grids
for all data structures
for all coding styles (reference, vectorized, vectorized+SIMDized)
for all prefetching
for all vector lengths
for all code unrollings/reorderings
benchmark
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Our Approach

<+ We employ a resource-efficient 3-stage greedy algorithm that
successively prunes the search space:

1. Prune variant space

2. Prune parameter space

3. ‘Production
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» In stage 1, we prune the code generation space.
» We ran this as a 1283 problem with 4 threads.

< As VL, unrolling, and 2.4 -
. J 2.2 - XT4 (Franklin) —
reorderlng may be prObIem 2.0 | [J+Tuned Prefetch
L1+ dUuU i DLP
dependent, we only prune: 1.8 | fruned Unroling/ 1
n padding — [Ibaseline parameters -

» coding style
= prefetch distance
< We observe that vectorization
with SIMDization, and a

prefetch distance of 64 Bytes 02+ 1 1 1 1 1 I
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< Hybrid Auto-tuning requires we mimic the SPMD —— one node ——
environment processO process1

time

» Suppose we wish to explore this color-coded l '

optimization space. | B4
* In the serial world (or fully threaded nodes), @ | ——
the tuning is easilyrun | /7

< However, in the MPI or hybrid world a problem | |1
arises as processes are not guaranteed to be
synchronized.

» As such, one process may execute some
optimizations faster than others simply due to
fortuitous scheduling with another processes’ trials o ]

» Solution: add an MPI_barrier() around each trial

(a configuration with 100’s of iterations)
meeeeeeesessssssss |_ AWRENCE BERKELEY NATIONAL LABORATORY




Stage 2 (continued)

<+ We create a database of optimal VL/unrolling/DLP parameters for
each thread/process balance, thread grid, and aspect ratio
configuration  3.00

Exploration of Thread Topology
2.75 .
and Process Aspect Ratio
2.50
2.25
o 2.00
i ‘.‘: A ‘.:AAAAA A‘AAAA
8 1.75 g%"—‘.iﬂA at, “A‘A .
* | I | A A
@ 1.50
. m e AR LA
g_ e A= n A
™ 1.25
O 1.00
0.75
0.50 ~ < 1 thread per process
| = 2 threads per process
0.25
4 4 threads per process

0.00

Different Aspect Ratios
(6413 /core)
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< Given the data base from Stage 2,

< we run few large problem using the best known parameters/thread
grid for different thread/process balances.

<+ We select the parameters based on minimizing
= overall local time
= collision() time
» |ocal stream( ) time
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Results
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(5123 problem on 512 cores)

< Finally, we present the best data

. . —_ 1.0 -
for progr_esswely more aggressive ~ XT4 (Franklin) Performance
auto-tuning efforts o 0.9
o -
< Note each of the last 3 bars may O 8'3 i
have unique MPI decompositions > 0.6 i
as well as VL/unroll/DLP piby
£ 0.5 3
S 0.4 -
<« Observe that for this large problem, & 0.3 s
auto-tuning flat MPI delivered S 0.2 -
significant boosts (2.5x) = 0.1 | o
= 0.0
3 e  BZ 22 g
< However, expanding auto-tuning to % £8 | £ 2 2 5 5
include the domain decomposition © <% £ 8 T
and balance between threads and E’g < =
H (o)
processes provided an extra 17% Flat MPI (1 thread per process) ”-a
threads

< 2 processes with 2 threads was
best

e L AWRENCE BERKELEY NATIONAL LABORATORY =i



What about OpenMP ?

LAWRENCE BERKELEY NATIONAL LABORATORY =asssssmnifn



>

Conversion to OpenMP

» Converting the auto-tuned pthreads implementation to OpenMP
seems relatively straightforward (#pragma omp parallel for)

<+ We maodified code to be single source that supports:
= Flat MPI
= MPI+pthreads
= MPI+OpenMP

<+ However, it is imperative (especially on NUMA SMPs) to correctly
utilize the available affinity mechanisms:

= on XT, aprun has options to handle this
» on linux clusters (like NERSC'’s Carver), user must manage it:

#ifdef _OPENMP
#pragma omp parallel
{Affinity_Bind_Thread( MyFirstHwWThread+omp_get_thread_num());}
#else
Affinity_Bind_Thread( MyFirstHWThread+Thread_Rank);
#endif

= use both to be safe

» Failure to miss these or other key pragmas can cut performance in

half (or 90% in one particularly bad bug)
—— _AWRENCE BERKELEY NATIONAL LABORATORY =g
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Optimization of Stream()

< In addition, we further optimized the stream() routine along 3 axes:

1. messages could be blocked (24 velocities/direction/phase/process) or
aggregated (1/direction/phase/process)

2. packing could be sequential (thread 0 does all the work) or
thread parallel (using pthreads/openMP)

3. MPI calls could be serialized (thread 0 does all the work) or
parallel (MPI_THREAD MULTIPLE)
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Optimization of Stream()

< In addition, we further optimized the stream() routine along 3 axes:

1.

messages could be blocked (24 velocities/direction/phase/process) or
aggregated (1/direction/phase/process)

packing could be sequential (thread 0 does all the work) or
thread parallel (using pthreads/openMP)

MPI calls could be serialized (thread 0 does all the work) or
parallel (MPI_THREAD MULTIPLE)

< Of these eight combinations, we implemented 4:

aggregate, sequential packing, serialized MPI

blocked, sequential packing, serialized MPI

aggregate, parallel packing, serialized MPI (simplest openMP code)
blocked, parallel packing, parallel MPI (simplest pthread code)
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Optimization of Stream()

< In addition, we further optimized the stream() routine along 3 axes:

1.

messages could be blocked (24 velocities/direction/phase/process) or
aggregated (1/direction/phase/process)

packing could be sequential (thread 0 does all the work) or
thread parallel (using pthreads/openMP)

MPI calls could be serialized (thread 0 does all the work) or
parallel (MPI_THREAD MULTIPLE)

< Of these eight combinations, we implemented 4:

aggregate, sequential packing, serialized MPI

blocked, sequential packing, serialized MPI

aggregate, parallel packing, serialized MPI (simplest openMP code)
blocked, parallel packing, parallel MPI (simplest pthread code)

< Threaded MPI on Franklin requires using

threaded MPICH
calling using MPI_THREAD MULTIPLE
setting MPICH_MAX THREAD_ SAFETY=multiple
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* When examining overall

performance per core (5123 2:25 Overall Performance
problem with cores), we see 2.00 -
chome made relatively little 175 | @ g \- & B Q, gy e
difference o ) 2teads —
S - 1 thread er process 4 threads
%+ MPl+pthreads was slightly 8 10 | perpoess por process
faster with 2thread/process §_ 1.25 -
<+ MPI+OpenMP was slightly L 100 - I e venadl
faster with 4 threads/process §'
i 0.75 -
G
% choice of best stream() 0.50 7 ® Pthreads
optimization is dependent on 0.25 - B OpenMPp
thread concurrency and pen
: 0.00 : :
threading model Configuration

e L AWRENCE BERKELEY NATIONAL LABORATORY g



S

< When we look at collision

time, we see that surprisingly 0.20 collision() time
2 threads per process 0.18 -
delivered slightly better 016 | L R N R R R R
performance for pthreads, but 014 o pir"iiigis —
4 threads per process was D6r Process bor process
better for OpenMP. ?0-12 T (e
00.10 -
0
< Interestingly, threaded MPI “0.08 - =
resulted in slower compute 0.06 -
time
04 - :
0.0 ® Seriesl
0.02 - M Series2
0.00 : :
Configuration
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< Variation in stream time was

dramatic with 4 threads. 0.05 stream() time
< Here the blocked
implementation was far 0.04 - *
faster. O
v L
1 0.03 - © PN
< Interestingly, pthreads was S 1 thread , 9 ! ® . ——
faster for 2 threads, openMP | § Catnpy 2 teads. per process
v _
was faster for 4 threads. 0.02
0.01 7 @ Pthreads
B OpenMP
0.00 : :
Configuration
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» Multicore cognizant auto-tuning dramatically improves (2.5x) flat
MPI performance.

» Tuning the domain decomposition and hybrid implementations
yielded almost an additional 20% performance boost.

< Although hybrid MPI promises improved performance through
reduced communication, the observed benefit is thus far small.

< Moreover, the performance difference among hybrid models is
small.

< Initial experiments on the XT5 (Hopper) and the Nehalem cluster
(Carver) show similar results (little trickier to get good OpenMP
performance on the linux cluster)

» LBM'’s probably will not make the case for hybrid programming
models (purely concurrent with no need for collaborative behavior)

LAWRENCE BERKELEY NATIONAL LABORATORY =aasssngin




S

A
cecect?) | Acknowledgements

< Research supported by DOE Office of Science under contract
number DE-AC02-05CH11231

< All XT4 simulations were performed on the XT4 (Franklin) at the
National Energy Research Scientific Computing Center (NERSC)

< George Vahala and his research group provided the original
(FORTRAN) version of the LBMHD code.

e L AWRENCE BERKELEY NATIONAL LABORATORY =g



>

recoeocoee| |

Questions?

e L AWRENCE BERKELEY NATIONAL LABORATORY =i



BACKUP SLIDES

e L AWRENCE BERKELEY NATIONAL LABORATORY st n



> A _
% Memory access patterns for Stencils

< Laplacian, Divergence, and Gradient
< Different reuse, Different #'s of read/write arrays

read_array| | -‘AW” read_array[ ][] -\‘WH read array[] x z//m(nsmn
e & tlepp A BB s Tala Tyl
"X ' £ \ \\ /I /'L /)/0(/11
write array[ ][ ]

write_array/[ | write_array/[ |

\V/

u’ u
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< Simple example reading from 9 arrays and writing to 9 arrays
< Actual LBMHD reads 73, writes 79 arrays

x dimension
A

read _array[ ][]

\\.

e B AO,F D) A o T/

L—
L
L

”
/]
/|
-
]

2

0

9%
KEKEK Kbk

/|
%

(a) (b)
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Intensity ./

SpMV, BLAS1,2 FFTs
Dense Linear Algebra
Stencils (PDE
encils ( S) (BLAS3)
Lattice Methods Particle Methods

>

L)

> True Arithmetic Intensity (Al) ~ Total Flops / Total DRAM Bytes

L)

L)

» Some HPC kernels have an arithmetic intensity that scales with problem
size (increased temporal locality), but remains constant on others

L)

/
0’0

Arithmetic intensity is ultimately limited by compulsory traffic
Arithmetic intensity is diminished by conflict or capacity misses.

/
0’0
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and Architecture
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» For a given architecture, one may calculate its flop:byte ratio.

» For a 2.3GHz Quad Core Opteron (like in the XT4),
= 1 SIMD add + 1 SIMD multiply per cycle per core

= 12.8GB/s of DRAM bandwidth

» =36.8/12.8 ~ 2.9 flops per byte B vt

SRI / xbar
Tv
2x64b controllers

L)

L)

4

L)

L)

Opteron

512K i Opteron
512K i Opteron

512K Opteron

512K

HyperTransport

>

<+ When a kernel’s arithmetic intensity is substantially
less than the architecture’s flop:byte ratio, transferring
data will take longer than computing on it

- memory-bound

12.8 GB/s

800MHz DDR2 DIMMs

>

L)

> When a kernel’s arithmetic intensity is substantially greater than the
architecture’s flop:byte ratio, computation will take longer than data

transfers
- compute-bound
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