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Introduction
• Investigation of stencil optimizations for a simple 7-point heat equation
• Constructed memory models for single-timestep cache blocking and time
skewed blocking

Single-Timestep Cache Blocking
• 2D Cache Blocking algorithm in 3D with reuse
only in space
• Largest-stride dimension is unblocked
• Early work (on Pentium III-class machines)
by Rivera et al. showed performance
Improvements

Multiple-Iteration Time Skewing

• Extends cache blocking to reuse points over multiple sweeps of the grid
• Diagram above left shows the shape of each block and the order they are
executed in 1D.  Above right shows a 3D version of the block execution order.
• Block shape takes into account the inter-point dependencies of the stencil

Cache Oblivious

(a) (b) (c)
• Recursive algorithm that does not use cache size as a parameter
• Cuts a spacetime trapezoid such as the 1D example in Figure (a) in either
time (c) or space (b), preserving point dependencies
• Extensive effort by our group to optimize this algorithm

Circular Queue
• Designed to pipeline planes of a stencil into a local
store or cache and perform stencil operations
• Originally for Cell local stores using DMA operations

Overall Results

Stencil Probe Release
• A self-contained benchmark suite with implementations of all the above
algorithms
• Targeted release date: Jan 21, 2008

What is Autotuning?
Idea
•There are too many complex architectures with too many possible code
transformations to optimize over.
•An optimization on one machine may slow another machine down.
•Need a general, automatic  solution

Code Generators
•Kernel-specific
•Perl script generates 1000’s of code variations
•Autotuner searches over all possible implementations (sometimes guided
by a performance model to prune the space) to find the optimal
configuration
•Optimizations included in this work:

Array Padding avoids conflicts in the L1/L2
Vectorization avoids rolling the TLB
Unrolling/DLP compensates for poor compilers
SW Prefetching attempts to hide L2 and DRAM latency
SIMDization compensates for poor compilers, and

streaming stores minimize memory traffic

Architectures Evaluated
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Autotuning Lattice Methods
Paper Reference
S. Williams, J. Carter, L. Oliker, J. Shalf, K. Yelick, "Lattice Boltzmann
Simulation Optimization on Leading Multicore Platforms", International
Parallel & Distributed Processing Symposium (IPDPS) (to appear), 2008.

Lattice-Boltzmann Methods
•Out-of-place (Jacobi) style structured grid code
•Popular in CFD
•Simplified kinetic model that maintains the
  macroscopic quantities
•Distribution functions
  (e.g. 27 velocities per point in space) are used
  to reconstruct macroscopic quantities

Lattice-Boltzmann Magneto-hydrodynamics (LBMHD)
•Simulates plasma turbulence
•Couples CFD and Maxwell’s Equations
•Thus it requires:

a Momentum (27 component) distribution and
a Magnetic (45 component) distribution
7 macroscopic quantities
(density, momentum, magnetic field)

•Two phases to the code:
collision() advances the grid one time step
stream() handles the boundary conditions (periodic for benchmark)

•Each cell update requires ~1300 flops and ~1200 bytes of data
•flop:byte ~ 1.0(ideal), ~0.66(cache-based machines)
•2 Problem Sizes: 643(330MB), and 1283(2.5GB)
•Currently utilize Structure-of-Arrays data layout to maximize locality

Autotuning LBMHD
•Autotuning dramatically improved performance on the Opteron (4x)
•Became important when the problem could no longer be mapped with
Niagara2’s 4MB pages
•Although prefetching showed little benefit, SIMD and streaming stores
helped significantly.
•Cell was not autotuned, and only collision() was implemented
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System Power Efficiency
•Used a digital power meter to
  measure sustained system power
•Niagara2 system required 50%
  more power than other systems

Scalability and Performance Comparison
•Clovertown has problems with both multicore and multisocket scaling
•Niagara2 delivered performance between Opteron and Clovertown
•Despite being heavily bound by double precision, Cell is by far the fastest
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What are structured grids ?

Structured Grids
• Data is arranged in regular multidimensional grids (usually 2-4
dimensions)
• Computation is series of grid update steps
•Neighbor addressing is implicit based on each point’s coordinates
•For a given point, a stencil is a pre-determined set of nearest neighbors
(possibly including itself)
• A stencil code updates every point in a regular grid with a common
stencil.

5-point 2D Stencil 7-point 3D Stencil

• There are several structured grid kernels, including:
• Basic Poisson solver (e.g., Jacobi and  Gauss-Seidel iterations)
• Multigrid
• Mesh Refinement
• Adaptive Mesh Refinement (AMR)
• Lattice Methods (including LBMHD)

Autotuning Stencils
Solving Poisson’s Equation
• A common PDE arising in nature (e.g., electrostatics, heat diffusion) is
Poisson’s equation:

∇2ϕ = f
• By discretizing the volume and performing finite differences for the
derivatives, the problem transforms into a stencil code

Stencil Code Description
• We tuned an out-of-place (Jacobi) 7-point 3D stencil
• Ideally each update requires 8 flops and 16 Bytes (flop:byte of 0.5)
• Most cache-based machines will yield a flop:byte ratio of 0.33
• 2 Problem Sizes: 1283 (32 MB) and 2563 (256 MB)
• Some pseudo-code:

void stencil3d(double A[], double B[], int nx, int ny, int nz) {
for all i in x-dim {
   for all j in y-dim {
      for all k in z-dim {
         B[center] = S0* A[i,j,k] +

 S1*(A[i+1,j,k] + A[i-1,j,k] +
     A[i,j+1,k] + A[i,j-1,k] +
     A[i,j,k+1] + A[i,j,k-1]);

      }
   }

            }
}
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Streaming Stores  

Autotuning the Stencil Code
• Streaming Store optimization was extremely useful on the Opteron
   (changed the flop:byte ratio from 0.33 to 0.50)
• Clovertown single socket performance still limited by FSB bandwidth, two
   socket perhaps by DRAM bandwidth
• Niagara2 benefited heavily from unrolling and reordering the inner loop

Scalability and Performance Comparison
• Clovertown has problems with both multicore and multisocket scaling
• Opteron shows superlinear speedup (likely cache effects)
• Niagara2 performance drops off when all 64 threads (8 cores) are used
   (still under investigation)
• Opteron performs the best


