
1

The Potential of the Cell Processor for
Scientific Computing

Sam Williams
samw@cs.berkeley.edu

Computational Research Division

Future Technologies Group
March 3, 2006

2

• Introduction to Cell Architecture
• Programming the Cell Processor
• Benchmarks & Performance

– Matrix-Matrix Multiplication
– Sparse Matrix-Vector Multiplication
– Stencils on Structured Grids
– FFTs

• Summary

Outline

3

• Will be used in the PS3
• radical departure from the conventional designs including

the XBOX 360’s Xenon

Cell/PS3 XBOX 360
Heterogeneous Homogeneous
 PPC + 8 SIMD cores 3 x PPC
Software-controlled Conventional Cache-based
 memory architecture memory hierarchy (1MB)
221mm2 (+30%) 168mm2

• Software controlled memory makes it a very interesting
alternative to cache based processors

Introduction to Cell

4

Cell Architecture

5

Cell Processor Architecture
• All units connected via EIB

– 4 x 128b rings @ 1.6GHz
• PPC core @ 3.2GHz
• 8 x SPE’s (128b SIMD core)

– Off-load engine
Between a µP and a coP

– 256KB Local store
• Private address space
• access to global store via DMA
• No unaligned access (only via permutes)

– Dual SIMD issue (private PC)
• one arithmetic/float/etc…
• one load/store/permute/branch/channel

– Statically scheduled, in-order 7 cycle pipelines
– 3W @ 3.2 GHz

• Memory controller (25.6GB/s dual XDR)
• Perhaps 40W total if PPC is idle

6

Micro-architectural Issues
• PPE (PowerPC Processing Element)

– 512KB cache (coherent with DMAs, not LS)
– Dual thread, dual issue, in order
– VMX unit + scalar DP FMA

• SPE (Synergistic Processing Element)
– 7 cycle in order dual SIMD pipelines
– Single Precision

• 4 FMA datapaths, 6 cycle latency = 25.6 GFLOP/s
– Double Precision

• 1 FMA datapath, 13 cycle latency
• 13 cycle pipeline doesn’t fit in a 7 cycle forwarding network, so

they just stall after issuing for correctness = 1.83 GFLOP/s
• Prohibit dual issuing DP instructions = 1.6 GFLOP/s

– Software managed BTB (branch hints)

7

Cell Programming

8

Programming Model - SCM
• Local store appears to be the SPU’s entire memory space.
• However, with DMAs, it can be programmed as a software

(user) controlled memory.
• For algorithms whose address stream is expressible as a list

of addresses & sizes, a series of DMAs can be issued to
transfer data from global store (DRAM) to local store (SRAM)
~ remote get

• Analogous to vector loads from DRAM to a large SRAM
(vector register file)

• Local store has constant 6 cycle latency (no cache misses)

• Note: LS’s are aliased to the global address space, so it is
possible for one SPU to DMA data directly from another SPU

9

Programming Model - Distributed Memory
• Conceptualize Cell as a distributed memory machine with:

– One slow processor(PPE) with lots(1000x) of memory
– Eight fast processors(SPEs) with very little memory
– 4 high bandwidth rings to connect them

10

Programming Model - DMA
• Granularity (alignment/length) is quadword (max=16KB)
• Very low level intrinsics (no error checking)
• Non-blocking (wait on tag mask)
• Single Stanza (MFC_GET, MFC_PUT)

– Ideal for single long unit stride accesses
– spu_mfcdma32(LSA,GSA,stanzaSize,tag,MFC_GET_CMD);

• Multiple Stanzas (MFC_GETL or MFC_PUTL)
– Stanzas are then gathered from GS, and packed into LS (tiling

in column major matrix)
– In general could be used to gather individual QW’s or stanzas

of independent length
– Specify an array(list) in LS of {GSA:Length}
– spu_mfcdma32(LSA,&list,listSize,tag,MFC_GETL_CMD);

11

Programming Model - Double Buffering
• MFC (channel) commands are non blocking
• exploit the parallelism (SPU & MFC) via double buffering
• Total time is the max of computational time and

communication time
• Startup/finish penalties

12

Programming Model - Intrinsics
• We did not benchmark the compiler’s ability to

SIMDize
• For all critical sections, wrote code with

SIMD/quadword intrinsics.
• Ideal performance, somewhat more work than C,

far less work than assembly

13

Programming Model - Threading

• Programmed as hierarchical SPMD
– PPE is used to partition and load balance
– PPE is not used for any computation

• Implementation
– PPE creates 8 SPE threads

• SPE executable is embedded within a PPE program
– passes pointers to key data structures
– periodically communicates via mailboxes
– waits for SPEs to finish

14

Estimation, Simulation and Exploration
• Modeling

– Double buffered + long DMAs + in order machine
– use static timing analysis + memory traffic modeling
– For regular data structures, spreadsheet modeling works
– SpMV requires more advanced modeling

• Full System Simulator
– based on mambo, cycle accurate, includes static timing

analyzer, compilers, etc…
• Cell+

– How severely does DP throughput of 1 SIMD instruction every
7 or 8 cycles impair performance?

– Cell+ model fully utilizes the DP datapath
– 1 SIMD instruction every 2 cycles
– Allows dual issuing of DP instructions with

loads/stores/permutes/branch

15

Comparing Processors

Note: Cell performance does not
include the Power core

16

Benchmark Kernels

– Matrix-Matrix Multiplication
– Sparse Matrix-Vector Multiplication
– Stencil Computations on Structured Grids
– 1D FFTs
– 2D FFTs

17

Matrix-Matrix Multiplication

18

Dense Matrix-Matrix Multiplication
• Blocking

– Explicit (BDL) or implicit blocking (gather stanzas)
– Hybrid method would be to convert and store to DRAM

on the fly
– Choose a block size so that kernel is computationally

bound
• ≥642 in single precision
• much easier in double precision (14x computational time,

2x transfer time)

• Parallelization
– Partition A & C among SPUs
– Future work - cannon’s algorithm

19

GEMM - Results

Notes:
Cellpm = Performance Model
IBM’s hardware numbers come very close to these

20

Sparse Matrix-Vector
Multiplication

21

Sparse Matrix-Vector Multiplication
• Use ~CSR or BCSR(performance model only)
• SIMDization

– require all row lengths to be a multiple of 4
– Nonzero values are quadword aligned in SP

• Explicitly cache block columns
– Exploit spatial locality within the local store

• Implicitly cache block the rows
• Matrix “cache block”

– sub Matrix for the corresponding column and row blocks
• Cache block Parallelization strategies:

– partition by rows
– partition by nonzeros.

• Double buffer nonzeros
– Overlaps computation and communication
– requires restarting in the middle of a row

22

• Partially double buffer
row pointers to find
structure
– Completely eliminate

empty blocks
– Prune empty rows

SpMV - example figure
• Explicitly choose column blocking via cost function

– cache block perimeter
is fixed (LS)

– What is optimal r x c?

SPU7

SPU6

SPU5

SPU4
SPU3
SPU2
SPU1
SPU0

• Parallelize across SPUs
– Cost function of

execution time
– αRows + βNZ

23

SpMV - implementation
• Use Performance estimates to guide actual

implementation
– Double precision / Row lengths must be even (QW

aligned), no BCSR(yet)
– Parallelization

• costFunction(rows,NZs) ~ execution time
– Runtime blocking

• cost function based
– LS=256KB=32K doubles, max column block = 32K

• no need to transfer 32b absolute column index, when we
only need a 15b relative index)

– Runtime search for structure
• empty cache blocks
• search for first non empty row

24

SpMV - matrices

• 4 nonsymmetric SPARSITY matrices
• 6 symmetric SPARSITY matrices
• 7pt Heat equation matrix

25

SpMV - other machines

• BeBop / OSKI on the Itanium2 & Opteron
– uses BCSR
– auto tunes for optimal r x c blocking
– Cell implementation is similar

• Cray’s routines on the X1E
– Report best of CSRP and Jagged Diagonal

26

SpMV - Results

Note:
FSS = Full System Simulator
PM = Performance model

27

SpMV - Future optimizations
• Auto-tuning

– other parallelization strategies
– BCSR (better for SIMD, worse for memory traffic)
– other storage formats (DIA/JAG/etc…)

• Symmetry (currently only present in the performance model)
– Easier to exploit in single precision & w/BCSR
– Cache blocking limits benefit (~50%)

• Segmented Scan
– Reduces loop overhead at the expense of nonzero processing

time
– Good if NZ/Row (within a cache block) is small
– single segment(VL=1) would be beneficial
– Make runtime decision for a given cache block
– Complicated by presence of empty rows

within a cache block

28

Stencil Computations on
Structured Grids

29

Stencils on Structured Grids
• Keep 4 planes in local store

– (Z-1,t), (Z,t), (Z+1,t) -> (Z,t+1)
• Double buffer input and output planes

– (Z+2,t) & (Z-1,t+1)
• Parallelization

– Break middle loop up among SPEs
– Maintains long DMAs and double buffering in Z direction
– Computational intensity drops some

• SIMDization
– Permutes required to pack left & right neighbors together into

a SIMD register
• Each domain is bounded by a ghost zone
• Examined both CHOMBO heattut and CACTUS WaveToy

equations

30

Stencils - Time Skewing

• Low computational intensity limits
performance to be ~ memory bandwidth
• Time Skewing (with ghost zones) allows

much higher performance

31

Stencils - Results

Note:
CellFSS = Full System Simulator
Cellpm = Performance model
(n step) = performs n steps of time skewing

32

Fast Fourier Transforms

33

1D Fast Fourier Transforms

• Naïve Algorithm
– Load roots of unity
– Load data (cyclic)
– Local work, on-chip transpose, local work
– i.e. SPEs cooperate on a single FFT
– No overlap of communication or computation

34

2D Fast Fourier Transforms
• Each SPE performs 2 * (N/8) FFTs
• Double buffer rows

– overlap communication and computation
– 2 incoming, 2 outgoing

• Straightforward algorithm (N2 2D FFT):
– N simultaneous FFTs, transpose,

N simultaneous FFTs, transpose.
• Long DMAs necessitate transposes
• transposes represent about 50% of total SP

execution time
• SP Simultaneous FFT’s run at ~ 75 GFLOP/s

35

FFT - Results

36

DP Performance/Efficiency Summary
• Existing Cell implementation is significantly faster than

commodity(Itanium2/Opteron) processors in DP
• Power efficiency is currently more than 10x the commodity

processors
• Cell+ would increase performance and efficiency significantly

37

Acknowledgments
• This work (paper in CF06) is a collaboration with

the following FTG members:
– John Shalf, Lenny Oliker, Shoaib Kamil, Parry

Husbands, and Kathy Yelick
• Additional thanks to

– Joe Gebis and David Patterson
• X1E FFT numbers provided by:

– Bracy Elton, and Adrian Tate

