

Variable-Width Datapath for On-Chip Network Static Power Reduction

George Michelogiannakis, John Shalf

Postdoctoral Research Fellow Computer Architecture Laboratory Lawrence Berkeley National Laboratory

- Leakage power is an increasing problem in future or near threshold voltage (NTV) technologies
- Leakage power can be important even at high network loads
- This work proposes variable-width datapaths
 - Parts of channels, buffers, and crossbars can be activated on demand
- We demonstrate an average of 33% total power reduction with PARSEC benchmarks

- Leakage power / motivation
- Related work
- Variable-width datapaths
- Results
- Conclusions

Leakage Power Contribution

[Top left] "FlexiBuffer: Reducing Leakage Power in On-Chip Network Routers". DAC 2011

[Rest] "NoRD: Node-Router Decoupling for Effective Power-gating of On-Chip Routers". MICRO 2012

Subthreshold Leakage at NTV

NTV operation reduces total power, improves energy efficiency

Subthreshold leakage power is substantial portion of the total

Near-threshold voltage (NTV) design — Opportunities and challenges. DAC 2012

"Fine-grained bandwidth adaptivity in networks-on-chip using bidirectional channels". NOCS 2012

- Leakage power / motivation
- Related work
- Variable-width datapaths
- Results
- Conclusions

- High threshold voltage "sleep switch" transistor
- Savings when sleep time enough to overcome energy overheads

"MP3: Minimizing Performance Penalty for Power-gating of Clos Network-on-Chip". HPCA 2014

- Put SRAM lines into low-power (low voltage) "drowsy" mode
 - Preserves data
- Faster activation than power-gated SRAMs (1-2 cycles)
 - Higher leakage current while drowsy. Higher activation penalty

"Catnap: Energy Proportional Multiple Network-on-Chip". ISCA 2013

- Leakage power / motivation
- Related work
- Variable-width datapaths
- Results
- Conclusions

Variable-Width Channels

Same bisection bandwidth

 If flits from any channel lane can choose any VC, that necessasitates multiplexers
VC 0

"Adding slow-silent virtual channels for low-power on-chip networks". NOCS 2008

VC 1

VC 2

VC 3

Crossbar Gating

Input VCs

"Segment gating for static energy reduction in networks-on-chip". NoCArc 2009

- Flits winning switch allocation (SA) activate in the next router:
 - Output channels and switch lanes (3 cycles)
 - Input buffers (1 cycle with drowsy SRAMs)
 - No false activations
 - With the below 4-stage router pipeline, no activation stalls

- ABN switch allcocators: (Inputs x VCs) x (Outputs x ChanLanes)
 - As long as ChanLanes no greater than VCs, switch allocator no more complex than VC allocator
 - If VC and switch allocators in different pipeline stages, router cycle time does not extend
- VC allocators consume 2-10mW and occupy 5000um
 - Both very small percentages of the router
 - Therefore increase of switch allocator's cost insigificant

- Leakage power / motivation
- Related work
- Variable-width datapaths
- Results
- Conclusions

- Booksim network simulator
- 8x8 Mesh. DOR
- We compare:
 - Single-lane: Single-lane power-gated network
 - ABN: Flits choose a lane based on their output VC
 - Multinets: Multiple power-gated subnetworks
- Router pipeline previously presented
- 2 VCs as baseline. Normalize for buffer size by adjusting VCs
- Activation and deactivation delays (65nm at 1GHz):
 - Channel and crossbar activation delay: 3 cycles
 - Channel and crossbar activation wait: 15 cycles
 - Channel and crossbar deactivation wait: 6 cycles
 - Buffer (VC) deactivation wait: 3 cycles

ENERGY Two Subnetworks/Lanes. Static Power

BENERGY Two Subnetworks/Lanes. Dynamic Power and here in the second seco

Multinets cannot make perfect injection decisions or use resources in another subnetwork after injection to combat transient imbalance

PARSEC Results

Scaling Up

BERKELEY LAB

Scaling Up

Effects of transient imbalance in multinets are intensified

- Leakage power / motivation
- Related work
- Variable-width datapaths
- Results
- Conclusions

- Leakage power is a growing concern in future technologies
- Dividing datapaths in lanes provides more flexibility than multinetwork approaches
 - But there are tradeoffs
- Using drowsy SRAMs allows hiding the activation delay without false activations
 - Can change with shallow router pipelines
- We demonstrate an average of 33% total power reduction with PARSEC benchmarks

Acknowledgment: D.O.E. office of science