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Using the Roofline to Analyze SpMVMotivation, Goals and Audience Three Types of Software Optimization

Using the Roofline to Analyze LBMHD

Cell Blade
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Sparse Matrix
Most entries are 0.0
Performance advantage in only
storing/operating on the nonzeros
Requires significant meta data

Evaluate y=Ax
A is a sparse matrix
x & y are dense vectors

Challenges
Difficult to exploit ILP
Difficult to exploit DLP
Irregular memory access to x
Difficult to load balance
Very low arithmetic intensity  (<0.166)

Auto-tuning
NUMA, SW prefetch improve efficiency
Matrix compression eliminates
compulsory misses

Original performance
Auto-tuned performance

Reference
Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf,
Katherine Yelick, James Demmel, "Optimization of Sparse Matrix-
Vector Multiplication on Emerging Multicore Platforms",
Supercomputing (SC), 2007.

A x y

Plasma turbulence simulation
Two distributions:

A is a sparse matrix
x & y are dense vectors

Three macroscopic quantities:
Density
Momentum (cartesian vector)
Magnetic Field (cartesian vector)

Lattice update:
Read 73 doubles
1300 floating point operations
Write 79 doubles
arithmetic intensity ~ 1.0 (ideal)

Auto-tuning
NUMA, unrolling, and SIMDization
improve efficiency
Cache bypass eliminates compulsory
misses

Original performance
Auto-tuned performance

Reference
Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf,
Katherine Yelick, "Lattice Boltzmann Simulation Optimization on
Leading Multicore Platforms", International Parallel & Distributed
Processing Symposium (IPDPS) (to appear), 2008.
Best Paper, Application Track
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defines horizontal ceilings:
Instruction level
(including pipelining)
SIMD
functional unit
(separate units)

Derived from
optimization manuals
Ordered (from bottom):

Inherent in the kernel
Exploitable by a compiler
Requires hand coding
Not inherent in the kernel

Defines diagonal ceilings
below peak stream
bandwidth roofline:

Unit stride
NUMA
SW prefetching

Obtained with
microbenchmarks

Defines flop:DRAM byte ratios
(walls)
Can never do better
than the compulsory
flop:byte ratio
Each architecture/kernel
combination has a unique
number of capacity and
conflict misses
Ideally obtained with
performance counters
This example is an arbitrary
kernel

Integrate computation,
communication, and
locality into a single figure
Performance is bounded
by the optimizations
implemented:

In-core optimizations
(horizontal ceilings)

Bandwidth optimizations
(diagonal ceilings)

Memory traffic optimizations
(vertical walls)

In-core Parallelism

Memory Bandwidth

Locality (arithmetic intensity)

Roofline Model
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Other Architectural Paradigms ?SPMD Performance Components

Performance is limited by ceilings/walls
In effect, a software optimization punches through them
Performance at the kernel’s (new) arithmetic intensity is
limited by the remaining ceilings

Does this technique apply to other architectural paradigms?
Create single precision (32b) roofline models for:

AMD Opteron 2356 (Barcelona)
IBM QS20 Cell Blade
Sun T2+ T5140 (Victoria Falls)
NVIDIA G80

In-core Performance:
In-core parallelism is the primary challenge on superscalars
Non-FP instructions can sap the potentially limited instruction
fetch/issue bandwidth
On NVIDIA, divergent threads consume more fetch bandwidth.

Bandwidth:
Typically common (SW prefetch, NUMA, unit stride, …)
NVIDIA: if threads aren’t all collaboratively loading a contiguous
block, performance drops by more than 8x

Arithmetic intensity:
Each architecture has unique cache/local store behavior (3C’s)

Each architecture has its own Achilles’ Heel(s)
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Maximize Memory
Bandwidth

Minimize Memory
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Arithmetic Intensity
The flop per DRAM byte ratio is a well known quantity from
HPC: Arithmetic Intensity
Some kernels have arithmetic intensity that grows with the
problem size (FFT, Matrix-Matrix multiplication, etc…)
However, many interesting kernels have arithmetic intensity
that remains constant with problem size (Matrix-Vector
multiplication, Structured Grids, etc… )

A r i t h m e t i c  I n t e n s i t y

O( N )O( log(N) )O( 1 )

SpMV, BLAS1,2

Stencils (PDEs)

Lattice Methods

FFTs
Dense Linear Algebra

(BLAS3)
Particle Methods

Performance and scalability can be extremely non-intuitive
on modern architectures
Success of the multicore paradigm should be premised on
extending the capabilities of the world’s programmers
Must provide a visually intuitive performance model that the
bulk of the world’s programmers (not just Ph.Ds) can use to
optimize code
Provide realistic performance and productivity expectations
Focus on kernel performance and efficiency (e.g. Gflop/s)
Not intended for:

those interested in fine tuning (+5%)
those challenged by program correctness

Three performance components for SPMD kernels
Computation

Typically floating point (single or double precision)
Could also be graphics, crypto, integer or bitwise operations

Communication
Transfer of data from one level of the memory hierarchy to the next
Registers, L1, L2, DRAM, PCIe, Network

Locality
Balance between communication and computation
Incorporates 3C’s model for cache behavior
Results in a Flop:Byte ratio

Naïve Roofline Model
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We’re primarily constrained
by DRAM bandwidth.
Naïvely, one may define
a performance roofline
based on the minimum of:

Peak (advertised) flops
Peak stream bandwidth x

(flops per DRAM byte)
Plot on log-log scale
We can bound
performance if we know,
or can measure:

Total floating point operations
Total bytes transferred to DRAM

In reality, this is far too naïve, and will be expanded...

Divergent Threads


