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Abstract
Modern networking hardware supports true non-blocking commu-
nication and effective exploitation of this feature can lead to signif-
icant application performance improvements. We believe that al-
gorithm design and optimization techniques that hide latency by
taking advantage of communication overlap will facilitate obtain-
ing good parallel efficiency and performance on the highly con-
current contemporary systems. Finding an optimal, performance
portable implementation when using non-blocking communication
primitives is non-trivial and intimidating to many application de-
velopers. In this paper we present a methodology for discovering
optimal message sizes and schedules for a variety of application
scenarios. This is achieved by combining an analytic model that
takes into account the variability of performance parameters with
system scale and load with heuristics designed to avoid network
congestion. We perform experiments to understand network behav-
ior in the presence of overlap and purge the optimization space
for any system based on either resource or implementation con-
straints. Our approach is able to choose optimal or nearly opti-
mal implementation parameters for a variety of highly non-trivial
scenarios and networks with different performance characteristics.
Implementations based on parameters chosen by the models are
able to hide over 90% of communication overhead in all cases.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: [Design studies, Modeling techniques]; I.6.4 [Computing
Methodologies]: Simulation and Modeling—Model Validation and
Analysis

General Terms Measurement, Performance, Design

Keywords Communication overlap, Latency hiding, Performance
model, High-speed networks, Variability, LogGP, LogP

1. Introduction
A large number of application and networking performance stud-
ies [3, 6, 9, 12, 13, 20] has shown considerable performance ben-
efits when using non-blocking communication primitives and ex-
ploiting communication computation overlap. We believe that due
to the levels of concurrencies proposed for Petascale systems, ef-
ficient use of non-blocking communication including overlapping
will be one of the keys for achieving good performance for many
scientific applications.
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Optimizing applications to hide communication overhead re-
quires careful decomposition and scheduling of their communi-
cation and computation phases. In general, when compared with
“legacy” MPI applications, such optimized programs tend to per-
form a larger number of relatively finer grained communication
operations. The increased performance comes with a price: it is a
lot harder to assess the optimal implementation choices at the ap-
plication level. This is due to the large space of possible program
optimizations as well as the complex interactions between the sys-
tem components (processor, network) and the highly unpredictable
behavior of the system when congestion at any level is present. The
studies presented by Danalis et al. [9] and Koziris et al. [12] show
the benefits of using non-blocking communication and overlap for
micro-benchmarks and applications written in MPI but fall short
of providing a methodology for choosing optimal implementation
parameters.

Previous work in the area of application and network perfor-
mance modeling has disregarded the variation of network perfor-
mance parameters with system workload, scale, application com-
munication schedule and pattern. This variation matters and di-
rectly impacts performance.

In this paper we introduce a methodology for quickly determin-
ing the optimal decompositions and schedules for applications that
use non-blocking communication. We incorporate the information
about network performance variability with system scale and work-
load into a framework that takes into account several application
characteristics such as: message size, communication schedule and
communication pattern. Using our approach we can correctly indi-
cate how to organize code to achieve maximal overlap for commu-
nication patterns widely encountered in applications.

One distinguishing characteristic of our work is that we do not
attempt to build a performance model for accurately predicting the
end-to-end execution time. Instead, we build a model to capture the
behavior of the optimal implementation as well as the imposed lim-
itations from hardware and software constraints. We use the output
of our models to guide the search for values for the decomposition
granularity of computation and the pipelining of communication
that achieve optimal performance.

This paper makes the following contributions:

• An evaluation of the overlap potential present in a system and
how it can best be exploited.

• An understanding of how hardware resource constraints influ-
ence performance and restrict implementation choices.

• A systematic methodology for evaluating and characterizing
communication patterns.

• An analytical performance model which captures the functional
dependency on all first-order variables of different implementa-
tions of computation and communication overlap.

To our knowledge, this work is the first to propose a system-
atic solution for choosing performance portable application de-



compositions for optimal overlap in parallel applications. Using
our approach, we were able to automatically select implementa-
tion parameters that hide over 90% of communication overhead
in non-trivial application scenarios. We believe that the work pre-
sented here is of interest to application developers, compiler writ-
ers, and developers of automatically tuning libraries. This approach
is currently implemented in the loop optimization framework of the
Berkeley UPC compiler.

Furthermore, we believe that obtaining good performance on
Petascale systems will be highly dependent on performance opti-
mizations which consider hardware resource constraints and our
work presents some guidelines on how to achieve this.

In the rest of this paper, for brevity, we will frame our discus-
sion in terms of a one-sided communication model and API: com-
munication operations are initiated by an init() call and are finished
by a sync() call. However, the implementation templates we ex-
amine have a directly corresponding MPI implementation and the
methodology is able to capture the performance characteristics of
MPI programs.

In Section 2 we describe our general methodology, the basis of
our performance models, and give a systematic description of all
parameters we consider for achieving computation and communi-
cation overlap. Section 3 presents our experimental setup, and sec-
tions 4-7 discuss in detail our findings for four prominent classes
of communication patterns. In Section 8 we discuss the sensitivity
of the optimal solutions to our parameters and to other potential
sources of errors to demonstrate the robustness of the presented ap-
proach. The final two sections discuss related work and present a
short summary.

2. Methodology
Network performance models have been traditionally used to ex-
plore the design space of parallel applications. There is a large body
of work that uses LogP [8] or LogGP [1] to motivate choices be-
tween implementation alternatives. All these approaches start by
building an accurate end-to-end timing model for the applications
of choice and validating the accuracy of the model. Only after the
model is deemed “time accurate” can implementation choices be
justified. The models we have seen in the literature require a very
detailed instrumentation and understanding of the application be-
havior and are not well suited for fast prototyping. Another com-
mon characteristic of most, if not all, application modeling studies
we have seen is that they disregard the variability of network per-
formance parameters with system scale and load.

Previous studies of application behavior [18, 24] indicate that
scientific applications tend to have a high communication volume.
In the presence of such high communication volumes, the accu-
racy of traditional time accurate models becomes very sensitive to
changes in network bandwidth or latency due to various sources of
congestion 1. For example, MPI studies [6, 22] have shown the per-
formance impact of long message queues on latency. These vari-
ations increase with system size or load. Furthermore, we expect
modern torus based network architectures (Cray XT3, BG/L) to
show an even larger variance of performance parameters than the
current fat-tree networks.

Our stance is that in order to be able to choose implementation
parameters that are able to provide optimal overlap across system
scales and problem settings, one needs to take into account the qual-
ity of service the system is able to provide for that given setting. We
achieve this by exploring network performance in terms of system

1 By congestion we denote not only bandwidth degradation due to packets
being dropped inside switches, but any other decrease in response time due
to resource exhaustion, e.g. overflowing the hardware or software outstand-
ing messages queue length.

scale and hardware resource constraints (e.g. outstanding message
queue depths) and we identify the situations where performance
degrades due to any form of congestion.

To determine optimal overlap parameters we characterize pro-
grams according to several metrics: 1) communication computation
ratio; 2) volume of communication and 3) communication patterns.

For any given combination we are interested in determining
the implementation parameters (communication granularity and
schedule) that minimize the end-to-end running time or alternately,
maximize overlap while staying away from situations where con-
gestion might occur. We consider this as the optimal implemen-
tation. For each combination of our key metrics, we build a model
to capture the performance for the optimal implementation case
and identify the constraints imposed by it, e.g. number of messages
and message injection rate. These constraints allow us to efficiently
purge the design space of choices that are likely to cause conges-
tion. We can then search between the remaining implementation
alternatives and pick the one likely to offer best behavior based on
the performance model. The approach is specifically designed for
on-line (runtime) optimizations and therefore one of the main goals
is to produce simple enough models that allow a fast evaluation and
pruning of the solution space.

In order to reduce the initial exploration overhead, we char-
acterize the behavior of network performance parameters using
a very discrete sampling. Searches through the solution space
for any given scenario are also performed in a discrete manner.
Thus, throughout this paper we consider the optimal implemen-
tation choice to be the point in the discrete parameter space that
we have explored that offers best performance compared to the
other visited points. Using the mathematical connotation, an opti-
mal solution will provide the absolute minimum of the end-to-end
running time for a given scenario. We believe that our approach is
also able to determine this solution, but it requires either a com-
plete exploration of the optimization space or characterization of
network performance using continuous functions. This is a limita-
tion of any performance modeling effort we are aware of and either
approach has a very high time to solution.

Our methodology for fast prototyping of implementation choices
does not rely on building a time accurate performance model which
we believe to be a daunting task at very high concurrency levels and
for implementations that aggressively use non-blocking communi-
cation. The method can be incrementally refined to capture the per-
formance trends of any implementation choice that resides outside
the candidates that satisfy the optimality conditions as long as it
does not cross into the regime where hardware resource constraints
apply.

2.1 Network Performance Characterization
The LogGP [1, 8] network performance model approximates the
cost of a data transfer as the sum of the costs incurred by the
transfer in all system components. The parameters are os and or ,
the send and receive overhead of a message; L round-trip network
latency; G, the inverse network bandwidth; and g, the minimal gap
required between the transmission of two consecutive messages. In
this section we present our usage of the LogGP model and discuss
how its parameters vary with system workload and scale.

According to the model, the cost of a single message transfer
can be divided into two components, the software overhead on both
the send and receive side, and the time the message actually spends
in the network. The total communication time for a message of size
S bytes is

T (S) = o + L + G ∗ S, o = os + or

In the ideal case, a fraction equal to L+G∗S from the total message
communication time can be overlapped with independent work.



System Network CPU type
AMD cluster [11] Infiniband 640x 2.2GHz Opteron

AMD cluster Elan4 16x 2.2 Ghz Opteron

Alphaserver ES45 [15] Elan3 3000x 1 GHz Alpha

Table 1. Systems Used for Benchmarks

To determine the values of the network performance parame-
ters we use the methodology presented in [2] combined with the
micro-benchmarks presented in Section 3. We examine network
performance on large scale production systems with Infiniband
and Quadrics (Elan3) networks and a small cluster with Quadrics
(Elan4). The systems are described in Table 1 and the parameters
are determined for the GASNet [4] communication layer.

Both Infiniband and Quadrics have Remote Direct Memory Ac-
cess (RDMA) support. On Infiniband, the memory involved in
RDMA operations has to be registered with the card and pinned by
the operating system. Quadrics has an on-board TLB which syn-
chronizes with the processor TLB and does not require pinning2.

Both networks impose hardware constraints on the number of
outstanding communication operations allowed to proceed concur-
rently. We refer to this value as hardware queue depth (HD). Both
networks implement flow of control based on this value. If there
are more than HD concurrent messages, when issuing the HD+1
message the processor will block until one of the previous transfers
has finished. On Quadrics this value is 32 (Elan3 and Elan4) and
on Infiniband this value is 64.

Latency: We determine the network round-trip latency and band-
width using the methodology presented in [2]. For Elan3, we mea-
sured L = 7.4µs, for Elan4 we measured L = 2.4µs and for the
Infiniband network we measured L = 10µs. When modeling get
operations we use the round-trip latency, while the models for put
operations use one-way latency.

Overhead: Most of the previous network and application perfor-
mance modeling efforts consider the overhead of message initia-
tion to be independent of the message sizes and use the value de-
termined for the empty transfer. Kielmann et al. [19] propose an
extension to the traditional LogP model to take into account the
variation of o with the transfer size and introduce a measurement
methodology for wide area networks.

Applications optimized for non-blocking communication are
likely to issue back-to-back communication operations. We refer
to a sequence of non-blocking communication operations without
intermittent computation as a “burst” of requests and denote the
number of communication operations as “burst length” b and we
examine the overhead variation with the burst length. We are also
interested in determining the variation of o with the message size
S.

We measure the transfer initiation overhead value using two
methods: 1) the methodology described in [2] for asymptotic val-
ues; 2) a micro-benchmark whose structure is presented is Figure 6-
E where we measure the average time per initiation operation for
bursts of increasing length. Figures 1 and 2 show the evolution of
message initiation overhead with message size and burst length.
Each line in the graph corresponds to a different burst length.

For all networks, for a fixed burst length b, o increases roughly
linearly with the transfer size. For all networks, for burst length
b ≤ HD, the value of the average time taken to issue a message
within the burst decreases with the increase in the burst length. For
small to medium size messages ( < 128 kB) this variation is around

2 It allows both pinned and un-pinned implementations depending on the
kernel integration level. Best performance is achieved with synchronized
TLBs.
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Figure 3. Unidirectional and bidirectional per-processor peak
bandwidth.
30% for short bursts. For larger messages, the variation is as much
as 100%. The overhead reaches the asymptotic values determined
using the methodology from [2] with the increase in burst length.

Increasing the burst length to values larger than the hardware
queue depth b > HD, shows the effect of hardware flow control on
the overhead of initiating a transfer. The init operation will block
and wait for a previous transfer to finish. In our experiments, this
effect appears for the Infiniband and Elan4 networks, which ob-
serve a sharp increase of the transfer initiation overhead for values
of b > HD. On these networks, the issue rate (as determined by
o) is faster than the network service rate as determined by G. On
Elan3, which has a high initiation overhead, the effect is not observ-
able in the ranges exercised by our benchmark. The best illustration
of this effect is shown in Figure2.

For our performance models, we take into account the variation
of o with both message size S and burst length b. In the rest of the
paper we’ll use the shorthand o = o(S, b). For a fixed burst length
B, o(S, B) can be approximated reasonably well by a piecewise
linear function on all systems considered. In practice, we use the
table containing the experimental values.

Gap: In LogP, the g parameter is used to describe any possible idle
time of the main processor between the initiation of two successive
communication events. Figures 1 and 2 show a decreasing overhead
for increasing burst rates. While there is no guarantee that the pro-
cessor might idle between message initiations and hence a positive
g might exist, it is very unlikely, as this would require a an even
lower effective value of o than presented. We therefore ignore this
parameter for the rest of the paper.

Bandwidth: Figure 3 shows the variation of the bandwidth be-
tween two active processors for all networks as a function of trans-
fer size. On the measured systems, per processor bi-directional
bandwidth is roughly half of the unidirectional bandwidth due to
PCI bus bandwidth limitations. The network is saturated at a differ-
ent message size in the uni-directional case than in the bidirectional
case.

The production systems we study contain well provisioned fat-
tree networks with good bisection bandwidth. However, in applica-
tion settings it is often the case that full bisection bandwidth is not
attained at high concurrency levels, due to the unfairness of band-
width allocation caused by congestion or the implementation of the
communication software layer.

Figure 4 shows the per processor pair bandwidth on the Infini-
band network for 128 processors communicating in a nearest neigh-
bor3 pattern (Pi−Pi+1). In this case the per-connection bandwidth

3 Consecutive switch ports.
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Figure 5. Variation of unidirectional bandwidth for Infiniband,
128 processors communicating across the network bisection.

allocation is relatively fair and all processors achieve a bandwidth
close to the peak unidirectional bandwidth. Similar behavior is ob-
servable on the Elan3 network.

Figure 5, shows the per processor pair bandwidth on the Infini-
band network for 128 processors communicating in a cross network
pattern (Pi − Pi+half , i < half ). In this case the bandwidth allo-
cation is very unfair with a very large variance between the lowest
and the highest bandwidth achieved. Similar behavior is observable
on the Elan3 network.

The unfairness of the allocation increases with the degree of
concurrency and is typical for static source routed networks. Worm-
hole routed networks might provide better bandwidth allocations
especially for large competing transfers, but we still expect a large
variance at very high concurrency levels.

Figures 3, 4, 5 show that bandwidth and implicitly application
performance is directly determined by the topology of the com-
municating processes and system size. For our model we record
the bandwidth variation with topology and system size. For each
of the two cases (N=nearest-neighbor and C=cross) we record
the lowest and highest bandwidth levels achieved by a pair of
processors. We denote these values by Gl

N (P, S), Gh
N (P, S) and

Gl
C(P, S), Gh

C(P, S) respectively.

2.2 Application Characteristics
In this section we present our classification of different application
scenarios using a one-sided communication paradigm init/.../sync.

The communication operations are either remote read (get) or re-
mote write (put) operations. Equivalent scenarios can be imple-
mented using the MPI two-sided communication paradigm.

We have explored the performance of a comprehensive set of
implementation choices, which are not presented in this paper. The
“templates” selected here offer best performance in practice and
exhibit a symmetry that reduces the number of tunable parameters
and also makes them amenable to manual code transformations. In-
tuitively, the patterns presented here achieve good performance by
obeying common sense design principles: 1) issue communication
as early as possible and 2) issue as many as possible consecutive
communication operations in order to reduce the initiation over-
head.

Figure 6 presents possible implementation scenarios: (A) shows
a program using blocking communication; (B) shows a program
using communication-communication overlap; (C) shows a pro-
gram with tight data dependencies that overlaps communication
with both communication and computation and is usually encoun-
tered in MPI programs or get based one-sided implementations;
(D) shows a program with loose data dependencies that overlaps
communication with both communication and computation.

We consider the program schedule to be the sequence of
init/comp/sync operations. We use the schedule for the blocking
communication scenario (A) as the performance baseline. Imple-
mentation (B) has a higher degree of overlap than (A) and can
achieve better performance. Both implementations (C) and (D)



GET_nb(S0)
sync(S0)
compute(S0)
GET_nb(S1)
sync(S1)
compute(S1)
:

    (A)

GET_nb(S0)
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:
GET_nb(SN)
sync(S0)
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:
sync(SN)
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     ( C )
GET_nb(S0)
GET_nb(S1)
:
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sync(S1)
:
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:
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      (B)

GET_nb(S0)
:
GET_nb(Sb)
GET_nb(Sb+1)
:
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sync(S0)
compute(S0)
:
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GET_nb(S2b+1)
:
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sync(SN)
compute(SN)

       (E)

b
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b
compute(S0)
PUT_nb(S0)
compute(S1)
PUT_nb(S1)
:
sync(S0)
sync(S1)
:

      (D)

Figure 6. (A) Blocking communication; (B) Communication com-
munication overlap; (C) Communication/computation overlap with
tight data dependencies; (D) Communication/computation overlap
with loose data dependencies; (E) Pipelined implementation of (C)
with burst size b.

have a higher degree of overlap than (B) and have the potential to
achieve even better performance. Additional program transforma-
tions can be applied to the program schedule to improve the per-
formance of (C). Implementation (E) shows the modified schedule
after a technique similar to software pipelining has been applied to
the program schedule in (C).

The granularity of the computation present in the application
determines how much time is available for overlap and influences
the choice of an implementation strategy. We distinguish between
the case where the application is communication bound and the
case where the application is computation bound.

Another factor that determines end-to-end performance is the
application communication topology. This includes the number of
communication end-points and the order in which they are ac-
cessed. From the connectivity point of view we distinguish the fol-
lowing cases described throughout the rest of the paper: point-to-
point, multiple end-points, end-point-congestion, all-to-all.

Oliker et al. [18] study eight large scale scientific applications
and report that over 90% of the MPI calls encountered are point-to-
point operations. Similar trends are reported by Vetter et al. [24] for
five different large scale scientific applications. Both studies find
that the majority of applications communicate with a relatively low
number of partners, regardless of the system size. Some applica-
tions change endpoints within the same time step, some of them
across time steps. The groups of communicating processes are usu-
ally static during the execution. The few applications that exhibit
rich connectivity usually perform all-to-all or gather communica-
tion calls.

For a given application, let V denote the per-processor data do-
main size and let S denote the message size after further decompo-
sition for communication. The programmer’s interest is to create a
schedule of communication and computation operations that takes
into account data dependencies and produces optimal performance.
In the following, let N = V

S
denote the total number of communi-

cation operations generated by the decomposition. Given a problem
with a total volume of data V we are interested in determining the
granularity S and the burst length b that is likely to offer best per-
formance.

We examine implementations (C), (D) and (E) since they con-
tain non-trivial communication computation overlap.

3. Modeling Communication Performance
We validate the methodology on two contemporary high speed net-
works: Quadrics and Infiniband. The systems are described in Ta-
ble 1. The evaluated systems exhibit different network performance
characteristics (latency to overhead or inverse bandwidth ratios)
and different architectural choices (TLB). Both networks are con-
nection oriented, use source routing and exhibit qualitatively simi-
lar responses to congestion. We have started to validate the method-
ology with similar results for the IBM Federation HPS network
which implements RDMA over an unreliable datagram layer and
uses adaptive routing. The Infiniband standard provides for similar
functionality, currently unsupported by any vendor.

All the benchmarks are written in UPC [23], a Partitioned
Global Address Space language (PGAS) which provides one-sided
communication abstractions. The UPC implementation runs over
GASNet [4], a portable high performance one-sided communica-
tion library. Thus, our results capture behavior at the application
level, rather than behavior at the communication layer level. This
is important since the extra overhead of the runtime/application
setting needs to be taken into account when trying to understand
whole application performance.

We use synthetic benchmarks to build the performance models
and validate the model results. The synthetic benchmarks corre-
spond to the code patterns described in Figure 6(A-E). The bench-
mark implementation is capable of varying the computation to
communication ratio present and to exercise all the patterns men-
tioned in Section 2.2. For each connectivity scenario (point-to-
point, multiple end-points ...) we have run the patterns (A), (C),(D)
and (E) for various concurrency levels (up to 64 processors for most
cases, 128 and 256 processors for selected experiments).

As the base computation we have chosen a vector-scalar add
operation b[i] = a[i] + s. In all cases, this operation produces
for mid-size to large messages roughly a 40% − 50% computa-
tion/communication ratio. This is the lowest ratio we have exam-
ined. We vary the computation present in the micro-benchmarks up
to five times the base ratio, roughly 250%−300%, and we examine
five different settings varying from communication bound to com-
putation bound problems. The total data volume V varies between
8 bytes and 8 MB in powers of two. The burst size b is varied be-
tween 1 and 64 in powers of two. For each volume, decompositions
of up to 8192 messages are tested in power of two increments.

We have performed this exhaustive exploration of the optimiza-
tion space in order to validate the methodology. Determining the
model parameters and constraints for systems with characteristics
similar to the ones presented here does not require an extensive set
of calibrations. The only values required are profiles for the vari-
ation of the o(S, b) and G(P, S) parameters and an understanding
of overlap behavior in a point-to-point scenario.

In the paper, we present data only for get operations and the
majority of our tests were run with get operations. The results
and modeling of put operations are similar, the only differences
appear in the values of the parameters that capture the network
performance. Since application scenarios with tight dependencies
are harder to optimize for, we’ll center the following presentation
on the scenarios in Figure 6-C and Figure 6-E.

3.1 Point to Point Communication
In this section we will discuss the models for the implementations
in Figure 6-C and Figure 6-E for communication bound and com-
putation bound problems. The models for the cases in Figure 6-B
and 6-D are developed based on the same principles.

Communication bound: we consider first the case where the ap-
plication is communication bound (GV ∗ V > tV ). For the imple-
mentation with tight dependencies (Figure 6-C) with a total domain



size V , decomposed in sub-domains of size S, with a communica-
tion schedule with bursts of length b, total computation time tV , N
communication operations organized in nb bursts, the optimal time
for the transformed program is given by Equation (1).

The formula is based on the following assumptions: 1) for each
burst, only the latency and overhead of the first communication
operation in the burst is not overlappable with useful work; 2) total
communication time is determined by the number of messages of
size S; and 3) the last computation within a burst is not overlapped
with anything else.

T (V, S, b) = (o + L) ∗ nb + N ∗GS ∗ S + nb ∗ tS (1)
GV ∗ V − tV > N ∗ o (2)
L + GS ∗ S > (b− 1) ∗ o (3)

The difference between the communication and computation
time (GV ∗ V − tV ) determines the time that the optimized imple-
mentation can use to issue the additional communication operations
(N ∗o). This imposes the first optimality constraint in Equation (2).
In order to achieve perfect overlap, all the communication initiation
overhead within a burst should be perfectly hidden by the latency
of the first transfer within the burst. This constitutes another opti-
mality constraint in Equation (3).

For the pipelined case (Figure 6-E), assuming perfect overlap,
the lower bound on the total running time is given by Equation (4).
The formula and the constraints are derived based on the same
principles described for the non-pipelined implementation. For bal-
anced problems, where communication time is similar to the com-
putation time (GV ∗ V ≈ tV ), the additional communication ini-
tiation overhead cannot be hidden any longer. To capture this we
use the model in Equation (5) for the total running time. The ad-
ditional term changes the relative importance of bandwidth and la-
tency when determining the solution based on the computational
intensity of the application. Applications that are heavily commu-
nication oriented (tV << GV ∗ V ) should be optimized for band-
width, while for better balanced applications the initiation overhead
and network latency matter more.

T (V, S, b) = o + L + N ∗Gs ∗ S + tS (4)

T (V, S, b) = (o + L) ∗ nb ∗
tV

GV ∗ V
+ N ∗Gs ∗ S + tS (5)

Computation bound: for the case where the application is com-
putation bound (GV ∗ V < tV ) the optimal implementation is de-
scribed by Equation (6) for the non-pipelined (Fig 6-C) case and
Equation (7) for the pipelined (Fig 6-E) case .

T (V, S, b) = (o + L + GS ∗ S + b ∗ tS) ∗ nb (6)
T (V, S, b) = (o + L + GS ∗ S) + b ∗ tS ∗ nb + o ∗ b ∗ (nb − 2)

(7)

For all cases, an additional implementation constraint intro-
duced to avoid flow of control problems when overflowing the mes-
sage queues is:

b < HD (8)

Figures 7 and 9 show the range of decompositions that achieve
speedup for a communication bound scenario on the Infiniband and
Elan4 networks. The x-axis corresponds to the total problem size
(V ) and the y-axis corresponds to a given message size (S). The re-
sults are reported relative to the fastest decomposition which corre-
sponds to the value 1 (lowest) in the color-map. The highest value
corresponds to the implementation that performs blocking commu-
nication and has no overlap. The scatter line labeled measured

shows the decomposition that achieves best speedup for a given
volume. The scatter line labeled model shows the predictions of
our model.

The results indicate that for any given problem size, there exists
either an optimal decomposition or a set of decompositions that of-
fer “best” performance and that are statistically indistinguishable.
Increasing the burst size improves the performance of finer gran-
ularity decompositions. Increasing the problem size determines an
increase in the optimal decomposition size. For a given problem
setting, due to lower overhead and latency, the Quadrics hardware
achieves the best results when using smaller messages than for
the Infiniband hardware. Computation bound problems (Figure 8)
achieve best performance at finer grained decompositions. Even for
this simple point-to-point scenario, performance portability across
platforms and input sets is hard to achieve and there is no good
static implementation solution.

On Quadrics hardware, the optimal message size and commu-
nication schedule (burst size) is further limited by the NIC TLB
coverage (128 entries on Elan4, 32 entries on Elan3). The network
ability to overlap increases with the granularity of the decomposi-
tion and the burst size up to the point where TLB coverage is ex-
hausted. Decompositions operating beyond this threshold observe
decreased performance. Figure 10 illustrates this best. Thus, for the
Quadrics hardware we introduce an additional empirical constraint
to our model: we limit the volume of outstanding communication
requests to 4MB. This constraint has been determined by inspection
of the experimental data across all scenarios and it is important for
the accuracy of predictions on Elan (TLB based) networks.

We have examined the model predictions using two estimates
for the value of communication initiation overhead o: 1) taking into
account only the variation with message size o = o(S); and 2)
taking into account the variation with both message size and burst
length o = o(S, b). For the networks with a relatively high latency
(Infiniband and Elan3) the first estimator produces relatively accu-
rate results. For the Elan4 network which has very low latency, the
second estimator is required for accurate predictions. We therefore
use o = o(S, b) for all cases.

A property of the model is that for a fixed combination (V,S),
the total time monotonically decreases with the increase in burst
length b. Thus our model will always choose the longest burst
within constraints. The experimental results validate this choice.

3.2 Communication With Multiple Endpoints
Communication topologies with multiple endpoints are very typi-
cal for a variety of scientific applications. Examples include grid
based algorithms where values along common borders have to
be exchanged with multiple processors. Other examples would be
scatter-gather or personalized broadcast operations.

In this scenario, one processor exchanges data with P other
processors and the ordering of the end-point accesses is an addi-
tional factor that determines performance. We call communication
peer sequence the order with which distinct processors are accessed
within a program schedule and we consider two cases: contiguous
and interleaved. If a processor Pi communicates with two peers
Pj and Pk, in a contiguous schedule Pi’s communication will have
the following end-point ordering: Pj , Pj ...Pk, Pk; processor Pi

finishes all the work for Pj before moving to another processor. In
the interleaved pattern, Pi will impose the order Pj , Pk...Pj , Pk;
processor Pi alternates between endpoints.

We model the optimal running time for a problem with a con-
tiguous schedule as P instances of the point-to-point scenario
T (P, V, S, b) = P ∗T (V, S, b). All the equations have been shown
in the previous section.
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Figure 7. Performance of different communication schedules, together
with measured and model-predicted best schedules for Infiniband. Axis are
labeled with log values. Point to point communication bound problem: 0.43
= Tcomp

Tcomm
. VOL=total problem size, SIZE=message size. Colormap shows

loss of performance from best decomposition.
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Figure 8. Performance of different communication schedules, together
with measured and model-predicted best schedules for Infiniband. Axis are
labeled with log values. Point to point computation bound problem: 1.59
= Tcomp

Tcomm
. VOL=total problem size, SIZE=message size. Colormap shows

loss of performance from best decomposition.

4 6 8 10 12 14 16 18

4

6

8

10

12

14

16

18

 

 

VOL

S
IZ

E

Elan4 (0.56)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

measured
model

Figure 9. Performance of different communication schedules, together
with measured and model-predicted best schedules for Elan4. Axis are
labeled with log values. Point to point communication bound problem: 0.56
= Tcomp
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. VOL=total problem size, SIZE=message size. Colormap shows

loss of performance from best decomposition.
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Figure 10. Performance with end-point congestion on Elan4 (Figure 6-E,
4 threads). Total problem size (V) is 1M doubles. Legend shows the decom-
position size. The knee in the lines shows the effect of TLB restrictions.
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Figure 11. Performance of different communication schedules, together
with measured and model-predicted best schedules for Infiniband. Multiple
endpoints, contiguous peer schedule, 32 threads. Axis are labeled with log
values. VOL=total problem size, SIZE=message size. Colormap shows loss
of performance from best decomposition.
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Figure 12. Performance of different communication schedules, together
with measured and model-predicted best schedules for Infiniband. Multiple
endpoints, interleaved peer schedule, 32 threads. Axis are labeled with log
values. VOL=total problem size, SIZE=message size. Colormap shows loss
of performance from best decomposition.



Figures 11 and 12 show all the decompositions able to provide
speed-up on the Infiniband network for a 32 processor4 run. In
this case, we consider as a base case for performance comparison
the situation where communication with each processor is already
overlapped with other communication and computation. Thus the
results show the additional benefit of more aggressive optimiza-
tions. The optimal decomposition for the contiguous case resem-
bles the point-to-point case. The interleaved case attains best per-
formance at much finer granularity. Similar behavior is observable
on the Elan networks.

This difference is explained by the fact that the interleaved
schedule produces a higher route contention inside the network
switches than the contiguous schedule. Finer granularity messages
offer a better interleaving of the communication operations. At
the model level, the difference is captured by the choice of the
bandwidth profile. The contiguous case generates a lower degree
of switch contention and we use for it the lowest bandwidth level
determined for a “nearest-neighbor” pattern Gl

N (P, S) (Figure 4)
at the respective concurrency level. For the interleaved pattern we
use the lowest bandwidth level determined for a “cross” pattern
Gl

C(P, S) at the same concurrency. Figures 11 and 12 show the
predictions of our models. In all cases we have examined, the
models produce good results.

For an implementation, given the choice of the two peer sched-
ules, one legitimate question is which one is likely to perform bet-
ter. We have collected data and measured additional parameters for
an alternate model for the interleaved case. A detailed description is
beyond the scope of this paper. Using the distinct models, we were
able to make accurate (in the majority of cases) qualitative predic-
tions between the two implementations using the same parameter
(P ,S,b) settings.

The performance data shows that for a given problem setting
(P ,V ) with the same implementation parameters (S,b), the con-
tiguous schedule is faster than the interleaved schedule for most
cases. The two implementations achieve optimal performance for
different values of S and b, and in this case the interleaved sched-
ule is faster. In practice, the differences are minimal for the optimal
case.

3.3 End Point Congestion
This communication topology appears, for example, in situations
where global grids have to be collected and assembled by individ-
ual processors or in master-slave programs where slave data needs
to be transfered to the master.

In this application scenario, which captures the serialization of
concurrent transfers inside the NIC, P processors transfer data to
or from the same processor. Figure 10 shows the performance for
the scenario from Figure 6-E. The results for this experiment show
the same trends as for the previous experiments. On the Quadrics
networks, this is the most sensitive pattern to the TLB interference.

The model for the optimal end-to-end time for this case is
presented in Equation (9). Each processor performs a point-to-
point transfer. The additional term captures the serialization of the
communication requests on the congested NIC.

T (P, V, S, b) = T (V, S, b) + (P − 1) ∗ b ∗GS ∗ S (9)

Solving the optimization problem produced optimal or nearly
optimal values for the optimization parameters.

4 This is the “first” concurrency level where ignoring system scale ef-
fects leads to inaccurate predictions and to potentially bad implementation
choices.

3.4 All-to-All Communication
In general, for all-to-all communication patterns, implementations
need to take congestion into account and need to eliminate commu-
nication hot-spots. When using non-blocking point-to-point com-
munication primitives to implement all-to-all patterns, network
congestion is determined by the message injection rate (b) and
the communication peer schedule. The models and considerations
presented here are for implementations that avoid hot-spots by per-
forming all-to-all communication in a staggered manner. Stager-
ring communication [10] to avoid hot-spots is a technique widely
used in the implementation of collective communication library
calls. The application studies [3, 9] report significant performance
improvements when replacing all-to-all collective calls with non-
blocking overlapped point-to-point communication.

We examine the performance of several all-to-all communica-
tion/computation patterns. In the first scenario, all the processors
involved in the operation observe the same peer schedule, e.g.
P0, P0..P1, P1... This is the worst case for performance since it has
communication hot-spots and transfers are serialized by the con-
gested NICs. We model it as the equivalent of P scenarios with
end-point congestion (Equation 9).

With a contiguous schedule, a processor Pi communicates with
Pi+1, Pi+1..Pi+2, Pi+2.. in this order. We model this case as a
combination of a multiple end-points and end-point congestion
scenario. Equation 10 shows the model for a communication bound
problem and a pipelined implementation (Fig 6-E). The last term
in the equation accounts for any possible load imbalance in the
system. Whenever a processor Pi finishes processing the domain
from a peer Pj and issues the communication requests for Pj+1,
it is likely that Pj+1 still has outstanding communication requests
from another active peer at that stage. We assume that the amount
of outstanding communication is bound by 2 ∗ b which seems a
reasonable upper limit if communication loads are approximately
balanced.

T (P, V, S, b) = (o + L) ∗ nb ∗
tV

GV ∗ V
+ N ∗Gs ∗ S + tS

+(P − 1) ∗ 2 ∗ b ∗GS ∗ S (10)

With an interleaved schedule, each processor Pi communicates
in order with Pi+1, Pi+2..Pi+1, Pi+2... In this case, at any stage,
a processor will serve on average b transfers. Equation (11) shows
the model.

T (P, V, S, b) = (o + L) ∗ nb ∗
tV

GV ∗ V
+ N ∗Gs ∗ S + tS

+nb ∗ b ∗GS ∗ S (11)

In both cases, we choose the values for inverse bandwidth G
based on the principles described in Section 3.2. Inspection of the
equations (10) and (11) reveals that the minimum occurs for b = 1,
regardless of the message size S. This property is substantially
different from other communication topologies such as point to
point, where the models tend to maximize b within constraints.

We have examined the three scenarios for concurrencies up to
64 processors and for different communication/computation ratios.
We have also tried to distinguish between load balanced and load
unbalanced problems. To approximate a load balanced problem
we synchronize all processors after each iteration of the respective
benchmark. For a load imbalanced problem, we allow the proces-
sors to perform multiple iterations between a global synchroniza-
tion step.

For a communication bound problem, different behavior is ob-
served in practice depending on the system imbalance. For “load
balanced” problems, optimal performance is achieved at relatively



fine granularity decompositions and deep burst length, regardless of
the processor schedule (contiguous or interleaved). The models
in equations (10) and (11) choose good values for the decomposi-
tion (S) but underestimate the value of the burst length. In this case,
the model for multiple-endpoints (Section 3.2) is an alternative able
to choose a good solution. For a contiguous schedule and a load
unbalanced problem, optimal values are observed at high granu-
larity decompositions and short burst length (b = 1). In this case
the solutions determined by the model are not very good. However,
applications usually perform one stage of all-to-all communication
followed by processing of the data domain and therefore we ex-
pect the behavior of the “load balanced” benchmark to be the case
encountered in practice.

For communication/computation balanced problems and for
computation bound problems, optimal performance occurs at rela-
tively fine grained decompositions and short burst length, regard-
less of the overall system load. In this case, our model chooses a
good granularity at burst length b = 1. In practice, the optimal per-
formance is consistently achieved across all experiments at burst
length b = 2. The loss of performance for the decomposition cho-
sen by our model is very small in all cases. The MPI performance
study in [9] also reports optimal performance at very short burst
lengths.

4. Model Properties
In compilers or automatic tuning libraries, and in general for opti-
mizations without an instrumentation and feedback loop, the opti-
mizer needs to work with relatively coarse approximations of the
model parameters. In this section we examine the solution sensi-
tivity and the practical implications of using coarse or wrong esti-
mates for the problem parameters.

One of the parameters most likely to have a coarse estimation
is the computation time of the application. For example, compilers
might make static estimates of the granularity of a loop nest that
requires communication.

Sensitivity to the estimation of computation time: for each set
of experimental results, we vary the value of the computation time
estimate in increments of 10% and record the deviation that results
in a change of solution. Sample values for selected scenarios are
shown in the first 2 lines in Table 4. The entries labeled “*” indi-
cate that the model always predicts the same values. As a particular
example, for a problem with a total size of 4K doubles, a 20%
overestimation of computation time determines a change of solu-
tion.

Across all experiments, communication bound problems are the
most sensitive to bad computation time estimates. There’s no ob-
servable trend in the sensitivity of the respective models. In all
cases, using the values for the new solution in an implementation,
results in running times close to the optimal time. The models for
computation bound problems are very insensitive to the mispredic-
tion of the computation time and we do not show any data for these
scenarios.

Model performance and choosing the wrong model: mispredic-
tion of computation time could also result in a choice of the wrong
model for a particular problem, e.g. using a model for a computa-
tion bound problem while in reality the problem is communication
bound. The second part of Table 4 shows the loss of performance
due to using the predicted solutions versus the optimal solution and
the loss of performance when misdiagnosing the problem type.

We compute the loss of performance as Tmodel−Topt

Tbase
, where

Tmodel is the observed time when using the model solutions, Topt

is the optimal time observed across all experiments and Tbase is
the time for the unoptimized problem. We show sample loss of

performance only for selected problems. An entry containing “*”
denotes either performance deviations under 1% or an exact match.
The errors across all other scenarios have the same magnitude.

For all computation bound cases, the loss of performance due to
model solutions is very small (< 1%) and the loss of performance
due to misdiagnosing the problem is also small. We do not show
data for these cases.

Examining figures 7,8,9, 11,12 in conjunction with the entries
labeled “Model” in Table 4 gives an overall idea of the optimality
of the solutions chosen by the models. In general, the loss of perfor-
mance relative to the best solution is relatively small. In all cases,
the solutions predicted by the model are able to hide over 90% of
the communication overhead. The lines labeled “Misdiagnose” in
Table 4 show that for some situations, loss of performance due to
the wrong choice of the model is relatively significant. This hap-
pens for small to medium transfers and using statically the model
for communication bound problems results in good solutions re-
gardless of the problem type.

In general, our results show that in practice is preferable to
use an underestimation of the computation time present in the
application, rather than using an overestimate. Furthermore, using
only the model for communication bound problems (Equation 5)
produces good solutions even for computation bound problems
regardless of the message size.

Choosing the correct bandwidth profile: for all the instances
where processors communicate simultaneously with multiple-
endpoints (Sections 3.2 and 3.4), the model solution is determined
by the choice of the bandwidth profile for the system. We make
the assumption that a contiguous peer schedule produces less net-
work contention than an interleaved schedule and accordingly
we use different bandwidth profiles for the different scenarios.
This assumption holds in practice for all contiguous schedules,
regardless of the communication /computation ratio present in the
benchmark.

For an interleaved schedule the assumption holds for commu-
nication bound problems. Message injection rate is determined by
the choice of the burst length (which we control through the model
solution) and by the communication/computation ratio. The mes-
sage injection rate determines directly the degree of network con-
gestion. Communication/computation balanced applications with
an interleaved schedule generate a lower degree of contention
and the bandwidth profile used in the model need to be chosen
accordingly. At the time of this writing, we have collected re-
sults for scenarios with a very discrete variation of the computa-
tion/communication ratio, e.g. 50% and 100%. We need to further
explore the application space between these two ratios in order to
better understand the heuristics involved in choosing the right band-
width profile. Also, note that in this case, the imprecision of com-
pute time estimation is likely to most affect the solution.

Throughout this paper, we have made the distinction between
bandwidth profiles determined for a nearest-neighbor communica-
tion pattern and a cross-network communication pattern. In prac-
tice, at the concurrency levels we have examined, the bandwidth
profile for nearest-neighbor it is not needed. Same results are ob-
tained by using the best bandwidth Gh

C(P, S) achieved in the cross
pattern. We believe this property also holds at very high concur-
rency levels.

5. Related Work
There exists a large number of network performance models [1, 8,
17] and network performance characterization studies. In this paper
we use some of the methodology presented by Bell at al. [2] to
determine the LogGP performance parameters. Brightwell et al. [6]



Problem Size (V) 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M
(A) Sensitivity to computation estimate

P2P,overestimate 190% 20% 130% 170% 50% 220% 80% 130% 50% 110%
P2P,underestimate * * 80% 50% 80% 50% 80% 50% 90% 60%

(B) Errors when misdiagnosing the problem
P2P, Model 12% 5% * 4% * * * * * *
P2P,Misdiagnose 48% 22% 12% 6% 1% * * * * *
A2A,32P,Model * * 6% 2% 5% 2% * 1% 1% 6%
A2A,32P,Misdiagnose 5% * 6% 2% 3% 4% 8% 7% 5% 6%

Table 2. (A) Sensitivity of model to coarse estimation of computation time. Entries represent the imprecision in the computation time
estimate that determines a change of solution; (B) Loss of performance due to model solutions and misdiagnosing the problem setting on
Infiniband for a communication bound problem. P2P - point-to-point, A2A - all-to-all, 32 procs.

present a comprehensive discussion of the tradeoffs for achieving
overlap in MPI implementations.

Liu et al. [16] present a performance comparison of the MVA-
PICH implementation on Infiniband and Elan3 networks. They
evaluate the overhead of initiating communication and the over-
lap potential. They also evaluate the impact of MPI buffer reuse on
the performance parameters and report sharp performance degrada-
tion on Elan3 when reuse is minimal. Brightwell et al. [5] present a
performance comparison of Infiniband and Elan-4 networks using
MPI as the communication library. The Infiniband MPI implemen-
tation they evaluate does not provide good overlap or communi-
cation offload, while the Elan-4 implementation does. They con-
clude that Elan4 has better scaling characteristics and efficiency.
Our micro-benchmark evaluation of the same networks for very
aggressive non-blocking communication indicates a reverse trend.
Despite the lower latency and higher bandwidth on Elan networks,
when using non-blocking communication, scalability is affected by
the small TLB size and limited memory footprint. Large OS page
sizes might alleviate part of the problem, but their impact on appli-
cation performance [7] is hard to quantify.

Research into optimizing all-to-all collective communication [10,
14, 21] indicates that achieving optimal performance requires care-
ful scheduling and throttling of the communication operations. Wu
et al. [25] study the tuning and characterization of mixed-mode col-
lective operations. They present a detailed performance model for
broadcast operations and derive equations to capture the best case,
average case and worst case regimen. For a given problem setting
only one of the three models offers the right answer and they do
not show guidelines for choosing the right model.

Danalis et al. [9] present program transformations for com-
munication computation overlap for MPI programs. They present
results for a magneto-hydrodynamic turbulence through spectral
methods application (magneto) and a viscoelastic turbulent flow
in a channel simulation (visco). They report similar trends for N-
body problems and a molecular dynamics simulation code. They
replace MPI ALLTOALL library calls with point-to-point commu-
nication primitives and tiling transformations designed to achieve
good overlap. They show experimental results for small system
configurations and report the need for a methodology to deter-
mine optimal implementation parameters: tile size (S) and pipeline
depth (b). Koziris et al. [12] present a methodology for choosing a
pipelined schedule that minimizes completion time for loop tiling
with overlap transformation. The also present results for small scale
systems and do not have a very good methodology for choosing tile
granularities. Our approach is applicable in both cases.

6. Conclusion
We have presented a methodology for fast evaluation of implemen-
tation parameters that lead to optimal behavior in applications using
non-blocking communication and overlap. Our approach is able to
provide performance portable implementations that hide over 90%
of communication overhead across a variety of non-trivial cases.
We do believe that in order to achieve good performance on sys-
tems with large concurrency levels, sound design practices that
ensure performance portability need to be followed. Performance
portability is achieved by incorporating the variance of the system
quality of service with scale into a performance model and by care-
fully throttling communication issue rate to avoid congestion at any
level. The scenarios that we explore present some of these tech-
niques.

This evaluation work leads us to believe that developing ac-
curate timing models and using them for performance predictions
for applications that non-trivially use non-blocking communication
is a daunting task. Performance is determined by a highly multi-
dimensional parameter space with non-linear behavior. Our simpli-
fied models are accurate enough to predict nearly optimal imple-
mentation parameters in a robust way. We require bandwidth pro-
files for various system concurrencies and an exploration of achiev-
able overlap in a point-to-point (2 processors) setting. We believe
the amount of this off-line tuning is easily manageable.

Some of our findings are of direct interest to application de-
velopers, while others will be of more interest to compiler writers
and developers of automatically tuning libraries. We have applied
with good results the models presented here to UPC implementa-
tions of the NAS Parallel Benchmarks (MG,CG,FT,IS) and a par-
allel triangulation application. We are currently implementing the
methodology in the Berkeley UPC compiler to guide strip-mining
transformations and communication scheduling for deep loop nests
that require communication. Parallel libraries such as PBLAS could
employ our approach for tuning for optimal performance.
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