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ABSTRACT
Recent advancements in technology scaling have sparked a
trend towards greater integration with large-scale chips con-
taining thousands of processors connected to memories and
other I/O devices using non-trivial network topologies. Soft-
ware simulation suffers from long execution times or reduced
accuracy in such complex systems, whereas hardware RTL
development is too time-consuming. We present OpenSoC
Fabric, a parameterizable and powerful on-chip network gen-
erator for evaluating future large-scape chip multiprocessors
and SoCs. OpenSoC Fabric leverages a new hardware DSL,
Chisel, which contains powerful abstractions provided by its
base language, Scala, and generates both software (C++)
and hardware (Verilog) models from a single code base. This
is in contrast to other tools readily available which typically
provide either software or hardware models, but not both.
The OpenSoC Fabric infrastructure is modeled after exist-
ing state-of-the-art simulators, offers large and powerful col-
lections of configuration options, is open-source, and uses
object-oriented design and functional programming to make
functionality extension as easy as possible.
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1. INTRODUCTION
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Figure 1: Abstract Machine Model of an exascale node
architecture [4].

While technology scaling continues to enable greater chip
densities, the leveling-off of clock frequencies has led to the
creation of chips with higher core counts, making parallelism
the key to greater performance in the future [10, 32]. For
instance, the abstract machine model for potential exascale
node architectures indicates that the number of cores per
chip will be on the order of thousands [4]. In addition, In-
tel’s straw-man exascale processor is expecting to have 2048
cores by 2018 in 7nm technology [9]. At the same time,
the cost of data movement is quickly becoming the domi-
nant power cost in chip designs. Current projections indi-
cate that the energy cost of moving data will outweigh the
cost of computing (FLOP) by 2018 even for modest on-chip
distances [18, 32]. The impact of on-chip communication
has been demonstrated even in older technologies, such as
in the Intel Teraflop Chip which attributes 28% of its power
to the on-chip network [19]. Also, the on-chip network can
have a noticeable impact on application execution time with
many applications and systems, which can even reach 60%
of execution time in extreme cases [15, 31].

Power consumption will be an even greater concern in fu-
ture technologies, owing to the end of Dennard scaling which
limits scaling down voltage frequencies [17]. In addition, be-
cause conventional network topologies such as crossbars and
buses do not scale at such high component count [14, 24],
we need to focus on complex and novel on-chip network de-
signs with particular emphasis on scalability. This creates
a dire need to easily explore the design space and innovate



on future large-scale chips, which are infeasible today. This,
however, requires capable infrastructure for simulation and
modeling at such large scales.

There is a number of software simulators publicly avail-
able that are in wide use today [2, 3, 11, 21, 33]. However,
while software models are faster to develop, they face scala-
bility challenges. Even a 1000 MIPS (MegaInstructions Per
Second) software simulator may have 1000× slowdown for a
1024 core chip with no precision sacrifices [13]. Past work
has resorted to multithreaded execution [33] or approxima-
tion techniques such as slack simulation that relax timing
dependencies within certain time windows [12]. While these
techniques can speed up execution, they either force users to
accept tradeoffs such as result accuracy, or they do not speed
up execution sufficiently for rapid design space exploration.

Alternative approaches use hardware emulation in ASICs
or FPGAs. This infrastructure can be provided either with
open-source RTL [7], or by RTL generators [25, 28, 29].
Hardware emulation solves the speed concerns of software
simulators. However, developing a strictly RTL-based im-
plementation is much too labor intensive [23]. In addition,
gaining visibility to internals of hardware modules for the
purpose of collecting statistics can be tedious.

OpenSoC Fabric strikes a balance between these two ap-
proaches by leveraging a new hardware DSL: Chisel [6].
Chisel (Constructing Hardware In a Scala Embedded Lan-
guage) provides software (C++) and hardware (Verilog) mod-
els from a single code base, as shown in Fig. 2. This is a
unique advantage compared to other tools readily available
that perform either software simulation or hardware emu-
lation, but not both. Users wishing to evaluate a design
in both software and hardware need to use and potentially
modify multiple tools, and verify that the functionality be-
tween them is equivalent.

Chisel provides powerful abstractions which brings hard-
ware design closer to functional programming, therefore sig-
nificantly speeding up development. OpenSoC Fabric pro-
vides a powerful set of configuration options and imple-
ments both wormhole and virtual channel flow control us-
ing credits and pipelined routers. OpenSoC Fabric is also
made available open source with a modular design and stan-
dardized interface between modules as well as at the end-
points, such that its functionality can be readily extended
to fit research and industrial needs. In this paper, we pro-
vide an overview of the internal architecture, novelty, us-
age, and future work of OpenSoC Fabric. We also extend
an invitation to the on-chip network community to use this
tool as well as contribute to our development efforts. Lat-
est updates, documentation, and support can be found at
http://www.opensocfabric.org.

2. BACKGROUND
In this Section, we provide more details for Chisel and

then discuss related work.

2.1 Chisel
Written in Scala, Chisel raises the level of hardware design

abstraction by providing concepts including object orien-
tation, inheritance, functional programming, parameterized
types, structures of variables, and type inference [6]. Using
these features, we are able to quickly design and develop
different parameterized network-on-chip topologies and net-
work modules for OpenSoC Fabric. In fact, development
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Figure 2: Chisel generating software and hardware from a
single codebase.

time for added functionality is comparable to that of func-
tional simulators (such as in C++), such that just a few
hours to implement a flattened butterfly topology [22] based
on a mesh topology code. Since it is based on Scala, Chisel
can use the full power of Scala for non-synthesizable code,
such as testbenches. Synthesizable code uses Chisel state-
ments and modules, which includes a powerful library of
often-used primitives, such as conversions between different
encodings.

Chisel’s software model is used for simple network design
exploration with fast-functional models, while the hardware
model can be used in emulation for cycle-accurate modeling.
Using the synthesis path provided by Chisel, OpenSoC Fab-
ric allows interesting and non-trivial network designs to be
synthesized for a target ASIC process or FPGA flow, gener-
ating accurate power parameters and evaluating cycle time
which software simulators are unable to do. These power
measurements can then be back annotated to the software
model to drastically improve the software model’s power es-
timates. Alternatively, software models can collect their own
statistics for the purposes of power estimation, and can even
generate wave forms purely from functional simulation.

Chisel takes care of both the software and hardware mod-
els with one single codebase, as shown in Fig. 2. Given that
developing Chisel code is much less tedious than RTL and
comparable to functional programming, this means that the
overall effort to construct both software and hardware mod-
els reduces dramatically. In addition, there is very little, if
any, effort required to provably match the behavior of the
software code to the RTL, which otherwise is a non-trivial
and time-consuming process.

While the Chisel DSL is still in active development, there
have been several examples of processors successfully manu-
factured that have been designed exclusively in Chisel [5, 6].
This illustrates the faithful representation of the Verilog that
Chisel produces from the user’s Scala description.

2.2 Related Work
A wide variety of software on-chip network simulators are

publicly available, each with a different set of features and
strengths [2, 3, 11, 21, 33]. In addition, many multiprocessor
simulators include an on-chip network, or support integra-
tion with a dedicated on-chip network simulator [8, 20, 30].

http://www.opensocfabric.org


Cycle-accurate simulators typically produce reasonably ac-
curate results, even for detailed and time-sensitive interac-
tions, and can be more readily verified against RTL [21].
However, cycle-accurate simulators get unacceptably slow
for few hundred or thousands of network endpoints. In re-
sponse, past work has applied multithreading [11, 33], event-
driven execution [3], or approximation techniques such as
slack execution [12]. While these techniques increase simu-
lated cycles per second, they often tradeoff either accuracy
or ease of development. Even so, many of these simulators
struggle with designs at the scale of future large-scale chips.
More importantly, these simulators provide purely software
models. Therefore, one cannot use these, without a huge
effort, to build an ASIC or emulate on an FPGA. This ca-
pability is important to more accurately evaluate power and
area, as well as calculate the impact in cycle time of new
mechanisms.

To produce hardware models, there are open-source im-
plementations and RTL generators. Open-source implemen-
tations can be extended and reused, but do not provide soft-
ware simulation models and can be challenging to extend to
a powerful set of configuration options if based on Verilog or
VHDL, because of the lack of mechanisms to easily config-
ure a hierarchy of modules other than “ifdefs” [7]. In addi-
tion, most on-chip network generators are closed-source or
application-specific. ARM’s CoreLink Interconnect provides
a network for ARM cores, but is specific to mobile applica-
tions and lacks any visibility into different network topolo-
gies [25]. Arteris FlexNoC is another commercial alternative
but is closed-source [29], making collaborative, community-
driven design space exploration difficult. Much like ARM
CoreLink Interconnect, there’s very limited visibility into
the implementation details of the network and also target
mobile applications [29]. Finally, CONNECT [28] is an aca-
demic RTL generator, but the generator code is also not
provided open-source and therefore functionality cannot be
readily extended.

Hardware emulation solves the speed concerns of software
simulators. However, developing a comprehensive pure RTL
implementation is much too labor intensive, especially for
academic institutions [23]. In addition, gaining visibility to
internals of hardware modules for the purpose of collecting
statistics can be tedious.

The ability to use both software simulation and hardware
emulation from a single code base that is comparable in de-
velopment effort to C++ is what sets OpenSoC Fabric apart
software simulators and hardware (RTL) generators. In ad-
dition, OpensoC Fabric is free to use and open-source, to
ease modification and development by the broad commu-
nity.

There has been past work on producing both software and
hardware models from a single description to reducing dupli-
cate efforts. C to Gates [16] and SystemC [27] are common
ways the community goes around the pitfalls of traditional
HDLs. However, these require high-level synthesis (HLS),
which not only can be cost prohibitive, but also doesn’t gen-
erate optimal RTL for ASICs. One could also only use the
synthesizable subset of these languages, which ends up being
no different from using traditional HDLs. Bluespec is also a
common alternative used in the EDA community [26]. While
Bluespec can provide great designer productivity when the
task at hand matches the pattern encoded in the application
programming model, they are a poor match for tasks outside

their domain [6]. Another limiting factor is that Bluespec is
not a free language like most other mainstream HDLs, which
limits community collaboration, one of novel items about
OpenSoC Fabric. Chisel addresses all of these issues and
allows powerful abstractions and generators to be created.
This underlying flexibility allows OpenSoC Fabric to accept
a wide range of design parameters without losing the func-
tionality provided by the object-oriented nature of Chisel.

3. OPENSOC FABRIC
As the name suggests, OpenSoC Fabric is the first step to-

wards generating a configurable open-source system-on-chip
(SoC). However, the on-chip networks generated by Open-
SoC Fabric are not specific to any domain and can be used
in a wide range of applications, from high performance com-
puting to mobile applications. Also, given the open-source
modular nature of OpenSoC Fabric, users can easily plug-
and-play their own proprietary IP in place of our modules
to better suit their specific application.

3.1 Endpoint Connectivity
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Figure 3: OpenSoC Fabric external connectivity with an
example SoC configuration using AXI.

class MyOpenSoCFabric(parms: Parameters)
extends OpenSoCFabric(parms) {

val numPorts = parms.get[Int]("numPorts")
val io = new Bundle { val Ports =

Vec.fill(numPorts) (new AXI(parms)) }
val myInterfaces = Vec.fill(numPorts)

{ Module (new NetworkInterface(parms)) }
val myInjectionQs = Vec.fill(numPorts)

{ Module (new InjectionQ(parms)) }
val myTopo = Module(new Topology(parms))
val myEjectionQs = Vec.fill(numPorts)

{ Module (new EjectionQ(parms)) }
for (i <- 0 until numPorts) {

io.Ports(i) <> myInterfaces(i).io.AXIPort
myInterfaces(i).io.OutChannels <>
myInjectionQs(i).io.In

myInjectionQs(i).io.Out <>
myTopo.io.InChannels(i)

myTopo.io.OutChannels(i) <>
myEjectionQs(i).io.In

myEjectionQs(i).io.Out <>
myInterfaces(i).io.InChannels

}
}

Listing 1: An example instantiation of OpenSoC Fabric.
Detailed code and more examples can be found at

http://www.opensocfabric.org.

http://www.opensocfabric.org


One of the key qualities of integrating different IP blocks
in SoCs or other large-scale chips is interoperability and
abstraction. To this end, following object-oriented design,
OpenSoC Fabric receives a configuration parameters object,
but otherwise presents the same interface to external mod-
ules regardless of configuration. Currently, OpenSoC Fabric
supports a simple ready/valid based interface that receives
either packets or flits. To aid standardization but maintain
simplicity, our future plans include developing a standard-
ized AXI4-Lite interface [1], with possible future extensions
to support additional features such as coherency support.
This interface will accept entire messages. Thus, packetiza-
tion will occur within the network boundaries before packets
are injected into routers. Fig. 3 illustrates this concept for
an example SoC configuration using AXI, and Lst. 1 shows
the corresponding instantiation code in Chisel.

3.2 Internal Architecture
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Figure 4: OpenSoC Fabric module hierarchy.

abstract class Allocator(parms: Parameters)
extends Module(parms) {

val numReqs = parms.get[Int]("numReqs")
val numRes = parms.get[Int]("numRes")
val arbCtor = parms.get[Parameters=>Arbiter]
("arbCtor")

val io = new Bundle {
val requests = Vec.fill(numRes)

{ Vec.fill(numReqs){ new RequestIO }.flip }
val resources = Vec.fill(numRes)

{ new ResourceIO }
val chosens = Vec.fill(numRes)

{ UInt(OUTPUT, Chisel.log2Up(numReqs)) }
}

}
class SwitchAllocator(parms: Parameters)

extends Allocator(parms) {
// Implementation

}

Listing 2: Abstract modules define the common set of
inputs and outputs for a standard interface.

We have designed OpenSoC Fabric to be hierarchical, mod-
ular, and highly parameterizable. As shown in Fig. 4, each

OpenSoC Fabric module has a well-defined parent and set of
children. For each module, there is an abstract implemen-
tation that includes the inputs, outputs, and functionality
that is common to all child modules of that type. For ex-
ample, the allocator abstract module defines the necessary
input and output ports, as shown in Lst. 2. Specific allocator
implementations, such as separable allocators, are defined as
child modules that inherit those set of inputs and outputs,
and implement the necessary functionality.

Every module inside OpenSoC Fabric is designed to have
standard interface to other modules. This makes each mod-
ule replaceable so users who want to do their own design
space exploration and want to design their own modules are
encouraged to do so. New modules can be individually devel-
oped and tested, and then included in the hierarchy. This is
made even easier by using individual module testers already
included in OpenSoC Fabric, like for allocators and routing
functions. Finally, module configuration is performed by a
configuration module instance passed down to child modules
at instantiation time. When creating new modules, users
need to add their configuration parameters to the configu-
ration module, so that user options can be properly passed
down the hierarchy.

While many of the above concepts that OpenSoC Fabric’s
internal configuration stem from object-oriented design, ap-
plying these concepts to significantly ease development while
producing hardware RTL in addition to software models is
a new capability. OpenSoC Fabric makes it easy for users
to configure the network as desired through the configura-
tion class. OpenSoC Fabric also makes it easy for users who
want to extend the network’s functionality by editing code,
through providing a hierarchical and modular design, as well
as individual module testers.

4. CURRENT STATE AND FUTURE WORK

ArbArb

VC Allocator Switch 
Allocator

 Allocation

Switch

Allocator Result Register
Switch Control

Input / VC ControlInput FIFO
per VC

Head flits passed 
to allocator

Register Files per 
VC for Head Flits

Function

Routing Functions

Routing Function consumes
Head Flits, assigns range of VCs, 

updates register 
file with result

Assigns VC from range 
specified by routing 

function to a single head flit

Ejection Queues

Per VC Credit passed 
back to allocator

Injection Queues

Single Output Reg

Figure 5: Block diagram of the implemented virtual
channel router with injection and ejection queues at

network boundaries.

OpenSoC Fabric currently supports both wormhole and
virtual channel channel flow control with credits. A block
diagram of the virtual channel router is shown in Fig. 5.
Routers perform routing computation, switch traversal, and
each allocation step in separate pipeline stages. Mesh and
flattened butterfly [22] topologies are also supported, with



dimension-order routing and concentration. Also, we use
separable input-first allocators and mux-based crossbars to
implement the switch. OpenSoC Fabric includes a param-
eterizable test harness that can collect statistics and easily
change the generated traffic pattern. Owing to its object-
oriented design, extending the functionality of OpenSoC Fab-
ric by—for example—implementing a new allocator only re-
quires implementing a new child class with the new func-
tionality. This is made easier by the included individual
unit testers, which can be used to verify individual compo-
nents in isolation from the network. Finally, OpenSoC Fab-
ric includes some statistics collection capabilities, recording
information such as router and channel utilizations as well
as packet and flit latency and throughput statistics.

Our current plans for future work are as follows:

• Validation: We plan to validate OpenSoC Fabric against
existing validated software models [21] or independently
produced RTL [7]. We also plan to verify the function-
ality of the software models Chisel produces against
the RTL. We have correlated our preliminary results
with other tools as much as possible and have detected
no discrepancies. However, we plan to perform a com-
prehensive validation against software and hardware
models using synthetic and application traffic.

• Different network technologies: In it’s current form,
OpenSoC Fabric is focused on on-chip networks. How-
ever, we’re already looking to move one level higher
in the network hierarchy to apply OpenSoC Fabric to
model internode communication as well as on-chip op-
tical networks. This will help broaden the design-space
exploration for future high performance computing.

• Debugging and visualization: We also would like to
create a suite of tools to more easily debug designs,
visualize the network, and produce power and area es-
timations in the software models.

• Endpoint connectivity: As previously stated, we are
currently planning to implement the AXI4-Lite inter-
face [1] at the network endpoints. As the list of fea-
tures and use cases grows, we can extend the list of
interfaces to include either custom or more powerful
standardized interfaces.

• More topologies and traffic patterns: Finally, we plan
to expand the collection of supported topologies, rout-
ing functions, and synthetic patterns.
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Figure 6: Injection rate and latency for a 4x4 mesh,
concentration of one, and dimension order traffic.

4.1 Results
Using our current infrastructure, we have configured Open-

SoC Fabric to generate an 4 × 4 mesh network with worm-
hole flow control and dimension order routing. Fig. 6 shows
injection rate and latency for uniform random traffic and
a concentration of one. Fig. 7 shows the latency of head-
flits through the same network. Simulation speed for all
our experiments is to the order of a few thousand network
clock cycles per second on an AMD Opteron 8431 proces-
sor, comparable to other state of the art software simula-
tors [2, 3, 11, 21, 33]. Through this process, we gained con-
fidence in our ability to quickly generate both functional
and RTL models and use them for software simulation and
hardware emulation with little effort.

Figure 7: Latency of head flits through a 4x4 mesh
concentration of one, and dimension order traffic.

5. CONCLUSIONS
In this paper, we presented OpenSoC Fabic. OpenSoC

Fabic is a powerful on-chip network generator implemented
in Chisel. This way, OpenSoC Fabic can generate both
software (C++) and hardware (Verilog) models from a sin-
gle code base. This is in contrast with other tools readily
available which typically provide either software or hard-
ware models, but not both. Chisel provides powerful ab-
stractions which brings hardware design closer to functional
programming, therefore significantly speeding up develop-
ment. Therefore, significantly less effort is needed to create
OpenSoC Fabric than building hardware and software mod-
els individually because these models are produced in paral-
lel. OpenSoC Fabric provides a powerful set of configuration
options with a modular design and standardized interfaces
between modules as well as at the endpoints, such that its
functionality can be readily extended to fit research and in-
dustrial needs. Being an open-source project, OpenSoC Fab-
ric relies on collaborative effort. Therefore, we would like
to extend an invitation to the community to use OpenSoC
Fabric and then contribute back to aid tool growth.
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