
Optimization of Sparse Matrix-Vector Multiplication
on Emerging Multicore Platforms

Samuel Williams∗†, Leonid Oliker∗, Richard Vuduc‡

John Shalf∗, Katherine Yelick∗†, James Demmel†
∗CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

†Computer Science Division, University of California at Berkeley, Berkeley, CA 94720, USA
‡College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0765, USA

Abstract
We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every elec-

tronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash
the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for
important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) – one of the most
heavily used kernels in scientific computing – across a broad spectrum of multicore designs. Our experimental plat-
form includes the homogeneous AMD quad-core, AMD dual-core, and Intel quad-core designs, the heterogeneous
STI Cell, as well as one of the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP).
We present several optimization strategies especially effective for the multicore environment, and demonstrate sig-
nificant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations.
Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the
context of demanding memory-bound numerical algorithms.

1 Introduction

Industry has moved to chip multiprocessor (CMP) system design in order to better manage trade-offs among perfor-

mance, energy efficiency, and reliability [5, 10]. However, the diversity of CMP solutions raises difficult questions

about how different designs compare, for which applications each design is best-suited, and how to implement soft-

ware to best utilize CMP resources.

In this paper, we consider these issues in the design and implementation of sparse matrix-vector multiply (SpMV)

on several leading CMP systems. SpMV is a frequent bottleneck in scientific computing applications, and is notorious

for sustaining low fractions of peak processor performance. We implement SpMV for one of the most diverse sets of

CMP platforms studied in the existing HPC literature, including the homogeneous multicore designs of the dual-socket

× quad-core AMD Opteron 2356 (Barcelona), the dual-socket × dual-core AMD Opteron 2214 (Santa Rosa) and the

dual-socket× quad-core Intel Xeon E5345 (Clovertown), the heterogeneous local-store based architecture of the dual-

socket × eight-SPE IBM QS20 Cell Blade, as well as one of the first scientific studies of the hardware-multithreaded

dual-socket × eight-core Sun UltraSparc T2+ T5140 (Victoria Falls) — essentially a dual-socket Niagara2. We show

1

that our SpMV optimization strategies — explicitly programmed and tuned for these multicore environments — attain

significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementa-

tions [24]. This work is a substantial expansion of our previous work [30]. We include new optimizations, new

architectures (Barcelona, Victoria Falls, and the Cell PPE) as well as the first 128 thread trials of PETSc/OSKI.

Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, and

their implications for SpMV. For instance, we quantify the extent to which memory bandwidth may become a signif-

icant bottleneck as core counts increase. In doing so, we motivate several algorithmic memory bandwidth reduction

techniques for SpMV. We also find that using multiple cores provides considerably higher speedups than single-core

code and data structure transformations alone. This observation implies that — as core counts increase — CMP sys-

tem design should emphasize bandwidth and latency tolerance over single-core performance. Finally, we show that,

in spite of relatively slow double-precision arithmetic, the STI Cell still provides significant advantages in terms of

absolute performance and power-efficiency, compared with the other multicore architectures in our test suite.

2 SpMV Overview

SpMV dominates the performance of diverse applications in scientific and engineering computing, economic modeling

and information retrieval; yet, conventional implementations have historically been relatively poor, running at 10% or

less of machine peak on single-core cache-based microprocessor systems [24]. Compared to dense linear algebra

kernels, sparse kernels suffer from higher instruction and storage overheads per flop, as well as indirect and irregular

memory access patterns. Achieving higher performance on these platforms requires choosing a compact data structure

and code transformations that best exploit properties of both the sparse matrix — which may be known only at run-time

— and the underlying machine architecture. This need for optimization and tuning at run-time is a major distinction

from the dense case.

We consider the SpMV operation y ← y + Ax, where A is a sparse matrix, and x, y are dense vectors. We

refer to x as the source vector and y as the destination vector. Algorithmically, the SpMV kernel is as follows:

∀ai,j 6= 0 : yi ← yi + ai,j · xj , where ai,j denotes an element of A. SpMV has a low computational intensity, given

that ai,j is touched exactly once, and on cache-based machines, one can only expect to reuse elements of x and y. If x

and y are maximally reused (i.e., incur compulsory misses only), then reading A should dominate the time to execute

SpMV. Thus, we seek data structures for A that are small and enable temporal reuse of x and y.

2

// Basic SpMV implementation,
// y <- y + A*x, where A is in CSR.
for (i = 0; i < m; ++i) {

double y0 = y[i];
for (k = ptr[i]; k < ptr[i+1]; ++k)

y0 += val[k] * x[ind[k]];
y[i] = y0;

}

Figure 1: Compressed sparse row (CSR) storage, and a basic CSR-based SpMV implementation.

The most common data structure used to store a sparse matrix for SpMV-heavy computations is compressed sparse

row (CSR) format, illustrated in Figure 1. The elements of each row of A are shaded using the same color. Each row

of A is packed one after the other in a dense array, val, along with a corresponding integer array, ind, that stores the

column indices of each stored element. Thus, every non-zero value carries a storage overhead of one additional integer.

A third integer array, ptr, keeps track of where each row starts in val, ind. We show a naı̈ve implementation of

SpMV for CSR storage in the bottom of Figure 1. This implementation enumerates the stored elements of A by

streaming both ind and val with unit-stride, and loads and stores each element of y only once. However, x is

accessed indirectly, and unless we can inspect ind at run-time, the temporal locality of the elements of x may only be

captured in the last level cache instead of the register file.

When the matrix has dense block substructure, as is common finite element method-based applications, practition-

ers employ a blocked variant of CSR (BCSR), which stores a single column index for each r × c block, rather than

one per non-zero as in CSR.

2.1 OSKI, OSKI-PETSc, and Related Work

We compare our multicore SpMV optimizations against OSKI, a state-of-the-art collection of low-level primitives

that provide auto-tuned computational kernels on sparse matrices [24]. It should be noted that auto-tuning automates

some of the tuning process. It will only provide performance improvements for kernels that are part of the auto-tuning

3

framework. Thus, one should view auto-tuning as automated tuning rather than automatic tuning as automatic tuning

suggests it the performance benefits can be attained on any arbitrary sparse kernel code. However, on going research

is endeavoring to make auto-tuning truly automatic. The motivation for OSKI is that a non-obvious choice of data

structure can yield the most efficient implementations due to the complex behavior of performance on modern ma-

chines. OSKI hides the complexity of making this choice, using techniques extensively documented in the SPARSITY

sparse-kernel auto-tuning framework [11]. These techniques include register- and cache-level blocking, exploiting

symmetry, multiple vectors, variable block and diagonal structures, and locality-enhancing reordering.

OSKI is a serial library, but is being integrated into higher-level parallel linear solver libraries, including PETSc [3]

and Trilinos [29]. This paper compares our multicore implementations against a generic “off-the-shelf” approach in

which we take the MPI-based distributed memory SpMV in PETSc 2.3.0 and replace the serial SpMV component with

calls to OSKI. Hereafter, we refer to this auto-tuned MPI implementation as OSKI-PETSc. We use MPICH 1.2.7p1

configured to use the shared-memory (ch shmem) device, where message passing is replaced with memory copying.

PETSc’s default SpMV uses a block-row partitioning with equal numbers of rows per process.

The literature on optimization and tuning of SpMV is extensive. A number evaluate techniques that compress

the data structure by recognizing patterns in order to eliminate the integer index overhead. These patterns include

blocks [11], variable blocking [6] (mixtures of differently-sized blocks), diagonals, which may be especially well-

suited to machines with SIMD and vector units [23, 27], dense subtriangles arising in sparse triangular solve [26],

symmetry [14], general pattern compression [28], value compression [13], and combinations.

Others have considered improving spatial and temporal locality by rectangular cache blocking [11], diagonal cache

blocking [20], and reordering the rows and columns of the matrix. Besides classical bandwidth-reducing reordering

techniques [18], recent work has proposed sophisticated 2-D partitioning schemes with theoretical guarantees on

communication volume [22], and traveling salesman-based reordering to create dense block substructure [17].

Higher-level kernels and solvers provide opportunities to reuse the matrix itself, in contrast to non-symmetric

SpMV. Such kernels include block kernels and solvers that multiply the matrix by multiple dense vectors [11],

AT Ax [25], and matrix powers [19, 23]. Better low-level tuning of the kind proposed in this paper, even applied

to just a CSR SpMV, are also possible. Recent work on low-level tuning of SpMV by unroll-and-jam [15], software

pipelining [6], and prefetching [21] influence our work.

4

3 Experimental Testbed

Our work examines several leading CMP system designs in the context of the demanding SpMV algorithm. In this

section, we briefly describe the evaluated systems, each with its own set of architectural features: the dual-socket ×

quad-core AMD Opteron 2356 (Barcelona); the dual-socket × dual-core AMD Opteron 2214 (Santa Rosa); the dual-

socket × quad-core Intel Xeon E5345 (Clovertown); the dual-socket × eight-core hardware-multithreaded Sun Ultra-

Sparc T2+ T5140 (Victoria Falls); and the heterogeneous dual-socket × eight-SPE IBM QS20 Cell blade. Overviews

of the architectural configurations and characteristics appear in Table 1 and Figure 2. Note that the sustained system

power data were gathered by actual measurements via a digital power meter at peak performance. Additionally, we

present an overview of the evaluated sparse matrix suite.

3.1 AMD Dual-core Opteron 2214 (Santa Rosa)

The Opteron 2214 (Santa Rosa) is AMD’s current dual-core processor offering. Each core operates at 2.2 GHz, can

fetch and decode three x86 instructions per cycle, and execute 6 micro-ops per cycle. The cores support 128b SSE

instructions in a half-pumped fashion, with a single 64b multiplier datapath and a 64b adder datapath, thus requiring

two cycles to execute a SSE packed double-precision floating point multiply. The peak double-precision floating point

performance is therefore 4.4 GFlop/s per core or 8.8 GFlop/s per socket.

Santa Rosa contains a 64KB 2-way L1 cache, and a 1MB 16-way victim cache; victim caches are not shared

among cores, but are cache coherent. All hardware prefetched data is placed in the victim cache of the requesting

core, whereas all software prefetched data is placed directly into the L1. Each socket includes its own dual-channel

DDR2-667 memory controller as well as a single cache-coherent HyperTransport (HT) link to access the other sockets

cache and memory. Each socket can thus deliver 10.6 GB/s, for an aggregate NUMA (non-uniform memory access)

memory bandwidth of 21.3 GB/s for the dual-core, dual-socket SunFire X2200 M2 examined in our study.

3.2 AMD Quad-core Opteron 2356 (Barcelona)

The Opteron 2356 (Barcelona) is AMD’s newest quad-core processor offering. Each core operates at 2.3 GHz, can

fetch and decode four x86 instructions per cycle, execute 6 micro-ops per cycle and fully support 128b SSE instruc-

tions, for peak double-precision performance of 9.2 GFlop/s per core or 36.8 GFlop/s per socket.

Each Barcelona core contains a 64KB L1 cache, and a 512MB L2 victim cache. In addition, each chip instantiates

5

Company AMD Intel Sun STI
Opteron 2214 Opteron 2356 Xeon E5345 T2+ T5140 QS20 Cell BladeCore
(Santa Rosa) (Barcelona) (Clovertown) (Victoria Falls) (SPEs)
super scalar super scalar super scalar dual issue∗ dual issueType
out of order out of order out of order MT SIMD

Clock (GHz) 2.2 2.3 2.3 1.16 3.2
private L1 DCache 64KB 64KB 32KB 8KB —
private L2 DCache 1MB 512KB — — —

Local Store — — — — 256KB
DP flops/cycle 2 4 4 1 4/7

DP GFlop/s 4.4 9.2 9.33 1.16 1.83

Company AMD Intel Sun STI
Opteron 2214 Opteron 2356 Xeon E5345 T2+ T5140 QS20 Cell BladeSystem
(Santa Rosa) (Barcelona) (Clovertown) (Victoria Falls) (SPEs)

Sockets 2 2 2 2 2
Cores/Socket 2 4 4 8 8(+1)

shared — 4MB 16MB 8MB
L2/L3 cache — (2MB/4cores) (4MB/2cores) (4MB/8cores)

—

DP GFlop/s 17.6 73.6 74.7 18.7 29
DDR2 DDR2 FBDIMM FBDIMM XDRDRAM Type

667 MHz 667 MHz 667 MHz 667 MHz 1.6 GHz
DRAM Capacity 16GB 16GB 16GB 32GB 1GB

DRAM
(read GB/s)

21.3 21.3 21.3 42.6 51.2

Ratio
Flop:Byte 0.83 3.45 3.52 0.44 0.57

Max Power per
Socket (Watts) 95 95 80 84 100

Sustained System
Power (Watts) 300 350 330 610 285

Table 1: Architectural summary of AMD Opteron (Santa Rosa), AMD Opteron (Barcelona), Intel Xeon (Clovertown),
Sun Victoria Falls, and STI Cell multicore chips. Sustained power measured via digital power meter. ∗Each of the two
thread groups may issue up to one instruction

a 2MB L3 victim cache shared among all four cores. All core prefetched data is placed in the L1 cache of the

requesting core, whereas all DRAM prefetched data is placed into the L3. Each socket includes two DDR2-667

memory controllers and a single cache-coherent HyperTransport (HT) link to access the other socket’s cache and

memory; thus delivering 10.66 GB/s per socket, for an aggregate NUMA (non-uniform memory access) memory

bandwidth of 21.33 GB/s for the quad-core, dual-socket system examined in our study. We used a split plane machine

with the memory controllers unganged. The DRAM capacity of the tested configuration is 16 GB (eight × 2 GB dual

rank DIMMs).

6

3.3 Intel Quad-core Xeon E5345 (Clovertown)

Clovertown is Intel’s foray into the quad-core arena. Reminiscent of their original dual-core designs, two dual-core

Xeon chips are paired onto a single multi-chip module (MCM). Each core is based on Intel’s Core2 microarchitecture

(Woodcrest), running at 2.33 GHz, can fetch and decode four instructions per cycle, and can execute 6 micro-ops per

cycle. There is both a 128b SSE adder (two 64b floating point adders) and a 128b SSE multiplier (two 64b multi-

pliers), allowing each core to support 128b SSE instructions in a fully-pumped fashion. The peak double-precision

performance per core is therefore 9.3 GFlop/s.

Each Clovertown core includes a 32KB, 8-way L1 cache, and each chip (two cores) has a shared 4MB, 16-way

L2 cache. Each socket has a single quad pumped front side bus (FSB) running at 333 MHz (delivering 10.66 GB/s)

connected to the Blackford chipset. In our study, we evaluate the Dell PowerEdge 1950 dual-socket platform, which

contains two MCMs with dual independent busses. Blackford provides the interface to four fully buffered DDR2-667

DRAM channels that can deliver an aggregate read memory bandwidth of 21.3 GB/s. Unlike the Santa Rosa, each

core may activate all four channels, but will likely never attain the peak bandwidth. The full system has 16MB of L2

cache and 74.67 GFlop/s peak performance.

Opteron Opteron

667MHz DDR2 DIMMs

10.66 GB/s

128b controller

H
T1MB

victim
1MB
victim

SRI / crossbar

Opteron Opteron

667MHz DDR2 DIMMs

10.66 GB/s

128b controller

H
T 1MB

victim
1MB
victim

SRI / crossbar

4G
B

/s
(e

ac
h

di
re

ct
io

n)

(a)

 667MHz FBDIMMs

21.33 GB/s 10.66 GB/s

4MB Shared L2 (16 way)
(64b interleaved)

4 Coherency Hubs

2x128b controllers

M
T

S
P

A
R

C
M

T
S

P
A

R
C

M
T

S
P

A
R

C
M

T
S

P
A

R
C

M
T

S
P

A
R

C
M

T
S

P
A

R
C

M
T

S
P

A
R

C
M

T
S

P
A

R
C

Crossbar

179 GB/s 90 GB/s

 667MHz FBDIMMs

21.33 GB/s 10.66 GB/s

4MB Shared L2 (16 way)
(64b interleaved)

4 Coherency Hubs

2x128b controllers

M
T

S
P

A
R

C
M

T
S

P
A

R
C

M
T

S
P

A
R

C
M

T
S

P
A

R
C

M
T

S
P

A
R

C
M

T
S

P
A

R
C

M
T

S
P

A
R

C
M

T
S

P
A

R
C

Crossbar

179 GB/s 90 GB/s

8
x

6.
4

G
B

/s
(1

 p
er

 h
ub

 p
er

 d
ire

ct
io

n)

(d)

B
IF

512MB XDR DRAM

25.6 GB/s

EIB (ring network)

XDR memory controllers

VMT
PPE

512K
L2

S
P

E
25

6K
M

FC
S

P
E

25
6K

M
FC

S
P

E
25

6K
M

FC
S

P
E

25
6K

M
FC

S
P

E
25

6K
M

FC
S

P
E

25
6K

M
FC

S
P

E
25

6K
M

FC
S

P
E

25
6K

M
FC

B
IF

512MB XDR DRAM

25.6 GB/s

EIB (ring network)

XDR memory controllers

S
P

E
25

6K
M

FC
S

P
E

25
6K

M
FC

S
P

E
25

6K
M

FC
S

P
E

25
6K

M
FC

S
P

E
25

6K
M

FC
S

P
E

25
6K

M
FC

S
P

E
25

6K
M

FC
S

P
E

25
6K

M
FC

VMT
PPE

512K
L2

<2
0G

B
/s

(e
ac

h
di

re
ct

io
n)

(e)

(b)

667MHz DDR2 DIMMs

10.6 GB/s

2x64b controllers

H
yp

er
Tr

an
sp

or
t

O
pt

er
on

O
pt

er
on

O
pt

er
on

O
pt

er
on

51
2K

51
2K

51
2K

51
2K

2MB victim

SRI / xbar

667MHz DDR2 DIMMs

10.6 GB/s

2x64b controllers

H
yp

er
Tr

an
sp

or
t

O
pt

er
on

O
pt

er
on

O
pt

er
on

O
pt

er
on

51
2K

51
2K

51
2K

51
2K

2MB victim

SRI / xbar

4G
B

/s
(e

ac
h

di
re

ct
io

n)

667MHz FBDIMMs

MCH (4x64b controllers)

10.66 GB/s(write)21.33 GB/s(read)

10.66 GB/s
FSB

10.66 GB/s

C
or

e
C

or
e

4MB
L2

C
or

e
C

or
e

4MB
L2

C
or

e
C

or
e

4MB
L2

C
or

e
C

or
e

4MB
L2

FSB

(c)

Figure 2: Architectural overview of (a) dual-socket × dual-core AMD Opteron 2214 (Santa Rosa), (b) dual-socket ×
dual-core AMD Opteron 2356 (Barcelona), (c) dual-socket × quad-core Intel Xeon E5345 (Clovertown), (d) single-
socket × eight-core Sun T2+ T5140 (Victoria Falls), (e) dual-socket × eight-core IBM QS20 Cell Blade.

7

3.4 Sun UltraSparc T2+ T5140 (Victoria Falls)

The Sun “UltraSparc T2 Plus” dual-socket × eight-core SMP, referred to as Victoria Falls, presents an interesting

departure from mainstream multicore chip design. Rather than depending on four-way superscalar execution, each

of the 16 (total) strictly in-order cores supports two groups of four hardware thread contexts (referred to as Chip

MultiThreading or CMT) — providing a total of 64 simultaneous hardware threads per socket. Each core may issue

up to one instruction per thread group assuming there is no resource conflict. The CMT approach is designed to tolerate

instruction, cache, and DRAM latency through fine-grained multithreading through a single architectural paradigm.

Victoria Falls instantiates one floating-point unit (FPU) per core (shared among 8 threads). Our study examines

the Sun UltraSparc T2+ T5140 with two T2+ processors operating at 1.16 GHz, with a per-core and per-socket peak

performance of 1.16 GFlop/s and 9.33 GFlop/s, respectively (no fused-multiply add (FMA) functionality). Each

core has access to its own private 8KB write-through L1 cache, but is connected to a shared 4MB L2 cache via a

149 GB/s(read) on-chip crossbar switch. Each of the two sockets is fed by two dual channel 667 MHz FBDIMM

memory controllers that deliver an aggregate bandwidth of 32 GB/s (21.33 GB/s for reads, and 10.66 GB/s for writes)

to each L2, and a total DRAM capacity of 32 GB (sixteen × 2 GB dual rank DIMMs). Victoria Falls has no hardware

prefetching and software prefetching only places data in the L2.

3.5 STI Cell

The Sony Toshiba IBM (STI) Cell processor is the heart of the Sony PlayStation 3 (PS3) video game console, whose

aggressive design is intended to meet the demanding computational requirements of video games. Cell adopts a

heterogeneous approach to multicore, with one conventional processor core (Power Processing Element / PPE) to

handle OS and control functions, combined with up to eight simpler SIMD cores (Synergistic Processing Elements /

SPEs) for the computationally intensive work [8,9]. The SPEs differ considerably from conventional core architectures

due to their use of a disjoint software controlled local memory instead of the conventional hardware-managed cache

hierarchy employed by the PPE. Rather than using prefetch to hide latency, the SPEs have efficient software-controlled

DMA engines which asynchronously fetch data from DRAM into the 256KB local store. This approach allows more

efficient use of available memory bandwidth than is possible with standard prefetch schemes on conventional cache

hierarchies, but also makes the programming model more complex. In particular, the hardware provides enough

concurrency to satisfy Little’s Law [2]. In addition, this approach eliminates both conflict misses and write fills, but

the capacity miss concept must be handled in software.

8

Each SPE is a dual issue SIMD architecture: one slot can issue only computational instructions, whereas the other

can only issue loads, stores, permutes and branches. Instruction issue thus resembles a VLIW style. Each core includes

a half-pumped partially pipelined FPU. In effect, each SPE can execute one double-precision SIMD instruction every

7 cycles, for a peak of 1.8 GFlop/s per SPE — far less than Santa Rosa’s 4.4 GFlop/s or the Clovertown’s 9.3 GFlop/s.

In this study, we examine the QS20 Cell blade comprising two sockets with eight SPEs each (29.2 GFlop/s peak).

Each socket has its own dual channel XDR memory controller delivering 25.6 GB/s. The Cell blade connects the

chips with a separate coherent interface delivering up to 20 GB/s; thus, like the AMD and Sun systems, the Cell blade

is expected to show strong variations in sustained bandwidth if NUMA is not properly exploited.

3.6 Sparse Matrix Test Suite

To evaluate the performance of our SpMV multicore platforms suite, we conduct experiments on 14 sparse matrices

from a wide variety of actual applications, including finite element method-based modeling, circuit simulation, linear

programming, a connectivity graph collected from a partial web crawl, as well as a dense matrix stored in sparse

format. These matrices cover a range of properties relevant to SpMV performance, such as overall matrix dimension,

non-zeros per row, the existence of dense block substructure, and degree of non-zero concentration near the diagonal.

An overview of their salient characteristics appears in Figure 3.

4 SpMV Optimizations

In this section, we discuss the SpMV tuning optimizations that we considered, in the order in which they are applied

during auto-tuning. These tuning routines are designed to be effective on both conventional cache-based multicores

as well as the Cell architecture; as a result, several optimizations were restricted to facilitate Cell programming.

The complete set of optimizations can be classified into three areas: low-level code optimizations, data structure

optimizations (including the requisite code transformations), and parallelization optimizations. The first two largely

address single-core performance, while the third examines techniques to maximize multicore performance in a both

single- and multi-socket environments. We examine a wide variety of optimizations including software pipelining,

branch elimination, SIMD intrinsics, pointer arithmetic, numerous prefetching approaches, register blocking, cache

blocking, TLB blocking, block-coordinate (BCOO) storage, smaller indices, threading, row parallelization, NUMA-

aware mapping, process affinity, and memory affinity. A summary of these optimizations appears in Table 2.

9

Dense 2K x 2K

Name Dimensions Descriptionspyplot

Protein

FEM /
Spheres

FEM /
Cantilever

Wind
Tunnel

FEM /
Harbor

QCD

FEM/Ship

Economics

Epidemiology

FEM /
Accelerator

Circuit

webbase

LP

Nonzeros
(nnz/row)

4.0M
(2K)

36K x 36K 4.3M
(119)

83K x 83K 6.0M
(72)

62K x 62K 4.0M
(65)

218K x 218K 11.6M
(53)

47K x 47K 2.37M
(50)

49K x 49K 1.90M
(39)

141K x 141K 3.98M
(28)

207K x 207K 1.27M
(6)

526K x 526K 2.1M
(4)

121K x 121K 2.62M
(22)

171K x 171K 959K
(6)

1M x 1M 3.1M
(3)

4K x 1.1M 11.3M
(2825)

Dense matrix in
sparse format

Protein data
bank 1HYS

FEM concentric
spheres

FEM cantilever

Pressurized
wind tunnel

3D CFD of
Charleston harbor

Quark propagators
(QCD/LGT)

FEM Ship
section/detail

Macroeconomic
model

2D Markov model
of epidemic

Accelerator cavity
design

Motorola circuit
simulation

Web connectivity
matrix

Railways set cover
Constraint matrix

Figure 3: Overview of sparse matrices used in evaluation study.

Most of these optimizations complement those available in OSKI. In particular, OSKI includes register blocking

and single-level cache or TLB blocking, but not with reduced index sizes. OSKI also contains optimizations for

symmetry, variable block size and splitting, and reordering optimizations, which we do not exploit in this paper. Except

for unrolling and use of pointer arithmetic, OSKI does not explicitly control low-level instruction scheduling and

selection details (e.g., software pipelining, branch elimination, SIMD intrinsics), relying instead on the compiler back-

end. Finally, we apply the optimizations in a slightly different order to facilitate parallelization and Cell development.

10

Code Optimization Data Structure Optimization Parallelization Optimization
x86 VF Cell x86 VF Cell x86 VF Cell

SIMDization X N/A X BCSR X X Row Threading X4 X4 X5

Software Pipelining X BCOO X X X Process Affinity X6 X8 X7

Branchless X10 X 16-bit indices X X X Memory Affinity X6 X8 X7

Pointer Arithmetic X10 32-bit indices X X
PF/DMA1 Values & Indices X X X Register Blocking X X X9

PF/DMA1 Pointers/Vectors X Cache Blocking X2 X2 X3

inter-SpMV data structure caching X X TLB Blocking X X

Table 2: Overview of SpMV optimizations attempted in our study for the x86 (Santa Rosa, Barcelona and Clover-
town), Victoria Falls, and Cell architectures. Notes: 1PF/DMA (Prefetching or Direct Memory Access), 2sparse cache
blocking, 3sparse cache blocking for DMA, 4Pthreads, 5libspe 2.0, 6via Linux scheduler, 7via libnuma, 8via Solaris
bind, 92x1 and larger, 10implemented but resulted in no significant speedup.

Explicit low-level code optimizations, including SIMD intrinsics, can be very beneficial on each architecture.

Applying these optimizations helps ensure that the cores are bound by memory bandwidth, rather than by instruction

latency and throughput. Unfortunately, implementing them can be extremely tedious and time-consuming. We thus

implemented a Perl-based code generator that produces the innermost SpMV kernels using the subset of optimizations

appropriate for each underlying system. Our generators helped us explore the large optimization space effectively and

productively — less than 500 lines of generators produced more than 30,000 lines of optimized kernels.

4.1 Thread Blocking

The first phase in the optimization process is exploiting thread-level parallelism. The matrix is partitioned into

NThreads thread blocks, which may in turn be individually optimized. There are three approaches to partition-

ing the matrix: by row blocks, by column blocks, and into segments. The number of rows and columns is matrix-level

knowledge. However, one could contemplate the arrays used in SpMV irrespective of the number of rows or columns

they cross. Segmented scan recasts these 1D arrays into two dimensions: vector length and segment length. One could

parallelize the matrix by assigning different segments to different threads. Thus, row and column parallelization is a

technique based on algorithmic knowledge, where parallelization by segments is a technique based on data structure.

An implementation could use any or all of these, e.g., 3 row thread blocks each of 2 column thread blocks each of 2

thread segments. In both row and column parallelization, the matrix is explicitly blocked to exploit NUMA systems.

To facilitate implementation on Cell, the granularity for partitioning is a cache line.

Our implementation attempts to statically load balance SpMV by dividing the number of nonzeros among threads

approximately equally, as the transfer of this data accounts for the majority of time on matrices whose vector working

sets fit in cache. It is possible to provide feedback and repartition the matrix to achieve better load balance, and a

11

thread-based segmented scan could achieve some benefit without reblocking the matrix. In this paper, we only exploit

row partitioning, as column partitioning showed little potential benefit; future work will examine segmented scan.

To ensure a fair comparison, we explored a variety of barrier implementations and used the fastest implementation

on each architecture. For example, the emulated Pthreads barrier (with mutexes and broadcasts) scaled poorly beyond

32 threads and was therefore replaced with a simpler version where only thread 0 is capable of unlocking the other

threads.

Finally, for the NUMA architectures in our study (all but Clovertown), we apply NUMA-aware optimizations in

which we explicitly assign each thread block to a specific core and node. To ensure that both the process and its

associated thread block are mapped to a core (process affinity) and the DRAM (memory affinity) proximal to it, we

used the NUMA routines that are most appropriate for a particular architecture and OS. The libnuma library was

used on the Cell. We implemented x86 affinity via the Linux scheduler, and native Solaris scheduling routines were

used on Victoria Falls. We highlight that benchmarking with the OS schedulers must be handled carefully, as the

mapping between processor ID and physical ID is unique to each machine. For instance, the socket ID is specified by

the least-significant bit on the evaluated Clovertown system and the most-significant bit on the others.

The SpMV optimizations discussed in subsequent subsections are performed on thread blocks individually.

4.2 Padding

In many of the architectures used in this study, multiple threads share a single L2 cache. Normally, the associativity

per thread is sufficiently high that conflict misses are unlikely. However, on machines such as Victoria Falls, the L2

associativity (16-way) is so low compared with the number of threads sharing it (64) that conflict misses are likely. To

avoid conflict misses, we pad the first element of each submatrix so that they land on equidistant cache sets. Essentially,

we add rank×sets
NThreads cache lines to the beginning of each array. We apply a second level of padding to avoid L2 bank

conflicts. This technique can substantially improve performance and scalability and is thus an essential first step.

4.3 Cache and Local Store Blocking

For sufficiently large matrices, it is not possible to keep the source and destination vectors in cache, potentially causing

numerous capacity misses. Prior work shows that explicitly cache blocking the nonzeros into tiles (≈ 1K × 1K)

can improve SpMV performance [11, 16]. We extend this idea by accounting for cache utilization, rather than only

spanning a fixed number of columns. Specifically, we first quantify the number of cache lines available for blocking,

12

and span enough columns such that the number of source vector cache lines touched is equal to those available for

cache blocking. Using this approach allows each cache block to touch the same number of cache lines, even though

they span vastly different numbers of columns. We refer to this optimization as sparse cache blocking, in contrast to

the classical dense cache blocking approach. Unlike OSKI, where the block size must be specified or searched for, we

use a heuristic to cache block.

Given the total number of cache lines available, we specify one of three possible blocking strategies: block neither

the source nor the destination vector, block only the source vector, or block both the source and destination vectors.

In the second case, all cache lines can be allocated to blocking the source vector. However, when implementing the

third strategy, the cache needs to store the potential row pointers as well as the source and destination vectors; we thus

allocated 40%, 40%, and 20% of the cache lines to the source, destination, and row pointers respectively.

Although these three options are explored for cache-based systems, the Cell architecture always requires cache

blocking (i.e., blocking for the local store) for both the source and destination vector — this Cell variant requires

cache blocking for DMA. To facilitate the process, a DMA list of all source vector cache lines touched in a cache block

is created.

This list is used to gather the stanzas of the source vector and pack them contiguously in the local store via the

DMA get list command. This command has two constraints: each stanza must be less than 16KB, and there can

be no more than 2K stanzas. Thus, the sparsest possible cache block cannot touch more than 2K cache lines, and

in the densest case, multiple contiguous stanzas are required. (We unify the code base of the cache-based and Cell

implementations by treating cache-based machines as having large numbers of stanzas and cache lines.) Finally, since

the DMA get list packs stanzas together into the disjoint address space of the local store, the addresses of the source

vector block when accessed from an SPE are different than when accessed from DRAM. As a result, the column

indices must be re-encoded to be local store relative.

4.4 TLB Blocking

Prior work showed that TLB misses can vary by an order of magnitude depending on the blocking strategy, highlighting

the importance of TLB blocking [16]. Thus, on the three evaluation platforms running Linux with 4KB pages for heap

allocation (Victoria Falls running Solaris uses 4MB pages), we heuristically limit the number of source vector cache

lines touched in a cache block by the number of unique pages touched by the source vector. Rather than searching for

the TLB block size, which would require costly re-encoding of the matrix, we explore two tuning settings: no TLB

13

blocking and using the heuristic. Note that for the x86 machines we found it beneficial to block for the L1 TLB (each

cache block is limited to touching 32 4KB pages of the source vector).

4.5 Register Blocking and Format Selection

The next optimization phase is to transform the matrix data structure to shrink its memory footprint. Intuitively, im-

proving performance by reducing memory bandwidth requirements should be more effective than improving single

thread performance, since it is easier and cheaper to double the number of cores rather than double the DRAM band-

width [1]. In a standard coordinate approach, 16 bytes of storage are required for each matrix nonzero: 8 bytes for the

double-precision nonzero, plus 4 bytes each for row and column coordinates. Our data structure transformations can,

for some matrices, cut these storage requirements nearly in half. A possible future optimization, exploiting symmetry,

could cut the storage in half again.

Register blocking groups adjacent nonzeros into rectangular tiles, with only one coordinate index per tile [11].

Since not every value has an adjacent nonzero, it is possible to store zeros explicitly in the hope that the 8 byte deficit

is offset by index storage savings on many other tiles. For this paper we limit ourselves to power-of-two block sizes up

to 8×8, to facilitate SIMDization, minimize register pressure, and allow a footprint minimizing heuristic to be applied.

Instead of searching for the best register block, we implement a two-step heuristic. First, we implicitly register block

each cache block using 8× 8 tiles. Then, for each cache block, we inspect each 8× 8 tile hierarchically in powers of

two and determine how many tiles are required for each 2k × 2l blocking, i.e., we count the number of tiles for 8× 4

tiles, then for 8× 2 tiles, then for 8× 1 tiles, and so on.

For cache block encoding, we consider block coordinate (BCOO) and block compressed sparse row (BCSR; Sec-

tion 2) formats. BCSR requires a pointer for every register blocked row in the cache block and a single column

index for each register block, whereas BCOO requires 2 indices (row and column) for each register block, but no row

pointers. The BCSR can be further accelerated either by specifying the first and last non-empty row, or by using a

generalized BCSR format that stores only non-empty rows while associating explicit indices with either each row or

with groups of consecutive rows (both available in OSKI). We choose a register block format for each cache block

(not just each thread) separately.

As Cell is a SIMD architecture, it is expensive to implement 1x1 blocking, especially in double precision. In

addition, since Cell streams nonzeros into buffers [31], it is far easier to implement BCOO than BCSR. Thus to

maximize our productivity, for each architecture we specify the minimum and maximum block size, as well as a mask

14

that enables each format. On Cell, this combination of configuration variables requires block sizes of at least 2 × 1,

which will tend to increase memory traffic requirements and thereby potentially degrade Cell performance, while

facilitating productivity.

4.6 Index Size Selection

As a cache block may span fewer than 64K columns, it is possible to use memory efficient indices for the columns

(and rows) using 16b integers. Doing so provides a 20% reduction in memory traffic for some matrices, which could

translate up to a 20% increase in performance. On Cell, no more than 32K unique doubles can reside in the local store

at any one time, and unlike caches, this address space is disjoint and contiguous. Thus, on Cell we can always use 16b

indices within a cache block, even if the entire matrix in DRAM spans 1 million columns. This is the first advantage

our implementation conferred on the Cell. Note that our technique is less general but simpler than a recent index

compression approach [28]. Figure 4 presents a code snippet for SIMDized 2x2 BCSR using 16b indices generated

by our Perl script. It is impossible to show all of the code here, as all combinations of register block size, prefetching,

index size, and source vector presence results in more than 13,000 lines of code. PREFETCH NT is defined to be

whatever the appropriate prefetching intrinsic is on the underlying architecture. PREFETCH V,C are the prefetch

distances in bytes. The portable C code is almost identical with C operators replacing the SSE intrinsics.

...
while(Cofs<MaxCofs){
 __m128d Y01QW;Y01QW = _mm_xor_pd(Y01QW,Y01QW);
 while(Cofs<P[row+1]){
 PREFETCH_NT((void*)(PREFETCH_C+(uint64_t)&C[Cofs]));
 const __m128d X00QW = _mm_load1_pd(&(XRelative[0+C[Cofs]]));
 const __m128d X11QW = _mm_load1_pd(&(XRelative[1+C[Cofs]]));
 PREFETCH_NT((void*)(0+PREFETCH_V+(uint64_t)&V[Vofs]));
 Y01QW = _mm_add_pd(_mm_mul_pd(X00QW,_mm_load_pd(&(V[0+Vofs]))),Y01QW);
 Y01QW = _mm_add_pd(_mm_mul_pd(X11QW,_mm_load_pd(&(V[2+Vofs]))),Y01QW);
 Vofs+=4;
 Cofs++;
 }
 _mm_store_pd(&(YRelative[0+Yofs]),Y01QW);
 Yofs+=2;
 row++;
}
...

// for all nonzeros{
// initialize destination vector (128b)
// for all nonzeros left in the row
// prefetch column index into L1, don't evict to L2
// load a value of X and replicate
// load a value of X and replicate
// prefetch matrix values into L1, don't evict to L2
// do a 2x1 MAC
// do a 2x1 MAC
// increment offset in V
// increment offset in C
// }
// store vector (128b)
// increment offset in Y,Z
// increment row

Figure 4: 2x2 BCSR SSE with 16b indices code snippet.

4.7 Architecture-specific Kernels

The SpMV multithreaded framework is designed to be modular. A configuration file specifies which of the previously

described optimizations to apply for a particular architecture and matrix. At run-time, an optimization routine trans-

forms the matrix data structure accordingly, and an execution routine dispatches the appropriate kernel for that data

15

structure. To maximize productivity, a single Perl script generates all kernel implementations as well as the unique con-

figuration file for each architecture. Each kernel implements a sparse cache block matrix multiplication for the given

encoding (register blocking, index size, format). There is no restriction on how this functionality is implemented; thus

the generator may be tailored for each architecture.

4.8 SIMDization

The Cell SPE instruction set architecture is rather restrictive compared to that of a conventional RISC processor. All

operations are on 128 bits (quadword) of data, all loads are of 16 bytes and must be 16 byte aligned. There are no

double, word, half or byte loads. When a scalar is required it must be moved from its position within the quadword to

a so-called preferred slot. Thus, the number of instructions required to implement a given kernel on Cell far exceeds

that of other architectures, despite the computational advantage of SIMD. To overcome certain limitations in the

compiler’s (xlc’s) code generation, our Cell kernel generator explicitly produces SIMDization intrinsics. The xlc static

timing analyzer provides information on whether cycles are spent in instruction issue, double-precision issue stalls, or

stalls for data hazards, thus simplifying the process of kernel optimization.

In addition, we explicitly implement SSE instructions on the x86 kernels. Use of SSE made no performance

difference on the Opterons, but resulted in significant improvements on the Clovertown. However, when the optimal

gcc tuning options are applied, SSE optimized code on Clovertown was only slightly faster than straight C code.

Programs compiled using the Intel compiler (icc 9.1) saw little benefit from SSE instructions or compiler tuning

options on Clovertown.

4.9 Loop Optimizations

A conventional CSR-based SpMV (Figure 1) consists of a nested loop, where the outer loop iterates across all rows

and the inner loop iterates across the nonzeros of each row via a start and end pointer. However, in CSR storage, the

end of one row is immediately followed by the beginning of the next, meaning that the column and value arrays are

accessed in a streaming (unit-stride) fashion. Thus, it is possible to simplify the loop structure by iterating from the

first nonzero to the last. This approach still requires a nested loop, but includes only a single loop variable and often

results in higher performance.

Additionally, since our format uses a single loop variable coupled with nonzeros that are processed in-order, we

can explicitly software pipeline the code to hide any further instruction latency. In our experience, this technique is

16

useful on in-order architectures like Cell, but is of little value on the out-of-order superscalars.

Finally, the code can be further optimized using a branchless implementation, which is in effect a segmented scan

of vector-length equal to one [4]. On Cell, we implement this technique using the select bits instruction. A

branchless BCOO implementation simply requires resetting the running sum (selecting between the last sum or next

value of Y). Once again, we attempted this branchless implementations via SSE, cmov, and jumps, but without the

equivalent of Cell’s XL/C static timing analyzer, could not determine why no performance improvements were seen.

4.10 Software Prefetching

We also consider explicit prefetching, using our code generator to tune the prefetch distance from 0 (no prefetching)

to 1024 bytes. The x86 architectures rely on hardware prefetchers to overcome memory latency, but prefetched data is

placed in the L2 cache, so L2 latency must still be hidden. Although Clovertown has a hardware prefetcher to transfer

data from the L2 to the L1, software prefetch via intrinsics provides an effective way of not only placing data directly

into the L1 cache, but also tagging it with the appropriate temporal locality. Doing so reduces L2 cache pollution,

since nonzero values or indices that are no longer useful will be evicted. The Victoria Falls platform, on the other

hand, supports prefetch but only into the L2 cache. As a result the L2 latency can only be hidden via multithreading.

Despite this, Victoria Falls still showed benefits from software prefetching.

4.11 Auto-tuning Framework

For each threading model, we implement an auto-tuning framework to produce architecture-optimized kernels. We

attempt three cases: no cache and no TLB blocking, cache blocking with no TLB blocking, as well as cache and TLB

blocking. For each of these, a heuristic based on minimization of memory traffic selects the appropriate block size,

register blocking, format, and index size. i.e.the compression strategy that results in the substantially smallest matrix

is selected. Additionally, we exhaustively search for the best prefetch distance on each architecture; this process is

relatively fast as it does not require data structure changes. The Cell version does not require a search for the optimal

prefetch distance searching due to the fixed size of the DMA buffer. We report the peak performance for each tuning

option.

17

Sustained Memory Bandwidth in GB/s (% of configuration peak bandwidth)
Sustained Performance in GFlop/s (% of configuration peak computation)

one socket, one socket, one socket, all sockets,
one core, one core, all cores, all cores,

Machine one thread all threads all threads all threads
5.32 GB/s (49.9%) 5.32 GB/s (49.9%) 7.44 GB/s (69.8%) 14.88 GB/s (69.8%)Santa Rosa
1.33 GF/s (30.2%) 1.33 GF/s (30.2%) 1.86 GF/s (21.2%) 3.72 GF/s (21.1%)
5.40 GB/s (50.6%) 5.40 GB/s (50.6%) 9.32 GB/s (87.4%) 18.56 GB/s (87.0%)Barcelona
1.35 GF/s (14.7%) 1.35 GF/s (14.7%) 2.33 GF/s (6.3%) 4.64 GF/s (6.3%)
2.36 GB/s (22.1%) 2.36 GB/s (22.1%) 5.28 GB/s (56.3%) 11.12 GB/s (52.1%)Clovertown
0.59 GF/s (6.3%) 0.59 GF/s (6.3%) 1.32 GF/s (3.5%) 2.78 GF/s (3.7%)
0.20 GB/s (0.9%) 2.96 GB/s (13.9%) 15.80 GB/s (74.1%) 29.08 GB/s (68.1%)Victoria Falls
0.05 GF/s (4.3%) 0.74 GF/s (63.4%) 3.95 GF/s (42.3%) 7.27 GF/s (38.9%)
4.75 GB/s (18.6%) 4.75 GB/s (18.6%) 24.73 GB/s (96.6%) 47.29 GB/s (92.4%)Cell Blade
1.15 GF/s (62.9%) 1.15 GF/s (62.9%) 5.96 GF/s (40.7%) 11.35 GF/s (38.8%)

Table 3: Sustained bandwidth and computational rate for a dense matrix stored in sparse format, in GB/s (and percent-
age of configuration’s peak bandwidth) and GFlop/s (and percentage of configuration’s peak performance).

5 SPMV Performance Results

In this section, we present SpMV performance on our sparse matrices and multicore systems. We compare our imple-

mentations to serial OSKI and parallel (MPI) PETSc with OSKI. PETSc was run with up to 8 tasks on Santa Rosa,

Barcelona, and Clovertown; and up to 256 tasks on Victoria Falls. We present the fastest results for the case where

fewer tasks achieved higher performance. OSKI was compiled with both gcc and icc, with the best results shown.

For our SpMV code we used gcc 4.1.2 on the Opterons and Clovertown (icc was no faster), gcc 4.0.4 on

Victoria Falls, and xlc on the Cell.

For clarity, we present the performance of each optimization condensed into a stacked bar format as seen in

Figure 5. Each bar segment corresponds to an individual trial rather than to components of a total. In addition, we

provide median performance (half perform better/worse) our matrix set for each optimization. Readers interested in a

specific area (e.g., finite element meshes or linear programming) should focus on those matrices rather than median.

5.1 Performance Impact of Matrix Structure

Before presenting experimental results, we first explore the structure and characteristics of several matrices in our

test suite, and consider their expected effect on runtime performance. In particular, we examine the impact that few

nonzero entries per row have on the CSR format and the flop:byte ratio (the upper limit is 0.25, two flops for eight

bytes), as well as the ramifications of cache blocking on certain types of matrices.

Note that all of our CSR implementations use a nested loop structure. As such, matrices with few nonzeros per row

18

(inner loop length) cannot amortize the loop startup overhead. This cost, including a potential branch mispredict, can

be more expensive than processing a nonzero tile. Thus, even if the source/destination vectors fit in cache, we expect

matrices like Webbase, Epidemiology, Circuit, and Economics to perform poorly across all architectures. Since the

Cell version successfully implements a branchless BCOO format it will not suffer from the loop overhead problem,

but may suffer from poor register blocking and an inherent low flop:byte ratio.

Matrices like Epidemiology, although structurally nearly diagonal, have very large vectors and few non-zeros per

row. As such, the number of compulsory misses to load and store the vectors is high compared to that of reading

the matrix, thereby making the flop:byte ratio relatively small. For instance, assume a cache line fill is required on a

write miss so that the destination vector generates 16 bytes of traffic per element. Then, the Epidemiology matrix has a

flop:byte ratio of about 2∗2.1M/(12∗2.1M +8∗526K+16∗526K) or 0.11. Given the Barcelona’s and Clovertown’s

peak sustained memory bandwidths are 18.56 GB/s and 11.12 GB/s respectively, we do not expect the performance of

Epidemiology to exceed 2.04 GFlop/s and 1.22 GFlop/s (respectively), regardless of CSR performance. The results of

Figure 5 (discussed in detail in Section 5) confirm this prediction.

Aside from Cell, we flush neither the matrix nor the vectors from the cache between SpMVs. Thus, matrices such

as QCD and Economics, having fewer than 2M nonzeros and a footprint as little as 10 bytes per nonzero, may nearly

fit in the Clovertown’s collective 16MB cache. On these and other small matrices, the snoop filter in the memory

controller hub will likely be effective in eliminating snoop traffic that would normally clog the FSB.

Finally, we examine the class of matrices represented by Linear Programming (LP). Our LP example matrix is very

large, containing (on average) nearly three thousand nonzeros per row; however, this does not necessarily assure high

performance. Our LP matrix has a dramatic aspect ratio with over a million columns, for only four thousand rows, and

is structured in a highly irregular fashion. As a result, each processor must maintain a large working set of the source

vector (between 6MB–8MB). Since no single core, or even pair of cores, in our study has this much available cache,

we expect performance will suffer greatly due to source vector cache misses. Nevertheless, this matrix structure is

amenable to effective cache and TLB blocking since there are plenty of nonzeros per row. In particular, LP should

benefit from cache blocking on both the Opterons and the Clovertown. Figure 5 confirms this prediction. Note that this

is the only matrix that showed any benefit for column threading; thus we only implemented cache and TLB blocking

as it improves LP as well as most other matrices.

19

5.2 Peak Effective Bandwidth

On any balanced modern machine, SpMV should be limited by memory throughput; we thus analyze the best case for

the memory system, which is a dense matrix in sparse format. This dense matrix is likely to provide an upper-bound on

performance because it supports arbitrary register blocks without adding zeros, loops are long-running, and accesses

to the source vector are contiguous and have high re-use. As the optimization routines result in a matrix storage format

with a flop:byte ratio of nearly 0.25, one can easily compute best-case GFlop/s or GB/s from time. Since all the

multicore systems in our study have a flop:byte ratio greater than 0.25, we expect these platforms to be memory bound

on this kernel — if the deliverable streaming bandwidth is close to the advertised peak bandwidth. A summary of the

results for the dense matrix experiments are shown in Table 3.

Table 3 shows that the systems achieve a wide range of the available memory bandwidth, with only the Cell Blade

and Barcelona come close to fully saturating the socket bandwidth. On Cell, this is due in part to the explicit local

store architecture, in which double-buffered DMAs hide most of the memory latency. On Barcelona, we are observing

the effectiveness of the architecture’s second (DRAM) prefetcher. High memory bandwidth utilization translates to

high sustained performance, leading to over 11 GFlop/s (92% of theoretical bandwidth) on the dual-socket Cell blade.

The Victoria Falls system represents an interesting contrast to the other systems. The data in Table 3 shows that the

Victoria Falls system sustains only 1% of its memory bandwidth when using a single thread on a single core. There

are numerous reasons for this poor performance. First, Victoria Falls has more single socket bandwidth than the other

systems. Secondly, each SpMV iteration for a single thread has a high latency on Victoria Falls, as we explain next.

The Victoria Falls architecture cannot deliver a 64-bit operand in less than 14 cycles (on average) for a single thread

because the L1 line size is only 16 bytes with a latency of three cycles, while the L2 latency is about 22 cycles. Since

each SpMV nonzero requires two unit-stride accesses and one indexed load, this results in between 23 and 48 cycles of

memory latency per nonzero. Then, an additional eight cycles for instruction execution explains why a single thread on

the Victoria Falls’ strictly in-order cores only sustains between 50 and 90 Mflop/s for 1×1 CSR (assuming a sufficient

number of nonzeros per row). With as much as 48 cycles of latency and 11 instructions per thread, performance should

scale well and consume the resources of a single thread group. As an additional thread group and cores are added,

performance is expected to continue scaling. However, since the machine flop:byte ratio is only slightly larger than the

ratio in the best case (dense matrix), it is unlikely this low frequency Victoria Falls can saturate its available memory

bandwidth for the SpMV computation. This departure from our memory-bound multicore assumption suggests that

search-based auto-tuning is likely necessary for Victoria Falls.

20

In contrast to the Cell and Victoria Falls in-order architectures, the performance behavior of the out-of-order su-

perscalar Opteron and Clovertown are more difficult to understand. For instance, the full Santa Rosa socket does not

come close to saturating its available 10.6 GB/s bandwidth, even though a single core can use 5.3 GB/s. We believe

the core prefetcher on the Opteron is insufficient. It is even less obvious why the extremely powerful Clovertown core

can only utilize 2.4 GB/s (22%) of its memory bandwidth, when the FSB can theoretically deliver 10.6 GB/s. Intel’s

analysis of SpMV on Clovertown [7] suggested the coherency traffic for the snoopy FSB protocol is comparable in

volume to read traffic. As a result, the effective FSB performance is cut in half. The other architectures examined here

perform snoop-based coherency over a separate network. Performance results in Table 3 also show that, for this mem-

ory bandwidth-limited application, Barcelona is 76% faster than a Clovertown for a full socket, despite comparable

peak flop rates. As a sanity check, we also ran tests (not shown) on a small matrix amenable to register blocking that

fit in the cache, and found that, as expected, the performance is very high — 29 GFlop/s on the Clovertown. Thus,

performance is limited by the memory system but not by bandwidth per se, even though accesses are almost entirely

unit-stride reads and are prefetched in both hardware and software.

5.3 AMD Opteron (Santa Rosa) Performance

Figure 5(a) presents SpMV performance of the Santa Rosa platform, showing increasing degrees of optimizations —

naı̈ve serial, naı̈ve fully parallel, NUMA, prefetching, register blocking, and cache blocking. Additionally, comparative

results are shown for both serial OSKI and parallel (MPI) OSKI-PETSc.

The effectiveness of optimization on Santa Rosa depends on the matrix structure. For example, the FEM-Ship

matrix sees significant improvement from register blocking (due to its natural block structure) but little benefit from

cache blocking, while the opposite effect holds true for the LP matrix. Generally, Santa Rosa performance is tied

closely with the optimized flop:byte ratio of the matrix, and suffers from short average inner loop lengths. The best

performing matrices sustain a memory bandwidth of 10–14 GB/s, which corresponds to a high computational rate of

2–3.3 GFlop/s. Conversely, matrices with low flop:byte ratios show poor parallelization and cache behavior, sustaining

a bandwidth significantly less than 8 GB/s, and thus achieving performance of only 0.5–1 GFlop/s.

Looking at overall SpMV behavior, parallelization sped up naı̈ve runtime by a factor of 2.3× in the median case.

Auto-tuning provided an additional 3.2× speedup over naı̈ve parallel. Fully-tuned serial was about 1.6× faster than

OSKI. More impressively, our fully-tuned parallel performance was about 4.2× faster than OSKI-PETSc. Clearly,

exploiting NUMA, software prefetching, and register blocking were essential in delivering performance.

21

Santa Rosa

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
e
n

se

P
ro

te
in

F
-S

p
h

r

F
-C

a
n

t

T
u

n
n

e
l

F
-H

a
r

Q
C

D

F
-S

h
ip

E
co

n

E
p

id
e
m

F
-A

cc

C
ir

cu
it

W
e
b

L
P

M
e
d

ia
n

G
F
lo

p
/

s
+$/TLB Block
+Reg Block
+Prefetch
+NUMA
+Parallel
Naïve
OSKI/PETSc
OSKI

(a)

Barcelona

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

D
e
n

se

P
ro

te
in

F
-S

p
h

r

F
-C

a
n

t

T
u

n
n

e
l

F
-H

a
r

Q
C

D

F
-S

h
ip

E
co

n

E
p

id
e
m

F
-A

cc

C
ir

cu
it

W
e
b

L
P

M
e
d

ia
n

G
F
lo

p
/

s

+$/TLB Block
+Reg Block
+Prefetch
+NUMA
+Parallel
Naïve
OSKI/PETSc
OSKI

(b)
Clovertown

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
e
n

se

P
ro

te
in

F
-S

p
h

r

F
-C

a
n

t

T
u

n
n

e
l

F
-H

a
r

Q
C

D

F
-S

h
ip

E
co

n

E
p

id
e
m

F
-A

cc

C
ir

cu
it

W
e
b

L
P

M
e
d

ia
n

G
F
lo

p
/

s

+$/TLB Block
+Reg Block
+Prefetch
+NUMA
+Parallel
Naïve
OSKI PETSc
OSKI

(c)

Victoria Falls

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

D
e
n

se

P
ro

te
in

F
-S

p
h

r

F
-C

a
n

t

T
u

n
n

e
l

F
-H

a
r

Q
C

D

F
-S

h
ip

E
co

n

E
p

id
e
m

F
-A

cc

C
ir

cu
it

W
e
b

L
P

M
e
d

ia
n

G
F
lo

p
/

s

+$/TLB Block
+Reg Block
+Prefetch
+NUMA
+Parallel
Naïve
OSKI/PETSc
OSKI

(d)
CELL

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

D
e
n

se

P
ro

te
in

F
-S

p
h

r

F
-C

a
n

t

T
u

n
n

e
l

F
-H

a
r

Q
C

D

F
-S

h
ip

E
co

n

E
p

id
e
m

F
-A

cc

C
ir

cu
it

W
e
b

L
P

M
e
d

ia
n

G
F
lo

p
/

s

16 SPEs

8 SPEs

1 SPE

PPE

(e)

Per-Core Efficency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 8 16
Cores

G
F
lo

p
/

s/
C

o
re

Clovertown
Santa Rosa
Barcelona
Victoria Falls
Cell

(f)

Figure 5: Effective SpMV performance on (row major from top to bottom) AMD Opteron (Santa Rosa), Opteron
(Barcelona), Clovertown, Victoria Falls, and Cell, showing increasing degrees of optimizations — parallelization,
NUMA, prefetching, register blocking and cache/TLB-blocking. The figure in the bottom right shows fully tuned
median per core performance. OSKI and OSKI-PETSc results are denoted with squares and triangles, respectively.
Note: Bars show the best performance for the current subset of optimizations/parallelism. Flop rates do not count
flops on zeros added during register blocking.

Note that OSKI-PETSc uses an “off-the-shelf” MPICH-shmem implementation, and generally yields only moder-

ate (if any) speedups, due to at least two factors. First, communication time accounts on average for 30% of the total

SpMV execution time and as much as 56% (LP matrix), likely due to explicit memory copies. Second, several matrices

suffer from load imbalance due to the default equal-rows 1-D matrix distribution. For example, in FEM-Accel, one

process has 40% of the total non-zeros in a 4-process run. It is possible to control the row distribution and improve the

communication, but we leave deeper analysis and optimization of OSKI-PETSc to future work.

22

In summary, these results indicate tremendous potential in leveraging multicore resources — even for memory

bandwidth-limited computations such as SpMV — if optimizations and programming methodologies are employed

in the context of the available memory resources. Additionally, our data show that significantly higher performance

improvements could be attained through multicore parallelizations, rather than serial code or data structure transfor-

mations. This an encouraging outcome since the number of cores per chip is expected to continue increasing rapidly,

while core performance is predicted to stay relatively flat [1]. Figure 5(f) suggests a single core on Santa Rosa sustains

little better than half of a sockets attainable memory bandwidth. Thus, use of the second core will nearly double

performance. As a result, parallel efficiency drops only slightly.

5.4 AMD Opteron (Barcelona) Performance

Figure 5 (b) shows results on the quad-core Barcelona Opteron. Barcelona has the same raw DRAM bandwidth

as Santa Rosa. When examining performance up to and including prefetching, we see performance characteristics

reminiscent of Santa Rosa. The principle differences are that the larger cache avoids vector capacity misses on one

additional matrix, and the bandwidth is significantly better — 18GB/s instead of 14GB/s.

Interestingly, 8-core Barcelona runs only showed a 2.5× increase in median performance — rather poor parallel

efficiency. Additionally, we only observed an additional 2.6× increase in performance through auto-tuning. When

comparing against the existing OSKI and PETSc solutions we see speedups of 1.7× and 2.3× respectively.

Comparing per-core efficiency, results for Barcelona in Figure 5(f) look quite similar to Santa Rosa initially.

However, once the second core has been used all of the memory bandwidth has been consumed. Thus, efficiency

drops profoundly when using the remaining cores. Use of the second socket doubles aggregate memory bandwidth.

As a result, parallel efficiency remains roughly constant.

5.5 Intel Xeon (Clovertown) Performance

The quad-core Clovertown SpMV data appears in Figure 5 (c). Unlike the Santa Rosa or Barcelona, Clovertown

performance is more difficult to predict based on the matrix structure. The sustained bandwidth is generally less than

9 GB/s, but does not degrade as profoundly for the difficult matrices as on the Santa Rosa, undoubtedly due to the

large (16MB) aggregate L2 cache and the larger total number of threads to utilize the available bandwidth. This cache

effect can be clearly seen on the Economics matrix, which contains 1.3M nonzeros and requires less than 15MB of

23

storage: superlinear (4×) improvements were seen when comparing a single-socket × quad-core with 8MB of L2

cache, against the dual-socket full system, which contains 16MB of L2 cache across the eight cores. Despite fitting

in cache, the few nonzeros per row significantly limit performance, particularly when compared to matrices that fit in

cache, have large numbers of nonzeros per row, and exhibit good register blocking.

Examining the median Clovertown performance, naı̈ve paralleization only resulted in a 1.9× increase in perfor-

mance. This is due, in part, to the Xeon’s superior hardware prefetching capabilities and remarkably inferior FSB

bandwidth. Additionally, no NUMA optimizations are required and the large cache obviates the need for cache block-

ing. As a result, only an additional 1.6× is gained from further auto-tuning.

Contrasting Opteron results, our fully tuned serial performance was only 20% faster than OSKI. However, the

fully tuned-parallel performance was 2.2× faster than the OSKI-PETSc combination. The trends Barcelona showed in

Figure 5(f) are also present for Clovertown, although Clovertown performance per core is clearly much lower as there

is less available bandwidth per core.

5.6 Sun Victoria Falls Performance

Figure 5 (d) presents SpMV performance of the Victoria Falls system showing increasing levels of optimizations. The

full system configuration utilizes all eight cores and all eight hardware-supported CMT contexts on both sockets.

Results show that, as expected, single thread results are extremely poor, achieving only 49 Mflop/s for the median

matrix in the naı̈ve case. 128-way multithreading yielded a 84× increase in performance. Astoundingly, the full

system (128 thread) median results achieve 4.1 GFlop/s — delivering consistently better performance than any x86

architecture.

The OSKI-PETSc implementation scales poorly at this multicore concurrency. Although OSKI provides good

single thread performance, the auto-tuned pthreads implementation was 6.2× faster than OSKI-PETSc. Looking at

the scalability of OSKI-PETSc itself (i.e., compared to OSKI-only), the maximum speedup was 19× with a median

speedup of 12×, far worse than the scalability of the auto-tuned Pthreads implementation. Message passing may not

be the appropriate paradigm for memory intensive kernels on massive thread-parallel architectures.

Although Victoria Falls achieves high performance, we believe that such massive thread-level parallelism is a less

efficient use of hardware resources than a combination of intelligent prefetching and larger L1 cache lines as multi-

threading requires architects to replicate entire hardware thread contexts, add ports to the cache, as well as increase

cache capacity and associativity. Conversely, addition of a hardware prefetcher is very small change. Nevertheless,

24

Victoria Falls performance may be a harbinger of things to come in the multi- and many-core era, where high perfor-

mance will depend on effectively utilizing a large number of participating threads. For Victoria Falls, Figure 5(f) is

nearly flat. This indicates that 128 threads and 16 cores could not saturate the 43GB/s of available memory bandwidth.

5.7 STI CELL Performance

Although the Cell platform is often considered poor at double-precision arithmetic, the results in Figure 5 (e) show the

contrary — the Cell’s SPE SpMV execution times are dramatically faster than all other multi-core SMP’s in our study.

Cell performance is highly correlated with a single parameter: the actual flop:byte ratio of the matrix. In fact, since

DMA makes all transfers explicit, including bytes unused due to a lack of spatial locality, it is possible to show that

for virtually every matrix, Cell sustains about 90% of its peak memory bandwidth. Remember, Little’s Law [2] states

that to attain peak bandwidth one must express more concurrency than the latency—bandwidth product. On the more

difficult matrices, the get list DMA command can easily express this concurrency via a stanza gather. As a result, there

is no reduction in sustained bandwidth. Figure 5 (e) also shows that a single SPE is as fast as all four PPE threads

combined.

Examining multicore behavior, we see median speedups of 7.2× and 13.3× when utilizing 8 cores (single blade

socket) and 16 cores (full blade system), compared with a single SPE on a blade. These results show impressive

scaling on a single socket; however, the lack of sharing of data between local stores can result in a non-trivial increase

in redundant total memory traffic. Recall that this implementation is sub-optimal as it requires 2× 1 or larger BCOO;

thus, it may require twice the memory traffic of a CSR implementation, especially for matrices that exhibit poor

register blocking. The full 1 × 1 version was not implemented due to the inefficiency of scalar double-precision on

Cell. Like Victoria Falls, The Cell line in Figure 5(f) is nearly flat. Thus, Cell’s weak double precision implementation

likely prevented the median case from becoming memory bound.

5.8 Architectural Comparison

Figure 6(a) compares median matrix results, showing the optimized parallel performance of our SpMV implementa-

tion, as well as parallel OSKI-PETSc, and naı̈ve serial. Results clearly indicate that the Cell blade significantly out-

performs all other platforms in our study, achieving 4.2×, 2.6×, 1.8×, and 1.6× speedups compared with the Santa

Rosa, Barcelona, Clovertown, and Victoria Falls despite its poor double-precision and sub-optimal register blocking

implementation. Cell’s explicitly programmed local store allows for user-controlled DMAs, which effectively hide

25

Performance

2.5

3.6

1.5

4.1

6.4

0

1

2

3

4

5

6

7

Santa Rosa Barcelona Clovertown VFalls Cell

G
F
lo

p
/

s

Auto-Tuned
OSKI PETSc
Naïve

(a)

Power Efficiency

22.4

6.7
4.6

10.2
8.3

31.9

24.4

9.5

18.9

13.1

0

5

10

15

20

25

30

35

Santa Rosa Barcelona Clovertown VFalls Cell

M
F
lo

p
/

s/
W

a
tt

Chip Power Only
System Power

(b)

Figure 6: Architectural comparison of the median matrix performance showing (a) GFlop/s rates of naive serial,
parallel OSKI-PETSc, and parallel pthreads, and (b) relative power efficiency. System efficiency is computed as total
full system Mflop/s divided by sustained full system Watts (see Table 1), and Chip power efficiency is the ratio of full
system MFlop/s divided by aggregate chip TDP power.

latency and utilize a high fraction of available memory bandwidth (at the cost of increased programming complexity).

Looking at the Victoria Falls system, results are extremely poor for a single core/thread, but improve quickly with

increasing thread parallelism. The overall performance is nearly on par with Cell, and typically significantly faster than

the x86 machines, albeit with significantly more memory bandwidth. Finally, both Opterons attain better performance

than a quad core Clovertown both within a single-socket, as well as in full-system (dual-socket) experiments. This was

somewhat surprising as on paper, the Clovertown’s FSB bandwidth is comparable to the Opteron’s memory bandwidth.

Next we compare power efficiency — one of today’s most important considerations in HPC acquisition — across

our evaluated suite of multicore platforms. Figure 6(b) shows the Mflop-to-Watt ratio based on the median matrix

performance and the actual (sustained) full-system power consumption (Table 1) in lime green. Results show that the

Cell blade leads in power efficiency. The cache based machines delivered significantly lower power efficiency with

Barcelona leading the pack. Victoria Falls delivered the lower efficiency than the Santa Rosa Opteron despite deliv-

ering significantly better performance. Although the Victoria Falls system attains high performance and productivity,

it comes with a price — power. Eight channels of FBDIMM drove sustained power to 610W for the best performing

matrix. Thus, Victoria Falls’s system efficiency for the SpMV kernel was marginal. The Clovertown delivered the

poorest power efficiency because its high (relative) power and low (relative) performance. The Cell blade attains an

approximate power efficiency advantage of 2.7×, 2.2×, 4.9×, and 3.3× compared with the Santa Rosa, Barcelona,

Clovertown, and Victoria Falls (respectively). It should be noted that power was measured while sustaining peak

performance. Several experiments showed that this power was often less than 20% higher than power for a naı̈vely

parallelized implementation. As tuning often increased performance by more than 20%, we feel peak power efficiency

is typical at peak performance.

26

6 Summary and Conclusions

Our findings illuminate the architectural differences among one of the most diverse sets of multicore configurations

considered in the existing literature, and speak strongly to the necessity of multicore-specific optimization over the use

of existing off-the-shelf approaches to parallelism for multicore machines. We make several observations.

First, the “heavy-weight” out-of-order cores of the Santa Rosa, Barcelona, and Clovertown systems showed sub-

linear improvement from one to two cores. These powerful cores are severely bandwidth starved. Significant additional

performance was seen on the dual socket configurations when the aggregate bandwidth is doubled. This indicates that

sustainable memory bandwidth may become a significant bottleneck as core count increases, and software designers

should consider bandwidth reduction (e.g., symmetry, advanced register blocking, Ak methods [24]) as a key algorith-

mic optimization.

On the other hand, the two in-order “light-weight” cores in our study, Victoria Falls and Cell — although showing

significant differences in architectural design and absolute performance — achieved high scalability across numer-

ous cores at reasonable power demands. This observation is also consistent with the gains seen from each of our

optimization classes; overall, the parallelization strategies provided significantly higher speedups than either code or

data-structure optimizations. These results suggest that multicore systems should be designed to maximize sustained

bandwidth and tolerate latency with increasing core count, even at the cost of single core performance.

Combined, this suggests that in a memory bandwidth starved multicore world, it is perfectly acceptable for hard-

ware designers to choose simpler to implement, smaller, lower power, but more parallel architectures.

Our results also show that explicit DMA transfers can be an effective tool, allowing Cell to a very high fraction of

the available memory bandwidth. Nevertheless, both massive multithreading, and effective prefetching are productive

alternatives. However, the bandwidth in the coherency network is non-trivial and can be a significant performance

bottleneck. The primary concern for microarchitects is the selection of an effective memory latency hiding paradigm.

Finally, our work compares a multicore-specific Pthreads implementation with a traditional MPI approach to par-

allelization across the cores. Results show that the Pthreads strategy, or threading in general, resulted in runtimes

more than twice as fast as the message passing strategy. Although the details of the algorithmic and implementation

differences must be taken into consideration, our study strongly points to the potential advantages of explicit multicore

programming within and across SMP sockets.

In summary, our results show that matrix and platform dependent tuning of SpMV for multicore is at least as impor-

27

tant as suggested in prior work [24]. Future work will include the integration of these optimizations into OSKI [12], as

well as continued exploration of optimizations for SpMV and other important numerical kernels on the latest multicore

systems.

7 Acknowledgments

We would like to express our gratitude to both Forschungszentrum Jülich in der Helmholtz-Gemeinschaft for access

to their 3.2GHz Cell blades, Joshua Mora and Brian Waldecker at AMD for access to their Barcelona machines, and

David Patterson and the University of California Berkeley for access to x86 and Niagara machines. All authors from

Lawrence Berkeley National Laboratory were supported by the Office of Advanced Scientific Computing Research in

the Department of Energy Office of Science under contract number DE-AC02-05CH11231.

References

[1] K. Asanovic, R. Bodik, B. Catanzaro, et al. The landscape of parallel computing research: A view from Berkeley.

Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley, December 2006.

[2] D. Bailey. Little’s law and high performance computing. In RNR Technical Report, 1997.

[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in object oriented

numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools

in Scientific Computing, pages 163–202, 1997.

[4] G. E. Blelloch, M. A. Heroux, and M. Zagha. Segmented operations for sparse matrix computations on vector

multiprocessors. Technical Report CMU-CS-93-173, Department of Computer Science, CMU, 1993.

[5] S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23–29, Jul-Aug, 1999.

[6] R. Geus and S. Röllin. Towards a fast parallel sparse matrix-vector multiplication. In E. H. D’Hollander, J. R.

Joubert, F. J. Peters, and H. Sips, editors, Proceedings of the International Conference on Parallel Computing

(ParCo), pages 308–315. Imperial College Press, 1999.

[7] Xiaogang Gou, Michael Liao, Paul Peng, Gansha Wu, Anwar Ghuloum, and Doug Carmean. Report on sparse-

matrix performance analysis. Intel report, Intel, United States, 2008.

28

[8] M. Gschwind. Chip multiprocessing and the cell broadband engine. In CF ’06: Proceedings of the 3rd conference

on Computing frontiers, pages 1–8, New York, NY, USA, 2006.

[9] M. Gschwind, H. P. Hofstee, B. K. Flachs, M. Hopkins, Y. Watanabe, and T. Yamazaki. Synergistic processing

in Cell’s multicore architecture. IEEE Micro, 26(2):10–24, 2006.

[10] J. L. Hennessy and D. A. Patterson. Computer Architecture : A Quantitative Approach; fourth edition. Morgan

Kaufmann, San Francisco, 2006.

[11] E. J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization framework for sparse matrix kernels. International

Journal of High Performance Computing Applications, 18(1):135–158, 2004.

[12] Ankit Jain. pOSKI: An extensible autotuning framework to perform optimized SpMVs on multicore architec-

tures. Technical Report (pending), MS Report, EECS Department, University of California, Berkeley, 2008.

[13] Kornilios Kourtis, Georgios I. Goumas, and Nectarios Koziris. Optimizing sparse matrix-vector multiplication

using index and value compression. In Conf. Computing Frontiers, pages 87–96, 2008.

[14] B. C. Lee, R. Vuduc, J. Demmel, and K. Yelick. Performance models for evaluation and automatic tuning of

symmetric sparse matrix-vector multiply. In Proceedings of the International Conference on Parallel Processing,

Montreal, Canada, August 2004.

[15] J. Mellor-Crummey and J. Garvin. Optimizing sparse matrix vector multiply using unroll-and-jam. In

Proc. LACSI Symposium, Santa Fe, NM, USA, October 2002.

[16] R. Nishtala, R. Vuduc, J. W. Demmel, and K. A. Yelick. When cache blocking sparse matrix vector multiply

works and why. Applicable Algebra in Engineering, Communication, and Computing, March 2007.

[17] A. Pinar and M. Heath. Improving performance of sparse matrix-vector multiplication. In Proc. Supercomputing,

1999.

[18] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equa-

tions. Graph Theory and Computing, pages 183–217, 1973.

[19] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Barbara Kreaseck. Sparse tiling for stationary iterative

methods. International Journal of High Performance Computing Applications, 18(1):95–114, February 2004.

29

[20] O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on caches. In Proc. Supercomputing,

1992.

[21] S. Toledo. Improving memory-system performance of sparse matrix-vector multiplication. In Eighth SIAM

Conference on Parallel Processing for Scientific Computing, March 1997.

[22] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for parallel sparse matrix-vector

multiplication. SIAM Review, 47(1):67–95, 2005.

[23] R. Vuduc. Automatic performance tuning of sparse matrix kernels. PhD thesis, University of California, Berkeley,

Berkeley, CA, USA, December 2003.

[24] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of automatically tuned sparse matrix kernels. In

Proc. SciDAC 2005, Journal of Physics: Conference Series, San Francisco, CA, June 2005.

[25] R. Vuduc, A. Gyulassy, J. W. Demmel, and K. A. Yelick. Memory hierarchy optimizations and bounds for sparse

AT Ax. In Proceedings of the ICCS Workshop on Parallel Linear Algebra, volume LNCS, Melbourne, Australia,

June 2003. Springer.

[26] R. Vuduc, S. Kamil, J. Hsu, R. Nishtala, J. W. Demmel, and K. A. Yelick. Automatic performance tuning

and analysis of sparse triangular solve. In ICS 2002: Workshop on Performance Optimization via High-Level

Languages and Libraries, New York, USA, June 2002.

[27] J. B. White and P. Sadayappan. On improving the performance of sparse matrix-vector multiplication. In

Proceedings of the International Conference on High-Performance Computing, 1997.

[28] J. Willcock and A. Lumsdaine. Accelerating sparse matrix computations via data compression. In Proc. Inter-

national Conference on Supercomputing (ICS), Cairns, Australia, June 2006.

[29] J. W. Willenbring, A. A. Anda, and M. Heroux. Improving sparse matrix-vector product kernel performance and

availabillity. In Proc. Midwest Instruction and Computing Symposium, Mt. Pleasant, IA, 2006.

[30] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of Sparse Matrix-Vector

Multiplication on Emerging Multicore Platforms. In Proc. of Supercomputing, 2007.

[31] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. Scientific computing kernels on the Cell

processor. International Journal of Parallel Programming, 35(3):263–298, 2007.

30

