
LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

1

Lattice Boltzmann Hybrid
Auto-Tuning on High-End
Computational Platforms

Samuel Williams, Jonathan Carter,
Leonid Oliker, John Shalf, Katherine Yelick

 Lawrence Berkeley National Laboratory (LBNL)
 National Energy Research Scientific Computing Center (NERSC)

SWWilliams@lbl.gov

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Outline

1.  LBMHD
2.  Auto-tuning LMBHD on Multicore SMPs
3.  Hybrid MPI-Pthreads implementations
4.  Distributed, Hybrid LBMHD Auto-tuning
5.  pthread Results
6.  OpenMP results
7.  Summary

2

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

3

LBMHD

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 4

LBMHD

  Lattice Boltzmann Magnetohydrodynamics (CFD+Maxwell’s Equations)
  Plasma turbulence simulation via Lattice Boltzmann Method for simulating

astrophysical phenomena and fusion devices
  Three macroscopic quantities:

  Density
  Momentum (vector)
  Magnetic Field (vector)

  Two distributions:
  momentum distribution (27 scalar components)
  magnetic distribution (15 Cartesian vector components)

momentum distribution

14

4

13

16

5

8

9

21

12

+Y

2

25

1

3

24

23

22

26

0

18

6

17

19

7

10

11

20

15
+Z

+X

magnetic distribution

14

13

16

21

12

25

24

23

22

26

18

17

19

20

15

+Y

+Z

+X

macroscopic variables

+Y

+Z

+X

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 5

LBMHD

  Code Structure
  time evolution through a series of collision() and stream() functions

  When parallelized, stream() should constitute 10% of the runtime.
  collision()’s Arithmetic Intensity:

  Must read 73 doubles, and update 79 doubles per lattice update (1216 bytes)
  Requires about 1300 floating point operations per lattice update
  Just over 1.0 flops/byte (ideal architecture)
  Suggests LBMHD is memory-bound on the XT4.

  Structure-of-arrays layout (component’s are separated) ensures that cache
capacity requirements are independent of problem size

  However, TLB capacity requirement increases to >150 entries

  periodic boundary conditions

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

6

Auto-tuning LBMHD
on Multicore SMPs

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick,
"Lattice Boltzmann Simulation Optimization on Leading Multicore Platforms",
International Parallel & Distributed Processing Symposium (IPDPS), 2008.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 7

LBMHD Performance
(reference implementation)

  Generally, scalability looks
good

  Scalability is good
  but is performance good?

*collision() only

Reference+NUMA

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Lattice-Aware Padding

  For a given lattice update, the requisite velocities can be mapped to
a relatively narrow range of cache sets (lines).

  As one streams through the grid, one cannot fully exploit the
capacity of the cache as conflict misses evict entire lines.

  In an structure-of-arrays format, pad each component such that
when referenced with the relevant offsets (±x,±y,±z) they are
uniformly distributed throughout the sets of the cache

  Maximizes cache utilization and minimizes conflict misses.

8

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

LBMHD Performance
(lattice-aware array padding)

9

  LBMHD touches >150
arrays.

  Most caches have limited
associativity

  Conflict misses are likely
  Apply heuristic to pad

arrays

+Padding

Reference+NUMA

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY
(b)

(a)

(d)

(c)

Vectorization

  Two phases with a lattice method’s collision() operator:
  reconstruction of macroscopic variables
  updating discretized velocities

  Normally this is done one point at a time.
  Change to do a vector’s worth at a time (loop interchange + tuning)

10

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 11

LBMHD Performance
(architecture specific optimizations)

  Add unrolling and reordering of
inner loop

  Additionally, it exploits SIMD
where the compiler doesn’t

  Include a SPE/Local Store
optimized version

*collision() only

+Explicit SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Reference+NUMA

+small pages

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 12

LBMHD Performance
(architecture specific optimizations)

  Add unrolling and reordering of
inner loop

  Additionally, it exploits SIMD
where the compiler doesn’t

  Include a SPE/Local Store
optimized version

*collision() only

+Explicit SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Reference+NUMA

+small pages

1.6x 4x

3x 130x

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Limitations

  Ignored MPP (distributed) world
  Kept problem size fixed and cubical
  When run with only 1 process per SMP, maximizing threads per

process always looked best

13

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

14

Hybrid MPI+Pthreads
Implementation

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

process 0 process 1 process 2 process 3
(core 0) (core 1) (core 2) (core 3)

Flat MPI

  In the flat MPI world, there is one
process per core, and only one thread
per process

  All communication is through MPI

15

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

collision() collision() collision() collision()

pack() pack() pack() pack()

unpack() unpack() unpack() unpack()

MPI()

pack() pack() pack() pack()

pack() pack() pack() pack()

MPI()

MPI()

unpack() unpack() unpack() unpack()

unpack() unpack() unpack() unpack()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

MPI()

MPI()

MPI()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

process 0 process 1
thread 0 thread 1 thread 0 thread 1
(core 0) (core 1) (core 2) (core 3)

Hybrid MPI + Pthreads/OpenMP

  As multicore processors already provide cache
coherency for free, we can exploit it to reduce
MPI overhead and traffic.

  We examine using pthreads and OpenMP for
threading (other possibilities exist)

  For correctness in pthreads, we are required to
include a intra-process (thread) barrier between
function calls for correctness.
 (we wrote our own)

  Implicitly, OpenMP will barrier via the #pragma

  We can choose any balance between processes/
node and threads/process
 (we explored powers of 2)

  Initially, we did not assume a thread-safe MPI
implementation (many versions return
MPI_THREAD_SERIALIZED). As such, only
thread 0 performs MPI calls

16

collision() collision() collision() collision()

pack() pack() pack() pack()

unpack() unpack() unpack() unpack()

MPI()

pack() pack() pack() pack()

pack() pack() pack() pack()

MPI()

MPI()

unpack() unpack() unpack() unpack()

unpack() unpack() unpack() unpack()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

process 0
thread 0 thread 1 thread 2 thread 3
(core 0) (core 1) (core 2) (core 3)

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

17

Distributed, Hybrid
Auto-tuning

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

The Distributed
Auto-tuning Problem

  We believe that even for relatively large problems, auto-tuning only
the local computation (e.g. IPDPS’08) will deliver sub-optimal MPI
performance.

  Want to explore MPI/Hybrid decomposition as well
  We have a combinatoric explosion in the search space coupled with

a large problem size (number of nodes)

18

benchmark
for all code unrollings/reorderings

for all vector lengths
for all prefetching

for all coding styles (reference, vectorized, vectorized+SIMDized)
for all data structures

for all thread grids

for all aspect ratios
at each concurrency:

for all process/thread balances

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Our Approach

  We employ a resource-efficient 3-stage greedy algorithm that
successively prunes the search space:

19

benchmark
for all code unrollings/reorderings

for all vector lengths
for all prefetching

for all coding styles (reference, vectorized, vectorized+SIMDized)
for all data structures

for all thread grids

for all aspect ratios
at limited concurrency (single node):

for all process/thread balances

benchmark

at full concurrency:
for all process/thread balances

benchmark

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Stage 1

20

XT4 (Franklin)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

re
fe

re
n
c
e

v
e
c
to

ri
z
e
d

v
e
c
t+

S
S
E

re
fe

re
n
c
e

v
e
c
to

ri
z
e
d

v
e
c
t+

S
S
E

no padding lattice-aware padding

G
F
L
O

P
s
/

c
o

r
e

+Tuned Prefetch
+Tuned Unrolling/DLP

+Tuned VL
baseline parameters

  In stage 1, we prune the code generation space.
  We ran this as a 1283 problem with 4 threads.
  As VL, unrolling, and

 reordering may be problem
 dependent, we only prune:
  padding
  coding style
  prefetch distance

  We observe that vectorization
 with SIMDization, and a
 prefetch distance of 64 Bytes
 worked best

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Stage 2

  Hybrid Auto-tuning requires we mimic the SPMD
environment

  Suppose we wish to explore this color-coded
optimization space.

  In the serial world (or fully threaded nodes),
 the tuning is easily run

  However, in the MPI or hybrid world a problem
arises as processes are not guaranteed to be
synchronized.

  As such, one process may execute some
optimizations faster than others simply due to
fortuitous scheduling with another processes’ trials

  Solution: add an MPI_barrier() around each trial
 (a configuration with 100’s of iterations)

21
tim

e

process0 process1
.
.
.
.

process0 process1
.
.
.
.

one node

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Stage 2 (continued)

  We create a database of optimal VL/unrolling/DLP parameters for
each thread/process balance, thread grid, and aspect ratio
configuration

22

Exploration of Thread Topology

and Process Aspect Ratio

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Different Aspect Ratios

(64^3/core)

G
F
lo

p
s
/

c
o

r
e

1 thread per process

2 threads per process

4 threads per process

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Stage 3

  Given the data base from Stage 2,
  we run few large problem using the best known parameters/thread

grid for different thread/process balances.

  We select the parameters based on minimizing
  overall local time
  collision() time
  local stream() time

23

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

24

Results

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

XT4 Results
(5123 problem on 512 cores)

  Finally, we present the best data
for progressively more aggressive
auto-tuning efforts

  Note each of the last 3 bars may
have unique MPI decompositions
as well as VL/unroll/DLP

  Observe that for this large problem,
auto-tuning flat MPI delivered
significant boosts (2.5x)

  However, expanding auto-tuning to
include the domain decomposition
and balance between threads and
processes provided an extra 17%

  2 processes with 2 threads was
best

25

XT4 (Franklin) Performance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
fe

re
n
c
e

L
a
tt

ic
e

P
a
d
d
in

g

S
in

g
le

-T
h
re

a
d

O
p
ti
m

iz
a
ti
o
n
s

A
s
p
e
c
t

R
a
ti
o

T
u
n
in

g

H
y
b
ri
d
 T

u
n
in

g

Flat MPI (1 thread per process) 2-4

threads

T
F
L
O

P
s
 (

w
it

h
 5

1
2

 c
o

r
e
s
)

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

26

What about OpenMP ?

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Conversion to OpenMP

  Converting the auto-tuned pthreads implementation to OpenMP
seems relatively straightforward (#pragma omp parallel for)

  We modified code to be single source that supports:
  Flat MPI
  MPI+pthreads
  MPI+OpenMP

  However, it is imperative (especially on NUMA SMPs) to correctly
utilize the available affinity mechanisms:
  on XT, aprun has options to handle this
  on linux clusters (like NERSC’s Carver), user must manage it:

#ifdef _OPENMP

 #pragma omp parallel

 {Affinity_Bind_Thread(MyFirstHWThread+omp_get_thread_num());}

#else

 Affinity_Bind_Thread(MyFirstHWThread+Thread_Rank);

#endif

  use both to be safe
  Failure to miss these or other key pragmas can cut performance in

half (or 90% in one particularly bad bug)
27

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Optimization of Stream()

  In addition, we further optimized the stream() routine along 3 axes:
1.  messages could be blocked (24 velocities/direction/phase/process) or

aggregated (1/direction/phase/process)
2.  packing could be sequential (thread 0 does all the work) or

 thread parallel (using pthreads/openMP)
3.  MPI calls could be serialized (thread 0 does all the work) or

 parallel (MPI_THREAD_MULTIPLE)
  Of these eight combinations, we implemented 4:

  aggregate, sequential packing, serialized MPI
  blocked, sequential packing, serialized MPI
  aggregate, parallel packing, serialized MPI (simplest openMP code)
  blocked, parallel packing, parallel MPI (simplest pthread code)

  Threaded MPI on Franklin requires using
  threaded MPICH
  calling using MPI_THREAD_MULTIPLE
  setting MPICH_MAX_THREAD_SAFETY=multiple

28

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Optimization of Stream()

  In addition, we further optimized the stream() routine along 3 axes:
1.  messages could be blocked (24 velocities/direction/phase/process) or

aggregated (1/direction/phase/process)
2.  packing could be sequential (thread 0 does all the work) or

 thread parallel (using pthreads/openMP)
3.  MPI calls could be serialized (thread 0 does all the work) or

 parallel (MPI_THREAD_MULTIPLE)
  Of these eight combinations, we implemented 4:

  aggregate, sequential packing, serialized MPI
  blocked, sequential packing, serialized MPI
  aggregate, parallel packing, serialized MPI (simplest openMP code)
  blocked, parallel packing, parallel MPI (simplest pthread code)

  Threaded MPI on Franklin requires using
  threaded MPICH
  calling using MPI_THREAD_MULTIPLE
  setting MPICH_MAX_THREAD_SAFETY=multiple

29

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Optimization of Stream()

  In addition, we further optimized the stream() routine along 3 axes:
1.  messages could be blocked (24 velocities/direction/phase/process) or

aggregated (1/direction/phase/process)
2.  packing could be sequential (thread 0 does all the work) or

 thread parallel (using pthreads/openMP)
3.  MPI calls could be serialized (thread 0 does all the work) or

 parallel (MPI_THREAD_MULTIPLE)
  Of these eight combinations, we implemented 4:

  aggregate, sequential packing, serialized MPI
  blocked, sequential packing, serialized MPI
  aggregate, parallel packing, serialized MPI (simplest openMP code)
  blocked, parallel packing, parallel MPI (simplest pthread code)

  Threaded MPI on Franklin requires using
  threaded MPICH
  calling using MPI_THREAD_MULTIPLE
  setting MPICH_MAX_THREAD_SAFETY=multiple

30

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

MPI vs. MPI+Pthreads vs. MPI+OpenMP

  When examining overall
performance per core (5123
problem with cores), we see
choice made relatively little
difference

  MPI+pthreads was slightly
faster with 2thread/process

  MPI+OpenMP was slightly
faster with 4 threads/process

  choice of best stream()
optimization is dependent on
thread concurrency and
threading model

31

!"!!#

!"$%#

!"%!#

!"&%#

'"!!#

'"$%#

'"%!#

'"&%#

$"!!#

$"$%#

!
"#
$
%
&'
(%
)
*(
+$
*)
(

()*+,-./0)*#

,-)*.##(/)*0$*1.2+)(

123.4/56#

784*91#

1 thread
per process

(flat MPI)

2 threads
per process 4 threads

per process

Up is good

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

!"!!#

!"!$#

!"!%#

!"!&#

!"!'#

!"(!#

!"($#

!"(%#

!"(&#

!"('#

!"$!#

!"
#$
%
&
!'

)*+,-./01*+#

#$(()!)$%*+',-"'

23/435(#

23/435$#

MPI vs. MPI+Pthreads vs. MPI+OpenMP

  When we look at collision
time, we see that surprisingly
2 threads per process
delivered slightly better
performance for pthreads, but
4 threads per process was
better for OpenMP.

  Interestingly, threaded MPI
resulted in slower compute
time

32

1 thread
per process

(flat MPI)

2 threads
per process 4 threads

per process

Down is good

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

!"!!#

!"!$#

!"!%#

!"!&#

!"!'#

!"!(#

!"
#$
%
&
!'

)*+,-./01*+#

!()"*+,-'.+"'

234/5067#

895+:2#

MPI vs. MPI+Pthreads vs. MPI+OpenMP

  Variation in stream time was
dramatic with 4 threads.

  Here the blocked
implementation was far
faster.

  Interestingly, pthreads was
faster for 2 threads, openMP
was faster for 4 threads.

33

1 thread
per process

(flat MPI) 2 threads
per process

4 threads
per process

Down is good

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

34

Summary & Discussion

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Summary

  Multicore cognizant auto-tuning dramatically improves (2.5x) flat
MPI performance.

  Tuning the domain decomposition and hybrid implementations
yielded almost an additional 20% performance boost.

  Although hybrid MPI promises improved performance through
reduced communication, the observed benefit is thus far small.

  Moreover, the performance difference among hybrid models is
small.

  Initial experiments on the XT5 (Hopper) and the Nehalem cluster
(Carver) show similar results (little trickier to get good OpenMP
performance on the linux cluster)

  LBM’s probably will not make the case for hybrid programming
models (purely concurrent with no need for collaborative behavior)

35

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 36

Acknowledgements

  Research supported by DOE Office of Science under contract
number DE-AC02-05CH11231

  All XT4 simulations were performed on the XT4 (Franklin) at the
National Energy Research Scientific Computing Center (NERSC)

  George Vahala and his research group provided the original
(FORTRAN) version of the LBMHD code.

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

37

Questions?

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

38

BACKUP SLIDES

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Memory access patterns for Stencils

  Laplacian, Divergence, and Gradient
  Different reuse, Different #’s of read/write arrays

39

xy product

read_array[][] x dimension

write_array[]

xy product write_array[][]

x dimension read_array[]

xy product

write_array[]

x dimension read_array[]

x

y

z

u

x

y

z

u

u’

u

x

y

z

x

y

z

x

y

z

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

LBMHD Stencil

  Simple example reading from 9 arrays and writing to 9 arrays
  Actual LBMHD reads 73, writes 79 arrays

40

x dimension

(b)(a)

write_array[][]

(+1,0)

(0,+1)

(0,-1)

(-1,0) (0,0)

(+1,+1)

(+1,-1)(-1,-1)

(-1,+1)

read_array[][]

?

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 41

Arithmetic Intensity

  True Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes

  Some HPC kernels have an arithmetic intensity that scales with problem
size (increased temporal locality), but remains constant on others

  Arithmetic intensity is ultimately limited by compulsory traffic
  Arithmetic intensity is diminished by conflict or capacity misses.

A r i t h m e t i c I n t e n s i t y

O(N)
O(log(N))

O(1)

SpMV, BLAS1,2

Stencils (PDEs)

Lattice Methods

FFTs
Dense Linear Algebra

(BLAS3)
Particle Methods

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Kernel Arithmetic Intensity
and Architecture

42

800MHz DDR2 DIMMs

12.8 GB/s

2x64b controllers

H
y
p

e
rT

ra
n

s
p

o
rt

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

5
1

2
K

5
1

2
K

5
1

2
K

5
1

2
K

2MB victim

SRI / xbar

  For a given architecture, one may calculate its flop:byte ratio.
  For a 2.3GHz Quad Core Opteron (like in the XT4),

  1 SIMD add + 1 SIMD multiply per cycle per core
  12.8GB/s of DRAM bandwidth
  = 36.8 / 12.8 ~ 2.9 flops per byte

  When a kernel’s arithmetic intensity is substantially
 less than the architecture’s flop:byte ratio, transferring
 data will take longer than computing on it
  memory-bound

  When a kernel’s arithmetic intensity is substantially greater than the
architecture’s flop:byte ratio, computation will take longer than data
transfers
  compute-bound

