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Tuning Stencils (All Architectures)
Additional Architectures Evaluated
• In addition to the three cache-based architectures in the previous panel, we
add two novel multicore architectures:

What is Autotuning?
Idea
•There are too many complex architectures with too many possible code
transformations to optimize over.
•An optimization on one machine may slow another machine down.
•Need a general, automatic  solution

Code Generators
•Kernel-specific
•Perl script generates 1000’s of code variations
•Autotuner searches over all possible implementations (sometimes guided
by a performance model to prune the space) to find the optimal
configuration
•Optimizations included in this work:

• NUMA-Aware collocates data with the threads processing it
• Array Padding avoids conflicts in the L1/L2
• Thread/Cache minimizes cache misses and memory traffic

Blocking
• Vectorization avoids rolling the TLB
• Unrolling/DLP compensates for poor compilers
• SW Prefetching attempts to hide L2 and DRAM latency
• SIMDization compensates for poor compilers, and

streaming stores minimize memory traffic

Autotuning Lattice Methods
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What are structured grids ?

Structured Grids
• Data is arranged in regular multidimensional grids (usually 2-4
dimensions)
• Computation is series of grid update steps
•Neighbor addressing is implicit based on each point’s coordinates
•For a given point, a stencil is a pre-determined set of nearest neighbors
(possibly including itself)
• A stencil code updates every point in a regular grid with a common
stencil.

• There are several structured grid kernels, including:
• Basic Poisson solver (e.g., Jacobi and  Gauss-Seidel iterations)
• Multigrid
• Mesh Refinement
• Adaptive Mesh Refinement (AMR)
• Lattice Methods (including LBMHD)

Autotuning Stencils (Cache-based Machines)
Paper Reference
K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D.
Patterson, J. Shalf, K.Yelick, “Stencil Computation Optimization and
Autotuning on State-of-the-Art Multicore Architectures”, Submitted to
Supercomputing 2008.

Solving Poisson’s Equation
• A common PDE arising in nature (e.g., electrostatics, heat diffusion) is
Poisson’s equation:

∇2ϕ = f
• By discretizing the volume and performing finite differences for the
derivatives, the problem transforms into a stencil code

Stencil Code Description
• We tuned an out-of-place (Jacobi) 7-point 3D stencil
• Ideally each update requires 8 flops and 16 Bytes (flop:byte of 0.5)
• Most cache-based machines will yield a flop:byte ratio of 0.33
• Ran a 2563 (256 MB) problem

Paper Reference
S. Williams, J. Carter, L. Oliker, J. Shalf, K. Yelick, "Lattice Boltzmann
Simulation Optimization on Leading Multicore Platforms", International
Parallel & Distributed Processing Symposium (IPDPS) 2008.

Lattice-Boltzmann Methods
•Out-of-place (Jacobi) style structured grid code
•Popular in CFD
•Simplified kinetic model that maintains the
  macroscopic quantities
•Distribution functions
  (e.g. 27 velocities per point in space) are used
  to reconstruct macroscopic quantities

Lattice-Boltzmann Magneto-hydrodynamics (LBMHD)
•Simulates plasma turbulence
•Couples CFD and Maxwell’s Equations
•Thus it requires:

a Momentum (27 component) distribution and
a Magnetic (45 component) distribution
7 macroscopic quantities
(density, momentum, magnetic field)

•Two phases to the code:
collision() advances the grid one time step
stream() handles the boundary conditions (periodic for benchmark)

•Each cell update requires ~1300 flops and ~1200 bytes of data
•flop:byte ~ 1.0(ideal), ~0.66(cache-based machines)
•2 Problem Sizes: 643(330MB), and 1283(2.5GB)
•Currently utilize Structure-of-Arrays data layout to maximize locality

Autotuning LBMHD
•Autotuning dramatically improved performance on the Opteron (4x)
•Became important when the problem could no longer be mapped with
Niagara2’s 4MB pages
•Although prefetching showed little benefit, SIMD and streaming stores
helped significantly.
•Cell was not autotuned, and only collision() was implemented

Autotuning the Stencil Code
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3D 7-point stencil

Next[x,y,z]=
   C0 * Current[x,y,z]+
   C1 *(Current[x-1,y,z]+
        Current[x+1,y,z]+
        Current[x,y-1,z]+
        Current[x,y+1,z]+
        Current[x,y,z-1]+
        Current[x,y,z+1]);

Inner Loop Pseudocode

Tuned Stencil Code Performance
• Since the NVIDIA GPU only supports single precision, we compare both
single and double precision performance below

Core Scalability
• Tuned core scalability, below, is much better than untuned scalability, as
shown above

Single Precision Double Precision

Architectures Evaluated
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• Clovertown: single socket
performance still limited by
FSB bandwidth, dual socket
perhaps by DRAM bandwidth
• Opteron: Cache bypass
optimization was extremely
useful (changed the flop:byte
ratio from 0.33 to 0.50)
• Niagara2: benefited heavily
from padding and
thread/cache blocking

Resource Bottlenecks
• This graph tries to determine
whether we are exhausting
either memory bandwidth or in-
core performance
• Most architectures come
close to maximizing one or
both resources
• Clovertown performance is
poor due to substantial cache
coherence traffic on the FSB
• G80 is the other outlier- this
will require further exploration


