
Hybrid PGAS Runtime Support for Multicore Nodes

Filip Blagojević, Paul Hargrove, Costin Iancu, Katherine Yelick
Lawrence Berkeley National Laboratory

{fblagojevic, phhargrove, cciancu, kayelick}@lbl.gov

Abstract
With multicore processors as the standard building block for high
performance systems, parallel runtime systems need to provide ex-
cellent performance on shared memory, distributed memory, and
hybrids. Conventional wisdom suggests that threads should be used
as the runtime mechanism within shared memory, and two runtime
versions for shared and distributed memory are often designed and
implemented separately, retrofitting after the fact for hybrid sys-
tems. In this paper we consider the problem of implementing a
runtime layer for Partitioned Global Address Space (PGAS) lan-
guages, which offer a uniform programming abstraction for hybrid
machines. We present a new process-based shared memory run-
time and compare it to our previous pthreads implementation.
Both are integrated with the GASNet communication layer, and
they can co-exist with one another. We evaluate the shared memory
runtime approaches, showing that they interact in important and
sometimes surprising ways with the communication layer. Using a
set of microbenchmarks and application level benchmarks on an
IBM BG/P, Cray XT, and InfiniBand cluster, we show that threads,
processes and combinations of both are needed for maximum per-
formance. Our new runtime shows speedups of over 60% for appli-
cation benchmarks and 100% for collective communication bench-
marks, when compared to the previous implementation. Our work
primarily targets PGAS languages, but some of the lessons are rel-
evant to other parallel runtime systems and libraries.

1. Introduction
To meet the growing demand for computing capability in an
era where power density limits processor speed increases,
modern systems rely on multicore processors as their build-
ing block. As the number of cores per chip grows, and mem-
ory grows more slowly, support for parallel programming
models that provide shared memory abstractions becomes
essential.

On large-scale parallel systems, most people are look-
ing to hybrid programming models that combine the pop-
ular MPI [25] library with a shared memory model, such
as OpenMP [11]. Meanwhile, Partitioned Global Address
Space (PGAS) languages such as Titanium [29], Co-Array
Fortran [24], Unified Parallel C (UPC) [6], X10 [13] and
Chapel [4], offer the possibility of a single programming
model that runs well across the shared and distributed mem-
ory features of the machine. The PGAS languages offer a
uniform approach, but for performance and memory scaling,
their runtime systems need to use a hybrid that takes advan-

tage of shared memory when it exists. At the software level
this primarily translates into a choice of mapping language-
level task to either pthreads or processes. Threads offer the
more natural and popular alternative, because threads share
a single address space, while processes have disjoint address
spaces by default, which means data transfers go through a
network loopback.

In this paper we present an implementation of the Berke-
ley UPC runtime [3] that uses processes with shared memory
bypass for intra-node communication. We evaluate the per-
formance of the process approach when compared to a previ-
ous implementations based on POSIX threads (pthreads).
We evaluate HPC systems with Uniform Memory Access
(UMA) and Non-Uniform Memory Access (NUMA) nodes
across three networks: InfiniBand, Cray XT5 and IBM BG/P.
Our workload is representative for the scientific comput-
ing domain and it contains microbenchmarks, application
benchmarks implemented with fine-grained communication,
implementations of the NAS Parallel Benchmarks [21] using
bulk communication, as well as optimized implementations
of collective operations.

The choice of processes or pthreads requires different
runtime software engineering techniques, affects applica-
tion performance and poses different requirements when
programming model or parallel library interoperability is
desired. Contemporary high performance networking APIs
multiplex requests (with mutual exclusion for thread safety)
generated by pthreads within a process while allowing
more isolation between multiple processes. Our results in-
dicate that process based implementations are essential
for achieving high performance due to subtle interactions
with the networking software stack: at the application level
this manifests in better bandwidth achieved for small and
medium message sizes. Process based implementations have
a lower message injection overhead and are capable of sus-
taining a higher message injection rate. As shown by our re-
sults, high message injection rates can lead to performance
degradation and therefore process based implementations
are likely to require additional levels of communication
throttling. We present microbenchmark results for the at-
tainable network bandwidth that are highly correlated with
the observed application behavior and given knowledge of
the application characteristics can be used to choose the

1 2010/7/19



appropriate runtime implementation. This study makes the
following contributions:

• We designed and developed support for inter-process
communication using shared memory in the Berkeley
UPC runtime. To the best of our knowledge this is the
first runtime implementation that can seamlessly and ef-
ficiently support combinations of process and pthreads
on clusters.
• We categorize the most important design and perfor-

mance related tradeoffs between the process-based and
the pthreads-based implementations of a PGAS run-
time.
• We show that for best performance and performance

portability, hybrid implementations that support multiple
processes per node with multiple pthreads per process
are required.

In Section 3 we describe the design and implementa-
tion of the process-based shared memory communication in
Berkeley UPC and discuss the performance tradeoffs in Sec-
tion 3.1 and 4. The new process based implementation we
present improves both the performance and the interoper-
ability of the existing Berkeley UPC runtime: process based
runtimes have fewer restrictions when combined with non-
thread safe external libraries. These results are of interest to
implementors of runtimes for large scale systems, as well
as application developers, independent of the programming
model: MPI, PGAS, X10 or Chapel.

2. Experimental Platforms
Table 1 presents our experimental platforms. Ranger [26] is
a Sun Constellation Linux cluster containing NUMA quad-
socket, quad-core AMD Opteron nodes connected by Infini-
Band with a 1 GB/sec unidirectional point-to-point band-
width. We also use a two-node InfiniBand cluster with quad-
socket, quad-core Intel Tigerton UMA processors. The Cray
XT5 cluster, (Hopper [22]) contains dual-socket quad-core
AMD Opteron nodes connected with a Seastar2 Intercon-
nect with a peak bidirectional bandwidth of 9.6 GB/s. The
system runs a modified Linux operating system called Com-
pute Node Linux (CNL) and the low level networking API
exposed to applications is Portals. The IBM BG/P [18] con-
tains quad-core PowerPC 450 nodes connected by multiple
specialized networks. The nodes run a modified Linux ker-
nel: Compute Node Kernel (CNK) and the low level net-
working API is the IBM DCMF.

The OpenIB and Portals low level APIs provide thread
safety: any locking inside these libraries is beyond applica-
tion or third party runtime control.

3. Shared Memory Communication in the
UPC Runtime

PGAS languages have demonstrated [5, 23, 28] increased
productivity due to high level control over data locality and

layout and increased performance due to better exploitation
of non-blocking communication and Remote Direct Mem-
ory Access (RDMA) support. These languages provide the
abstraction of global shared memory: while any language-
level task is allowed direct access to a global heap, each
owns a part of this address space and it can access it without
using the network.

For clusters of multicore processors, achieving good per-
formance requires exploiting the shared memory within a
node: the interaction between two tasks residing on the same
node should bypass the network device. The current par-
allel programming models achieve this by either mapping
language level tasks within one node to pthreads, or to
processes with shared memory segments used for commu-
nication in the MPI case. No existing PGAS or MPI im-
plementations allow hybrid mapping approaches (combi-
nations of processes and pthreads) that exclusively use
shared memory inside the cluster nodes. The MPI implemen-
tations do provide shared memory communication between
processes on a node and place the communication bounce
buffers within this region. In contrast, PGAS implementa-
tions have to expose a much larger region of memory and
therefore face bigger implementation challenges due to re-
stricted OS support.

Prior to this work, intra-node shared memory in the
BUPC runtime was provided by mapping language-level
tasks to pthreads within a single process. We have de-
signed and implemented the Process SHared Memory (PSHM)
mechanism to provide shared memory communication among
processes that reside on the same node: besides completely
bypassing the networking layer, PSHM allows hybrid execu-
tion models, where UPC level tasks are mapped to a mix of
processes and pthreads. This paper argues that the mixing
of processes and pthreads is required for performance and
performance portability when implementing runtimes for
modern cluster programming paradigms. In the rest of this
study, we refer to the UPC shared memory process based
runtime configuration as UPC-pshm, to the UPC pthread
configuration as UPC-pthreads, and to the hybrid configu-
ration as (multiple processes and pthreads) as UPC-hybrid.

3.1 PSHM Design
The Berkeley UPC implementation [3] uses a layered ap-
proach: language level abstractions are provided by a run-
time which delegates communication and synchronization
to the GASNet [2] layer. Several implementations of PGAS
languages use GASNet as their communication layer: UPC,
Titanium, Co-Array Fortran and Chapel.

The new PSHM implementation resides in GASNet and
it provides: (1) shared memory communication through
POSIX shared memory segments, and (2) a shared memory
network abstraction for Active Messages [14] support. Exist-
ing MPI implementations may use SYSV, POSIX, or a disk
file mapped via mmap to provide shared memory communi-
cation. Our initial implementation was based on the POSIX
shared memory due to fewer restrictions on the amount of

2 2010/7/19



Processor Clock GHz Cores NUMA Network Bandwidth
Tigerton Intel Xeon E7310 1.6 16 (4x4) no Mellanox InfiniHost III Lx 10 GB/s
Ranger 4 quad-core AMD 2.3 16 (4x4) socket InfiniBand 1GB/s - unidirectional
Hopper 2 quad-core AMD 2.4 8 (2x4) socket Seastar2 9.6 GB/s - bidirectional
BG/P 4 PowerPC 450 0.85 4 (4x4) no Custom 5.1 GB/s

Table 1. Architectural configuration of systems tested.

allocated space: MPI needs to provide only buffer space
for communication while PGAS languages need to export a
significant portion of the address space. Currently, we also
support the SYSV shared memory and a shared disk file
mapped via mmap.

Most of our experimental results are obtained on Linux
based systems which impose fewer restrictions on shared
memory allocation. The Compute Node Kernel (CNK) in-
stalled on the IBM BG/P systems provides POSIX shared
memory from a reserved pool under control of an environ-
ment variable. The Compute Node Linux (CNL) OS in-
stalled on the Cray XT series systems does not provide
POSIX shared memory. On Cray XT we can use shared files
mapped via mmap, or the SYSV shared memory. Note that
the shared memory provided through a disk file can experi-
ence high startup overhead due to the time needed to allo-
cate a file on disk. Also, some OSes might force the changes
in the disk-shared file to be occasionally committed to the
disk, but we did not detect this behavior on CNL (SYSV and
POSIX shared memory do not experience these problems).

In PSHM each process allocates a shared memory seg-
ment and the global UPC heap is composed of the shared
segments contributed by the individual processes. Current
OSes impose limits on the amount of shared memory allo-
cated by an individual process and we ensure space scalabil-
ity using a distributed allocation mechanism. For portability
and scalability reasons, the starting addresses of the shared
memory segments are not aligned across individual process
address spaces and the PSHM implementation contains per
process data structures to store the starting addresses of the
segments contributed by all PSHM processes. This data is
needed to implement the UPC mandated pointer-to-shared
arithmetic semantics associated with blocked data layouts.

GASNet contains an Active Messages (AM) [14] layer
that provides both software portability and the mechanisms
used in efficient implementations of synchronization, mem-
ory allocation, locks, collective and scatter/gather opera-
tions: building a lightweight AM communication layer is a
requirement for achieving good scalability. Note that MPI
implementations use internal mechanisms very similar to
Active Messages.

The UPC-pshm implementation contains a separate PSHM-
AM network layer to handle Active Messages traffic. The
memory allocated for the PSHM-AM network is separated
in two regions, one for request AMs and the other for re-
ply AMs. Each region is split into multiple segments and
each segment contains a number of queues equal to the to-
tal number of PSHM processes as illustrated in Figure 1. A

Process 1 Process 2 Process 3 Process 4 

PSHM Net Segment 1 PSHM Net Segment 2 PSHM Net Segment 3 PSHM Net Segment 4 

qu
eu

e 1
 

qu
eu

e 2
 

qu
eu

e 3
 

qu
eu

e 4
 

qu
eu

e 1
 

qu
eu

e 2
 

qu
eu

e 3
 

qu
eu

e 4
 

qu
eu

e 1
 

qu
eu

e 2
 

qu
eu

e 3
 

qu
eu

e 4
 

qu
eu

e 1
 

qu
eu

e 2
 

qu
eu

e 3
 

qu
eu

e 4
 

AM, Proc3 -> Proc1 AM, Proc1 -> Proc4 
AM, Proc1 -> Proc3 

AM, Proc4-> Proc1 

Figure 1. PSHM Request/Reply Structure, example with 4 processes.
Each set of 4 queues represent incoming queues for one of the processes.
All other queues are the outgoing queues for the same process.

segment corresponds to a single PSHM process, and is used
for storing the incoming AM queues for that process. In the
example presented in Figure 1, the message “Process 1 to
Process 3” is written in the first queue of Segment 3. Mes-
sage “Process 3 to Process 1” is written in the third queue
of Segment 1. Every time an application-level task makes a
runtime call, the implementation contains code that polls the
AM network data structures for arrival of new messages.

The AM network data structures require O(n2) mem-
ory space, where n is the total number of UPC-pshm pro-
cesses on one node. This space is required to store the
AM header information and requires only 20B per header
(though padded to a multiple of cache line size). The buffer
space for each AM payload varies by network, but scales
only linearly with the number of cores per node. AM per-
formance under load is determined by the availability of
payload space and at the current and near future core con-
currency this term dominates the memory consumption of
the implementation. For reference, on a 16 core machine
we pre-allocate tens of MB of AM buffer space. The to-
tal amount of space is controlled by environment variables
and we also provide flow control mechanisms when this
space is temporarily exhausted. This design with statically
pre-allocated buffers, also present in MPI implementations,
provides a tradeoff between memory consumption and speed
of operation. Based on our audit of GASNet and UPC con-
structs that rely on AMs, we believe that two buffer entries
per process are enough to avoid deadlock. For example, for a
possible future 100 core node, this translates into minimum
space requirements of≈ 20MB of memory. For much higher
node concurrency, static AM buffer management might have
to be replaced with dynamic management.

For inter- and intra-node communication, GASNet uses
separate network layers: PSHM and the external network.
The decision about which network will be used is performed
inside GASNet and the communication data structure used
in the inter-node case is network dependent; in most cases it

3 2010/7/19



is encapsulated inside the low level communication library,
e.g. the InfiniBand library or the OS kernel. The GASNet
implementation polls on both inter- and intra-node networks
in order to allow progress and avoid deadlock.

The efficiency of high level programming abstractions, as
well as the interaction among various layers of the software
stack depends on the OS-level execution contexts that are
used to map language level threads. Using the UPC-pshm,
hybrid and pthreads runtime configurations, we examine
the performance tradeoffs with focus on the interaction of
the PSHM-AM network with pthreads, the efficiency of
AM processing for UPC-pshm and UPC-pthreads, interac-
tion of pthreads and processes with the networking layer,
and the performance of global locking and synchronization
operations.

3.2 AM Performance
Several UPC language level constructs use Active Messages
in their implementation: locks, barriers and optimized imple-
mentations of scatter/gather operations. AMs are also used
in the implementation of proposed UPC language exten-
sions such as remote atomic. operations, semaphores and
remote invocations. Other modern programming language
constructs such as the asynchronous activities (async) in
X10 can also be implemented using AMs.

The AM layer implements a simplified Remote Procedure
Call (RPC) paradigm, e.g. after a AM-Send operation a han-
dler is executed within the execution context of the receiver.
We measure AM latency with a microbenchmark that sends a
large number of empty AMs (no data payload) between two
UPC tasks. The results are presented in Table 2. The UPC-
pshm executables are compiled without pthreads support
and do not perform any locking for thread safety. The UPC-
pthreads executables are built without PSHM support and
perform locking for thread safety but use only one internal
network, i.e. do not add additional overhead for polling the
PSHM AM network. The UPC-hybrid executables are com-
piled with both PSHM and pthreads support.

On Ranger and Hopper, the UPC-pshm configuration
(2 procs) improves AM latency by up to 3 times when
compared to the network loopback approach previously em-
ployed. The customized network on BG/P uses shared mem-
ory for intra-node communication and the UPC-pshm AM
latency is equal to the loopback latency.

In a pure pthreads configuration, all threads share the
same address space and any datum is directly accessible to
any thread. In this implementation, AMs amount to direct
function calls within the originating thread and exhibit very
low overhead. In the process based implementations, the AM
handler has to be executed in the context of the “receiving”
task and data movement and synchronization occurs within
this operation. The latency in this case is much higher than
the pthreads case: ≈ 2µs on Ranger, ≈ 1.2µs on Hopper
and ≈ 6µs on BG/P. A pure process based implementation
requires no mutual exclusion on the runtime data structures:
adding the ability to run with multiple pthreads per process

to the runtime requires adding thread safety to the runtime
data structures and additional locks for mutual exclusion.
As illustrated, adding thread safety to a pure process based
configuration increases the AM latency by up to a factor of
1.8 on Ranger, 1.46 on Hopper, and 1.54 on BG/P.

On shared memory (single node), the capability of “in-
line” processing of AM handlers for operations within the
node is a strong advantage of pthreads that share a single
address space. The pure pthreads based implementation
with one process per node has the lowest latency when com-
pared with configurations using multiple processes per node.
This is an intrinsic difference in behavior that vanishes when
considering multiple nodes where the AM communication
is performed across the physical network. Note also that in-
line processing of AMs has implications on load balancing:
a pthreads based implementation might suffer from origi-
nator imbalance, while a process based implementation will
exhibit recipient imbalance.

3.3 Communication Performance
Two network performance metrics are usually used when
developing application level optimizations: 1) overhead of
message injection and 2) bandwidth (or inverse bandwidth).
The former is important for optimizations that employ non-
blocking operations, such as overlapping communication
with other independent activities, while the latter is also
used in message aggregation optimizations.

To measure networking performance we use a commu-
nication intensive microbenchmark where any UPC thread
communicates outside its node. We measure: (1) blocking
communication - a thread issues only one transfer at a time
and waits for its finish; and (2) non-blocking communication
- a thread issues 1024 outstanding operations before waiting
for the completion of the first one in the sequence.

Figure 2 presents the message injection cost on the
Ranger system: two 16 AMD Opteron core nodes connected
by InfiniBand. All cores within the node are active and we
vary the number of pthreads per process, e.g. the line la-
beled 2T-8P illustrates the performance of a configuration
where we run 8 processes each containing 2 pthreads. Low
level networking APIs, such as InfiniBand1 or Portals, ex-
pose to their clients (e.g. GASNet) specific data structures
to describe and manage communication. Usually, two pro-
cesses will use disjoint data structures, while two pthreads
are multiplexed on the same data structure and require ad-
ditional locking for mutual exclusion. As illustrated, the
injection cost rises as the number of pthreads per pro-
cess increases. The UPC-pshm implementation (“1T-16P”
in Figure 2) exhibits the least contention and it outperforms
the UPC-pthreads implementation (“16T-1P”) by up to a
factor of eight for medium sized and large messages.

On Ranger when a process (with multiple pthreads)
spans multiple sockets we observe a severe performance
degradation for small message sizes: for reference, the mes-

1 In the IB terminology, Queue Pairs (QP) and Completion Queues(CQ).

4 2010/7/19



Round Trip Latency (µs) 2 pthreads 2 procs 2 procs + thread-safety 2 procs + loopback 2 procs + thread safety + loopback
Ranger 0.085 1.989 3.598 6.082 6.675
Hopper 0.095 1.220 1.793 4.830 5.430
BG/P 0.305 6.203 9.569 6.229 9.512

Table 2. AM latency comparison between different runtime configurations.

sage injection overhead of UPC-pthreads for eight byte
messages is≈ 27µs. The InfiniBand software stack is thread
safe and when a process spans sockets in a NUMA sys-
tem lock contention, coherency traffic and non-local lock
accesses will cause this degradation. In contrast, the results
on a 16 core UMA Intel Tigerton InfiniBand system do not
exhibit this behavior. The UPC-pshm implementation also
exhibits much lower message injection overhead than UPC-
pthreads on both the Cray XT5 and IBM BG/P, the results
are omitted for brevity. For reference, UPC-pshm has an in-
jection overhead up to six times lower than UPC-pthreads
on Hopper. On all systems, the message injection overhead
decreases (e.g. by ≈ 0.4µs on Ranger) when increasing the
number of active nodes.

The right hand side of Figure 2 presents the aggregate
bandwidth between two nodes on Ranger when using bidi-
rectional traffic and blocking communication. For medium
and small message sizes, the UPC-pthreads implementa-
tion and “16T-1P” configuration achieve the lowest band-
width due to its high message injection overhead. Note that
the differences in message injection overhead presented on
the left hand side of Figure 2 explain only partially the per-
formance ordering observed in this experiment and do not
fully account for the bandwidth differences between the mul-
tiple configurations.

We attribute the bandwidth differences between the dif-
ferent runtime configurations and implementations to the
network (NICs and switches where applicable) response
under load: 1) message injection rate and 2) communica-
tion topology. UPC-pshm and UPC-pthreads have intrin-
sically different message injection overheads: UPC-pshm
has a lower overhead and can sustain a higher message in-
jection rate than UPC-pthreads. Under load, the networks
employ their own flow control and throttling mechanisms
that impact the achievable bandwidth.

Figure 3 presents the aggregate bandwidth between eight
InfiniBand nodes in a setting where each node commu-
nicates only with one other node. The labels contain the
number of pthreads per process, the number of processes
per node and the microbenchmark implementation, e.g. NB
stands for the non-blocking version. When using blocking
communication, the configurations with the lowest message
injection overhead (UPC-pshm) achieve the best bandwidth
for small and medium sized messages, up to five times bet-
ter than the UPC-pthreads bandwidth, as shown in the left
hand side of Figure 5. For large message sizes, all imple-
mentations achieve similar bandwidth. Figure 4 presents the
aggregate bandwidth between two nodes on the Cray sys-
tem, similar results are observed on IBM BG/P. For blocking
communication, the differences between the implementa-

tions are less pronounced, with UPC-pshm again achieving
the best bandwidth.

The performance degradation when applications have a
high sustained message injection rate is illustrated by the
behavior of the non-blocking communication benchmark. In
this case, the implementations with higher injection over-
heads achieve better aggregate bandwidth: in particular, the
UPC-pthreads implementation achieves up to five times
better bandwidth than UPC-pshm, as shown in Figure 3.

Low messaging overhead allows for high injection rates
and our non-blocking communication benchmark is de-
signed to inject a high volume of traffic into the network.
GASNet provides software mechanisms for throttling2 the
communication load at the source by limiting the number
of allowed in-flight messages. The results in Figure 3 for
non-blocking communication on Ranger correspond to the
setting tuned for the UPC-pthreads implementation. In
Figure 4 we present the impact of throttling the number
of outstanding communication requests on the Cray sys-
tem, e.g. “NB=32” denotes the setting where we allow only
32 outstanding messages per node. As shown, the lower3

the number of outstanding messages allowed, the better the
bandwidth (for the non-blocking communication). Of partic-
ular interest are the lines labeled “NB=32” where the UPC-
pthreads implementation matches the bandwidth achieved
when using blocking communication. For this best setting,
UPC-pshm still achieves only half of the UPC-pthreads
bandwidth for large messages, furthermore there is no set-
ting that improves the UPC-pshm bandwidth beyond the
reported numbers. On Ranger, throttling improves the per-
formance (results not shown) when using non-blocking com-
munication and for large message sizes UPC-pshm achieves
the same bandwidth as UPC-pthreads. This experiment il-
lustrates the benefits of additional levels of communication
throttling performed transparently inside the runtime.

On all systems, changing the communication topology
exercised by the microbenchmark does not change the trends
reported. Figure 5 presents results for the case where one
task communicates only with one other task (P2P) and the
case where one task changes the destionation of each mes-
sage (P2M). While the P2P benchmark setting, where a
node sends multiple messages to another node, captures
the behavior of hand optimized applications using bulk
transfers, the P2M setting captures the behavior of appli-
cations implemented (written in shared memory style) using
fine-grained communication. Changing the communication
topology does not affect the performance ordering of the

2 Lower level APIs also provide these mechanisms.
3 NB=240 was the default setting before the experiments in this paper.

5 2010/7/19



0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  
8	
   16
	
  

32
	
  

64
	
  

12
8	
  

25
6	
  

51
2	
   1K
	
  

2K
	
  

4K
	
  

8K
	
  

16
K	
  

32
K	
  

64
K	
  

12
8K

	
  

Tim
e	
  (

us
)	
  

Size	
  (Bytes)	
  

InfiniBand	
  Message	
  InjecAon	
  Overhead	
  
1T-­‐16P	
   2T-­‐8P	
   4T-­‐4P	
   8T-­‐2P	
   16T-­‐1P	
  

0	
  

200	
  

400	
  

600	
  

800	
  

1000	
  

1200	
  

1400	
  

1600	
  

1800	
  

2000	
  

8	
   16
	
  

32
	
  

64
	
  

12
8	
  

25
6	
  

51
2	
   1K
	
  

2K
	
  

4K
	
  

8K
	
  

16
K	
  

32
K	
  

64
K	
  

12
8K

	
  

Ba
nd

w
id
th
	
  (M

B/
s)	
  

Size	
  (Bytes)	
  

InfiniBand	
  Node	
  	
  Bandwidth	
  (32	
  Cores)	
  

1T-­‐16P	
  

2T-­‐8P	
  

4T-­‐4P	
  

8T-­‐2P	
  

16T-­‐1P	
  

MPI	
  

Figure 2. Message injection overhead and inter-node bandwidth on Ranger.

0	
  

1000	
  

2000	
  

3000	
  

4000	
  

5000	
  

6000	
  

7000	
  

8	
   16
	
  

32
	
  

64
	
  

12
8	
  

25
6	
  

51
2	
   1K
	
  

2K
	
  

4K
	
  

8K
	
  

16
K	
  

32
K	
  

64
K	
  

12
8K

	
  

Ba
nd

w
id
th
	
  (M

B/
s)	
  

Size	
  (Bytes)	
  

InfiniBand	
  Bandwidth	
  -­‐	
  8	
  Nodes	
  (128	
  cores)	
  
1T-­‐16P	
  B	
  

4T-­‐4P	
  B	
  

16T-­‐1P	
  B	
  

1T-­‐16P	
  NB	
  

4T-­‐4P	
  NB	
  

16T-­‐1P	
  NB	
  

Figure 3. Aggregate bandwidth for eight nodes (128 cores) on
Ranger. “1T-16P B” denotes 1 pthread per process with blocking
(NB=nonblocking) communication .

0	
  

300	
  

600	
  

900	
  

1200	
  

1500	
  

1800	
  

2100	
  

2400	
  

2700	
  

3000	
  

8	
   16	
   32	
   64	
   128	
   256	
   512	
   1K	
   2K	
   4K	
   8K	
   16K	
   32K	
   64K	
   128K	
  

Ba
nd

wi
dt
h	
  (

M
B/
s)	
  

Size	
  (Bytes)	
  

Cray	
  XT5	
  Node	
  Bandwidth	
  

1T-­‐8P	
  B	
  

8T-­‐1P	
  B	
  

1T-­‐8P	
  NB=32	
  

8T-­‐1P	
  NB=32	
  

1T-­‐8P	
  NB=240	
  

8T-­‐1P	
  NB=240	
  

MPI	
  

Figure 4. Node bandwidth on Cray XT5

-­‐200%	
  

-­‐100%	
  

0%	
  

100%	
  

200%	
  

300%	
  

400%	
  

500%	
  

600%	
  

8	
   16
	
  

32
	
  

64
	
  

12
8	
  

25
6	
  

51
2	
   1K
	
  

2K
	
  

4K
	
  

8K
	
  

16
K	
  

32
K	
  

64
K	
  

12
8K

	
  

Sp
ee
du

p	
  
Ov

er
	
  1
6T
-­‐1
P	
  

Size(bytes)	
  

InfiniBand	
  Bandwidth	
  (128	
  Cores)	
  

P2P	
  1T-­‐16P	
   P2P	
  4T-­‐4P	
   P2M	
  1T-­‐16P	
  	
   P2M	
  4T-­‐4P	
  	
  

‐50% 

0% 

50% 

100% 

150% 

200% 

250% 

300% 

8  16
 

32
 

64
 

12
8 

25
6 

51
2  1K
 

2K
 

4K
 

8K
 

16
K 

32
K 

64
K 

Sp
ee
du

p 
Ov

er
 4T

‐1
P 

Size (Bytes) 

BG/P Bandwidth (128 Cores) 
P2P 1T‐4P  P2P 2T‐2P  P2M 1T‐4P  P2M 2T‐2P 

Figure 5. Bandwidth improvements of different comfigurations over UPC-pthreads(16T-1P on InfiniBand, 4T-1P on BG/P). P2P: each process has only
one communication partner. P2M: each process uses a different destination process for each message.

implementations, it affects only the magnitude of the differ-
ences.

UPC-pshm and UPC-pthreads have different message
injection overheads due to unavoidable implementation dif-
ferences. On all systems, these differences translate into the
UPC-pshm or UPC-hybrid always achieving better band-
width than UPC-pthreads for small to medium sized mes-
sages. For both blocking and non-blocking communication,
no single combination of pthreads and processes is capable
of delivering the highest bandwidth for every transfer size
and every communication type. When using non-blocking
communication, each implementation requires different tun-
ing with respect to the allowed number of in-flight messages:
UPC-pthreads allows for a larger number of in-flight mes-
sages in this case. On Ranger a tuned UPC-pshm can match
the bandwidth of UPC-pthreads for large messages. On
the Cray, UPC-pshm provides roughly half of the bandwidth
of UPC-pthreads for large messages, irrespective of addi-
tional throttling levels. Our tuning efforts also indicate that
in order to further improve performance, active traffic man-

agement solutions (individual message throttling) might be
required, as opposed to coarse grained node management.

4. Application Performance Evaluation
The workload contains the UPC NAS Parallel Benchmarks
(UPC NPB) [21] version 2.4 augmented by optimized ver-
sions of LU, BT and SP [19], fine-grained application ker-
nels (GUPS, MCOP and Sobel) and optimized implemen-
tations of collective operations. All NPB implementations
(EP, CG, IS, MG, LU, FT, BT, SP) use bulk communica-
tion. The EP, MG, FT and LU implementations also contain
critical sections and some operations implemented with fine-
grained communication. All benchmarks are compiled with
the Berkeley UPC 2.10.0 compiler. We conduct our experi-
ments on the platforms described in Section 2 and report the
average performance across at least five runs.

4.1 Shared Memory Performance
For the shared memory performance evaluation we use the
UMA (Tigerton) and NUMA (Barcelona) 4x4 systems. Our

6 2010/7/19



results indicate that for the workload considered there is little
or no observable performance difference between the three
configurations. On the NUMA system, the configurations
where the number of pthreads per process is lower than the
number of cores per socket have sometimes a very slight
performance advantage for some of the benchmarks.

4.1.1 Fine-Grained Communication Benchmarks
The fine-grained benchmarks, GUPS [16], MCOP [10] and
Sobel [15] are designed to reflect the behavior of the com-
munication pattern that occurs in applications during data
structure initializations, dynamic load balancing, or remote
event signaling. The communication pattern in GUPS also
captures the behavior of stand-alone graph based applica-
tions. In addition, we present the performance of contended
lock acquire and release operations.

The GUPS benchmark performs read/modify/write ac-
cesses to random locations in a large distributed array. This
is a common operation in parallel hash table construc-
tion. The amount of work is static and evenly distributed
among threads at execution time. The read/modify/write
loops in the benchmark are designed to allow computa-
tion/communication overlap. The MCOP benchmark solves
the matrix chain ordering problem, which is a combinato-
rial problem that captures the characteristics of a large class
of parallel dynamic programming algorithms. The matrix
columns are distributed across UPC threads, and commu-
nication occurs when UPC threads access elements in the
same row. Sobel performs edge detection with Sobel oper-
ators (3X3 filters). The application is parallelized by parti-
tioning the source image across threads into equal contigu-
ous chunks of rows. Communication is performed when a
UPC thread accesses bordering rows; remote accesses to the
next thread rows are also performed. For the locking perfor-
mance we measure the duration of a upc lock/upc unlock
sequence of operations when all threads are operating on the
same lock object.

Figure 6 shows the message sizes and it compares the
timings of all process/pthreads combinations to the UPC-
pthreads implementation on two nodes on all systems.
Values below one indicate better performance than the UPC-
pthreads implementation. The execution time comparison
for the fine-grain communication benchmarks is consistent
with the microbenchmarks behavior: e.g. due to the irreg-
ular fine-grained communication, the hybrid of processes
and pthreads outperforms UPC-pshm and UPC-pthreads
by up to 85% on Ranger. For the locking benchmark,
the pthreads implementation is two orders of magnitude
slower. On Hopper and BG/P, the differences between UPC-
pshm and -hybrid are smaller, with UPC-pthreads always
attaining the lowest performance.

4.1.2 UPC NPB Performance
Figure 7 presents the performance of the NPB implementa-
tions on Ranger, Hopper and IBM BG/P. The execution time
is normalized to the UPC-pthreads implementation, values

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

G
U
P
S
 

M
C
O
P
 

S
O
B
E
L 

Lo
ck
/

U
n
lo
ck
 

G
U
P
S
 

M
C
O
P
 

S
O
B
E
L 

Lo
ck
/

U
n
lo
ck
 

G
U
P
S
 

M
C
O
P
 

S
O
B
E
L 

Lo
ck
/

U
n
lo
ck
 

T
im

e
 N
o
rm

a
li
ze
d
 t
o
 P
th
re
a
d
s 

Ranger, Cray XT, BG/P Performance  
1 Pthread/Process  4 Pthreads/Process 

Pthreads Reference 

Ranger  Hopper  BG/P 

GUPS MCOP SOBEL Lock
Msg. Sizes 200B-400B 4B 6B 8B

Figure 6. Performance of fine grain communication benchmarks. For
each configuration, the results are normalized to 16 pthreads per process.

below one signify performance better than UPC-pthreads.
All implementations perform blocking communication; Ta-
ble 3 shows the message sizes.

The results show that the UPC-pthreads implementa-
tion is not the best option, and a process based implementa-
tion often performs better. For the majority of benchmarks,
the best performance is attained by the UPC-pshm or hybrid
implementations where the number of pthreads per pro-
cess is less than or equal to the number of cores per socket.
Prior to this work, the underlying assumption in the commu-
nity of implementors of parallel programming models was
that providing pthreads implementations is sufficient to ex-
ploit the shared memory within a node.

The EP benchmark contains one critical section dur-
ing which a reduction is performed. The overhead of the
upc lock() operations, as well as the small size messages,
cause a performance degradation of up to 80% when the
UPC-pthreads implementation is used on InfiniBand. IS
and FT perform all-to-all communication, and for the mes-
sage sizes used in these applications, hybrid and pthreads
based implementations achieve a slightly better bandwidth
on InfiniBand (according to Figure 5). This translates into
roughly 10% for IS and 5% for FT communication (bar la-
beled Bulk) performance improvements for UPC-hybrid and
UPC-pthreads when compared to UPC-pshm. FT also con-
tains a critical section which causes the large performance
degradation with UPC-pthreads on InfiniBand.

For CG, UPC-pthreads outperforms UPC-pshm and -
hybrid on InfiniBand, due to the large message sizes used
in this benchmark (again, according to Figure 5). MG uses
message sizes of various granularities, with most messages
falling into the small to medium range. On Ranger, the UPC-
hybrid configurations have a slight (3%-4%) performance
advantage over UPC-pshm and UPC-pthreads. Most of
the MG performance degradation on InfiniBand with UPC-
pthreads is due to a critical section.

In LU, BT and SP tasks exchange small to medium
messages, which translates in UPC-pshm and UPC-hybrid
performance gains (up to 6% on InfiniBand) over UPC-
pthreads, due to better bandwidth. They all implement
a pipelined algorithm with point-to-point synchronization,

7 2010/7/19



128 UPC Threads EP CG IS MG LU FT BT - 256 SP - 256
Class B 8B 37KB 8B, 6.5KB - 11KB 24B - 34KB 200B - 480B, 50KB, 100KB 32KB 1KB, 6KB - 11KB, 50KB 2KB - 8KB, 50KB
Class C 8B 75KB 8B, 20KB - 40KB 24B - 130KB 160B - 800KB, 250KB 128KB 4KB, 20KB - 40KB, 120KB 5KB - 20KB, 120KB

Table 3. UPC NAS Benchmarks - Message sizes and number of barriers for 128 UPC Threads.

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  8  1  4  16  1  4  16  1  4  16  1  4  16 

EP‐B  EP‐C  CG‐B  CG‐C  IS‐B  IS‐C  MG‐B  MG‐C  FT‐B  FT‐C  LU‐B  LU‐C  BT‐256‐B  BT‐256‐C  SP‐256‐B  SP‐256‐C 

Ti
m
e 
No

rm
al
ize

d 
to
 P
th
re
ad

s 

Ranger 128 Cores 

Bulk 

Fence 

Fine‐Grained 

Comp 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8 

EP‐B  EP‐C  CG‐B  CG‐C  IS‐B  IS‐C  FT‐B  FT‐C  MG‐B  MG‐C  LU‐B  LU‐C  BT‐256‐B  BT‐256‐C  SP‐256‐B  SP‐256‐C 

Ti
m
e 
No

rm
al
ize

d 
to
 P
th
re
ad

s 

Cray XT5 128 Cores 

Bulk 

Fence 

Fine‐Grained 

Comp 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4 

EP‐B  EP‐C  CG‐B  CG‐C  IS‐B  IS‐C  FT‐B  FT‐C  MG‐B  MG‐C  LU‐B  LU‐C  BT‐256‐B BT‐256‐C SP‐256‐B SP‐256‐C 

Ti
m
e 
No

rm
al
ize

d 
to
 P
th
re
ad

s 

BG/P 128 Cores 

Bulk 

Fence 

Fine‐Grained 

Comp 

Figure 7. UPC NPB on Ranger, Hopper, and BG/P, using 128 cores. The charts present the performance of various UPC threads process/pthreads
mapping, relative to the UPC- pthreads configuration.

highly optimized for communication/computation overlap.
The implementation uses the upc fence operation to qui-
esce the network, which results in frequent polling opera-
tions. On InfiniBand, the UPC-pthreads implementation
suffers the highest overhead due to lock contention in the
low level networking stack. On the BG/P, a significant dif-
ference is observable in computation time across various
configurations. When pthreads support is added to the run-
time configuration, file scope variables need to be replicated
and are accessed indirectly through pointers: the IBM XLC
compiler generates code that runs slower in this case. This
behavior is also observed by Duell [12].

On all platforms, the process based configurations per-
form better than a pure pthreads based configuration. On
the Cray and IBM systems, the pure process based config-
uration provides best performance, while on the InfiniBand
system a hybrid configuration where processes do not span
sockets provides the overall best performance.

4.1.3 Collective Operations
The BUPC runtime provides optimized collective operations
that use the best intra-node synchronization mechanisms,
optimal communication topologies (trees) and non-blocking

communication for overlap. These implementations are se-
lected by an installation time autotuning stage. Pthreads
within a process perform all the intra-node operations within
one step, followed by inter-node (inter-process) communi-
cation: this step is performed by only one pthread within
a process. Thus, a pure process based implementation will
have the highest degree of inter-node communication paral-
lelism, while in a pthreads based implementation the com-
munication is “serialized”.

Figure 8 presents the speedup of different runtime con-
figurations over the performance of UPC-pthreads for a
broadcast and an all-to-all operation. In the broadcast op-
eration the communication is uni-directional with a num-
ber of active tasks determined by the tree topology. In the
all-to-all operation communication is bi-directional and all
tasks are active. As illustrated, on InfiniBand best perfor-
mance is again attained by a hybrid configuration which
provides performance improvements of up to 130%. Over-
all, for collective operations a hybrid configuration where a
processes spans a socket (4T-4P) provides best performance.
For small message sizes, the UPC-pshm implementation
which exhibits the highest communication parallelism pro-

8 2010/7/19



-­‐60%	
  

-­‐10%	
  

40%	
  

90%	
  

4	
   16
	
  

64
	
  

25
6	
   1K
	
  

4K
	
  

16
K	
  

64
K	
   8	
   32
	
  

12
8	
  

51
2	
   2K
	
  

8K
	
  

32
K	
  

12
8K

	
  

Broadcast	
   All-­‐To-­‐All	
  

Sp
ee
du

p	
  
Ov

er
	
  P
th
re
ad

s	
  

Size(bytes)	
  

InfiniBand	
  256	
  Cores	
  

1T-­‐16P	
   2T-­‐8P	
   4T-­‐4P	
   8T-­‐2P	
  

-­‐40%	
  

-­‐20%	
  

0%	
  

20%	
  

40%	
  

60%	
  

4	
   16
	
  

64
	
  

25
6	
   1K
	
  

4K
	
  

16
K	
  

64
K	
   8	
   32
	
  

12
8	
  

51
2	
   2K
	
  

8K
	
  

32
K	
  

12
8K

	
  

Broadcast	
   All-­‐To-­‐All	
  Sp
ee
du

p	
  
Ov

er
	
  P
th
re
ad

s	
  

Size(bytes)	
  

IBM	
  BG/P	
  256	
  Cores	
  

1T-­‐4P	
   2T-­‐2P	
  

Figure 8. Broadcast and all-to-all performance comparisons. On InfiniBand, we compare against 16T-1P, on BG/P against 4T-1P.

vides slightly lower performance than the UPC-pthreads
configuration. For large message sizes a process based con-
figuration outperforms the pure pthreads based implemen-
tation.

On the IBM BG/P the pure process based configuration
usually provides the best performance. On the Cray XT sys-
tem, the pure process based implementation provides signif-
icantly lower performance than any combination containing
pthreads. We are still investigating the cause of this behav-
ior, which we believe to be caused by a lack of proper tuning
of the collectives implementation in the process case.

5. Related Work
The initial implementation of shared memory regions be-
tween OS processes in the BUPC runtime was performed
by Duell [12]. He implemented only a shared memory run-
time without support for inter-node communication and we
extend his work beyond a single node across multiple low
level networking APIs.

A large amount of work has been performed on inter-
node communication optimizations in PGAS and MPI run-
times. Several studies focus on manual and automatic com-
munication/computation overlap using one-sided communi-
cation provided by the PGAS languages [7, 8, 17]. Our work
is complementary to these studies. Bhatelé et al. [1] com-
pare the communication performance of three supercom-
puter architectures: IBM BG/P, Ranger and Cray XT5. They
find network contention to cause a low aggregate bandwidth
when multiple MPI processes simultaneously initiate inter-
node communication. This observation confirms the results
presented in our study, and strengthens the argument in favor
of a runtime that allows mixing of processes and pthreads.
Underwood et al. [27] propose a CPU-based remote address
computation, without the usage of E-registers on Cray T3E
and report that only a few cores can saturate modern Net-
work Interface Cards.

Several application-level studies compare the perfor-
mance of processes and pthreads. Madduri et al. [20]
compare pthread and MPI implementation of GTC on
various shared memory platforms. While the authors ob-
serve significant speedup achieved by pthreads over the
MPI implementation, they also suggest that the straight-
forward partitioned grid approach will not scale linearly
beyond 16 threads due to the increased contention when
the shared grid is updated. Antonopoulos et al. [9] explore
fine-grain pthreads-based parallelization in Parallel Con-
strained Delaunay Mesh generation software. They also find

that the locking overhead introduced by pthreads out-
weighs the potential benefits and propose better perform-
ing implementations using hardware locking mechanisms.
Our work shows that when taking into account the inter-
actions with third party software communication libraries
pure pthreads based implementations are not capable of
providing best performance due to unavoidable software in-
teractions.

6. Conclusions
In the multi- and many-core era, implementations of pro-
gramming models for scientific computing need to provide
both shared and distributed memory performance. In this pa-
per we consider the problem of mapping language (or exe-
cution model) level tasks onto OS execution abstractions:
processes or pthreads. We have developed PSHM, a new
process-based shared memory implementation of the Berke-
ley UPC runtime and explored the most efficient mapping
of PGAS tasks to cores on clusters of multicore processors.
We consider multiple strategies: mapping PGAS tasks to
pthreads, mapping them to processes with OS-supported
shared memory between them, or some hybrid of the two.
We believe this is the first PGAS language implementation
that allows a hybrid mapping of language threads to both
pthreads and processes using shared memory for intra-
node communication. By combining PSHM with pthreads,
fine-grain communication benchmarks, as well as imple-
mentations of the NAS Parallel Benchmarks and collective
operations, experienced speedups of more than 60%.

We discuss and isolate some of the likely factors for these
performance differences, which include locking overhead in
the thread version and network contention in the process
version. This behavior is unavoidable and captures a funda-
mental difference when building runtimes for parallel com-
puting: sharing of data structures requires mutual exclusion
and affects network message injection rates. We present mi-
crobenchmark results that can be used to select the runtime
configuration able to provide best performance and discuss
the tuning required by different configurations. Our results
reveal that inter-node communication, as well as communi-
cation dependent language-level constructs, are heavily in-
fluenced by the processes/pthreads choice and a hybrid
approach where processes do not span sockets is likely to
provide best performance.

9 2010/7/19



References
[1] A. Bhatele, L. Wesolowski, E. Bohm, E. Solomonik,

and L. V. Kale. Understanding Application Perfor-
mance on Three Predominant Supercomputer Architec-
tures: Intrepid, Ranger and Jaguar, using Micro-benchmarks.
http://charm.cs.uiuc.edu/papers/, 2010.

[2] D. Bonachea. GASNet Specification, v1.1. Technical report,
University of California at Berkeley, Berkeley, CA, USA,
2002.

[3] Berkeley UPC. Available at http:upc.lbl.gov.

[4] D. Callahan, B. L. Chamberlain, and H. P. Zima. The Cas-
cade High Productivity Language. In in Ninth International
Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS04, pages 52–60, 2004.

[5] F. Cantonnet, Y. Yao, M. Zahran, and T. El-ghazawi. Pro-
ductivity Analysis of the UPC Language. In In IPDPS 2004
PMEO workshop, 2004.

[6] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, and
K. W. E. Brooks. Introduction to UPC and Language Spec-
ification, 1999.

[7] W.-Y. Chen, D. Bonachea, C. Iancu, and K. Yelick. Automatic
Nonblocking Communication for Partitioned Global Address
Space Programs. In ICS ’07, pages 158–167, New York, NY,
USA, 2007. ACM.

[8] W.-Y. Chen, C. Iancu, and K. Yelick. Communication Opti-
mizations for Fine-Grained UPC Applications. In PACT ’05,
pages 267–278, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[9] Christos D. Antonopoulos and Xiaoning Ding and Andrey
Chernikov and Filip Blagojevic and Dimitrios S. Nikolopou-
los and Nikos Chrisochoides. Multigrain Parallel Delaunay
Mesh Generation: Challenges and Opportunities for Multi-
threaded Architectures. In ICS ’05, pages 367–376. ACM
Press, 2005.

[10] T. Cormen, C. Leiserson, and R. Rivset. Introduction to
Algorithms. The MIT Press, 1994.

[11] L. Dagum and R. Menon. OpenMP: An Industry-Standard
API for Shared-Memory Programming. IEEE Comput. Sci.
Eng., 5(1):46–55, 1998.

[12] J. Duell. Pthreads or Processes: Which is Better for Imple-
menting Global Address Space Languages? . Masters Report,
Computer Science Division, UC Berkeley, 2007.

[13] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: Programming
for Hierarchical Parallelism and Non-Uniform Data Access.
In Proceedings of the International Workshop on Language
Runtimes, OOPSLA, 2004.

[14] T. V. Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active Messages: a Mechanism for Integrated Communica-
tion and Computation. In In Proceedings of the 19th Annual
International Symposium on Computer Architecture, pages
256–266, 1992.

[15] T. El-Ghazawi and F. Cantonnet. UPC Performance and Po-
tential: a NPB Experimental Study. In Supercomputing ’02:
Proceedings of the 2002 ACM/IEEE conference on Supercom-
puting, pages 1–26, Los Alamitos, CA, USA, 2002.

[16] B. R. Gaeke and K. Yelick. GUPS (Giga-Updates per Second)
Benchmark .

[17] C. Iancu, W. Chen, and K. Yelick. Performance Portable Opti-
mizations for Loops Containing Communication Operations.
In ICS ’08, pages 266–276, New York, NY, USA, 2008. ACM.

[18] IBM. Overview of the IBM Blue Gene/P Project. IBM J. Res.
Dev., 52(1/2):199–220, 2008.

[19] H. Jin, R. Hood, and P. Mehrotra. A Practical Study of UPC
with the NAS Parallel Benchmarks. The 3rd Conference on
PGAS Programming Models, 2009.

[20] K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf,
E. Strohmaier, and K. Yelicky. Memory-Efficient Optimiza-
tion of Gyrokinetic Particle-to-Grid Interpolation for Multi-
core Processors. In SC ’09: Proceedings of the Conference on
High Performance Computing Networking, Storage and Anal-
ysis, pages 1–12, New York, NY, USA, 2009. ACM.

[21] The GWU NAS Benchmarks. http://www.gwu.edu/∼upc.

[22] National Energy Research Scientific Computing Center.
http://www.nersc.gov/nusers/systems/hopper.

[23] R. Nishtala, G. Almasi, and C. Cascaval. Performance With-
out Pain = Productivity: Data Layout and Collective Commu-
nication in UPC. In PPoPP ’08, pages 99–110, New York,
NY, USA, 2008. ACM.

[24] R. W. Numrich and J. Reid. Co-array Fortran for Parallel
Programming. SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[25] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI-The Complete Reference, Volume 1: The MPI
Core. MIT Press, Cambridge, MA, USA, 1998.

[26] Texas Advanced Computing Center.
http://www.tacc.utexas.edu/resources/hpcsystems/.

[27] K. D. Underwood, M. J. Levenhagen, and R. Brightwell. Eval-
uating NIC Hardware Requirements to Achieve High Message
Rate PGAS Support on Multi-Core Processors. In SC ’07:
Proceedings of the 2007 ACM/IEEE conference on Supercom-
puting, pages 1–10, New York, NY, USA, 2007. ACM.

[28] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta,
J. Duell, S. L. Graham, P. Hargrove, P. Hilfinger, P. Husbands,
C. Iancu, A. Kamil, R. Nishtala, J. Su, M. Welcome, and
T. Wen. Productivity and Performance Using Partitioned
Global Address Space Languages. In PASCO ’07, pages 24–
32, New York, NY, USA, 2007. ACM.

[29] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit,
A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella,
and A. Aiken. Titanium: A High-Performance Java Dialect. In
In ACM, pages 10–11, 1998.

10 2010/7/19


