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¢ Leakage power is an increasing problem in future or near threshold
voltage (NTV) technologies

¢ Leakage power can be important even at high network loads

¢ This work proposes variable-width datapaths

= Parts of channels, buffers, and crossbars can be activated on
demand

¢ We demonstrate an average of 33% total power reduction with
PARSEC benchmarks
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NTV operation reduces total power, improves energy efficiency

Subthreshold leakage power is substantial portion of the total
Near-threshold voltage (NTV) design — Opportunities and challenges. DAC 2012
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“Fine-grained bandwidth adaptivity in networks-on-chip using bidirectional channels”. NOCS 2012
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¢+ High threshold voltage “sleep switch” transistor
¢ Savings when sleep time enough to overcome energy overheads

vdd Energy
sleep
signal |
—M Virtual breakeven time cimulative
Vdd energy savings
Power-gated
aock ||| 2020902 [eEss==memas /,_
47 0l Z :energy overhead
GND T 1 t t t

“‘MP3: Minimizing Performance Penalty for Power-gating of Clos Network-on-Chip”. HPCA 2014
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¢ Put SRAM lines into low-power (low voltage) “drowsy” mode
= Preserves data

¢ Faster activation than power-gated SRAMSs (1-2 cycles)
= Higher leakage current while drowsy. Higher activation penalty

drowsy bit voltage controller
T | drowsy (set)
B »
[ > T DO drowsy » power line
- » =
. L
5 g VDD (1V)
g 5 SRAMs
O o VDDLow (0.3
|8 1L .
HIE J .
o 2] drowsy »] word line
5] = »
B | wake-up (reset)
\ word line r}
wordline gate

drowsf signal

“Drowsy Caches: Simple Techniques for Reducing Leakage Power”. ISCA 2002
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_ _ Multinets cannot share resources (e.g.,
High traffic area channels) in low traffic regions

Optimal decisions at injection Low traffic
are a challenge injection

“Catnap: Energy Proportional Multiple Network-on-Chip”. ISCA 2013
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¢ |f flits from any channel lane can choose any VC, that

necessasitates multiplexers

VCO
—>
R
- VC 3

¢ We map channel lanes to use only a subset of VCs (1-1 with equal
VCs and lanes)

“Adding slow-silent virtual channels for low-power on-chip networks”. NOCS 2008
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Input VCs

Output VCs

“Segment gating for static energy reduction in networks-on-chip”. NoCArc 2009
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¢ Flits winning switch allocation (SA) activate in the next router:
= Qutput channels and switch lanes (3 cycles)

= |nput buffers (1 cycle with drowsy SRAMS)
= No false activations

= With the below 4-stage router pipeline, no activation stalls
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¢ ABN switch allcocators: ( Inputs x VCs ) x ( Outputs x ChanLanes )

= As long as ChanLanes no greater than VCs, switch allocator no more
complex than VC allocator

= |If VC and switch allocators in different pipeline stages, router cycle
time does not extend

¢ VC allocators consume 2-10mW and occupy 5000um
= Both very small percentages of the router
= Therefore increase of switch allocator’s cost insigificant

“Allocator implementations for network- on-chip routers”. SC 2009
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¢ Booksim network simulator
¢ 8x8 Mesh. DOR

¢ We compare:
= Single-lane: Single-lane power-gated network
= ABN: Flits choose a lane based on their output VC
= Multinets: Multiple power-gated subnetworks
¢ Router pipeline previously presented
¢ 2 VCs as baseline. Normalize for buffer size by adjusting VCs
¢ Activation and deactivation delays (65nm at 1GHz):
= Channel and crossbar activation delay: 3 cycles
= Channel and crossbar activation wait: 15 cycles

= Channel and crossbar deactivation wait: 6 cycles
= Buffer (VC) deactivation wait: 3 cycles
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Multinets cannot make perfect injection decisions or use resources in
another subnetwork after injection to combat transient imbalance
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PARSEC Results
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¢ Leakage power is a growing concern in future technologies

¢ Dividing datapaths in lanes provides more flexibility than multi-
network approaches
= But there are tradeoffs

¢ Using drowsy SRAMs allows hiding the activation delay without
false activations
= Can change with shallow router pipelines

¢ We demonstrate an average of 33% total power reduction with
PARSEC benchmarks
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