
Auto-tuning the 27-point Stencil for Multicore

Kaushik Datta2, Samuel Williams1, Vasily Volkov2, Jonathan Carter1,
Leonid Oliker1, John Shalf1, and Katherine Yelick1

1 CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2 Computer Science Division, University of California at Berkeley, Berkeley, CA

94720, USA

Abstract. This study focuses on the key numerical technique of stencil
computations, used in many different scientific disciplines, and illustrates
how auto-tuning can be used to produce very efficient implementations
across a diverse set of current multicore architectures.

1 Introduction

The recent transformation from an environment where gains in computational
performance came from increasing clock frequency to an environment where
gains are realized through ever increasing numbers of modest-performing cores
has profoundly changed the landscape of scientific application programming.
A major problem facing application programmers is the diversity of multicore
architectures that are now emerging. From relatively complex out-of-order CPUs
with complex cache structures to relatively simple cores that support hardware
multithreading, designing optimal code for these different platforms represents
a serious challenge. An emerging solution to this problem is auto-tuning: the
automatic generation of many versions of a code kernel that incorporate various
tuning strategies, and the benchmarking of these to select the best performing
version. Often a key parameter is associated with each tuning strategy (e.g. the
amount of loop unrolling or the cache blocking factor), so these parameters must
be explored in addition to the layering of the basic strategies themselves.

In Section 2, we give an overview of the stencil studied, followed by a re-
view of the multicore architectures that form our testbed in Section 3. Then, in
Sections 4, 5 and 6, we discuss the characteristics of the 27-point stencil, our
applied optimizations, and the parameter search respectively. Finally, we present
performance results and conclusions in Sections 7 and 8.

2 Stencil Overview

Partial differential equation (PDE) solvers are employed by a large fraction of
scientific applications in such diverse areas as heat diffusion, electromagnetics,
and fluid dynamics. These applications are often implemented using iterative
finite-difference techniques that sweep over a spatial grid, performing nearest
neighbor computations called stencils. In a stencil operation, each point in a

x

y

z

(a)

x

y

z

(b)

weight point by !

weight point by "

weight point by #

weight point by $

Fig. 1. Visualization of the 27-point stencil used in this work. Note: color represents
the weighting factor for each point in the linear combination stencils.

multidimensional grid is updated with weighted contributions from a subset of
its neighbors in both time and space — thereby representing the coefficients of
the PDE for that data element. These operations are then used to build solvers
that range from simple Jacobi iterations to complex multigrid and adaptive mesh
refinement methods [2].

Stencil calculations perform global sweeps through data structures that are
typically much larger than the capacity of the available data caches. In ad-
dition, the amount of data reuse within a sweep is limited to the number of
points in a stencil — often less than 27. As a result, these computations gen-
erally achieve a low fraction of processor peak performance as these kernels are
typically bandwidth-limited. By no means does this imply there is no poten-
tial for optimization. In fact, reorganizing these stencil calculations to take full
advantage of memory hierarchies has been the subject of much investigation
over the years. These have principally focused on tiling optimizations [9–11]
that attempt to exploit locality by performing operations on cache-sized blocks
of data before moving on to the next block — a means of eliminating capacity
misses. A study of stencil optimization [6] on (single-core) cache-based platforms
found that tiling optimizations were primarily effective when the problem size
exceeded the on-chip cache’s ability to exploit temporal recurrences. A more re-
cent study of lattice-Boltzmann methods [14] employed auto-tuners to explore
a variety of effective strategies for refactoring lattice-based problems for mul-
ticore processing platforms. That study expanded on prior work by utilizing a
more compute-intensive stencil, identifying the TLB as the performance bottle-
neck, developing new optimization techniques and applying them to a broader
selection of processing platforms.

In this paper, we build on our prior work [4] and explore the optimizations
and evaluate the performance of each sweep of a Jacobi (out-of-place) iterative
method using a 3D 27-point stencil. As shown in Figure 1, the stencil includes
all the points within a 3×3×3 cube surrounding the center grid point. Being
symmetric, it only uses four different weights for these points– one each for the
center point, the six face points, the twelve edge points, and the eight corner
points.

Since we are performing a Jacobi iteration, we keep two separate double-
precision (DP) 3D arrays — one that is exclusively read from and a second that
is only written to. This means that the stencil computation at each grid point is
independent of every other point. As a result, there are no dependencies between
these calculations, and they can be computed in any order. We take advantage
of this fact in our code.

In general, Jacobi iterations converge more slowly and require more memory
than Gauss-Seidel (in-place) iterations, which only require a single array that is
both read from and written to. However, the dependencies involved in Gauss-
Seidel stencil sweeps significantly complicate performance optimization. This
topic, while important, will be left as future research.

Although the simpler 7-point 3D stencil is fairly common, there are many
instances where larger stencils with more neighboring points are required. For
instance, the NAS Parallel MG (Multigrid) benchmark utilizes a 27-point stencil
to calculate the Laplace operator for a finite volume method [1]. Broadly speak-
ing, the 27-point 3D stencil can be a good proxy for many compute-intensive
stencil kernels, which is why it was chosen for our study. For example, consider
T. Kim’s work on optimizing a fluid simulation code [8]. By using a Mehrstellen
scheme [3] to generate a 19-point stencil (where δ equals 0) instead of the typical
7-point stencil, he was able to reach the desired error reduction in 34% fewer
stencil iterations. For this study, we do not go into any of the numerical proper-
ties of stencils; we merely study and optimize their performance across different
multicore architectures. As an added benefit, this analysis also helps to expose
many interesting features of current multicore architectures.

3 Experimental Testbed

Table 1 details the core, socket, system and programming of the four cache-
based computers used in this work. These include two generations of Intel
quad-core superscalar processors (Clovertown and Nehalem) representing simi-
lar core architectures but dramatically different integration approaches. Nehalem
has replaced Clovertown’s front side bus (FSB)-external memory controller hub
(MCH) architecture with integrated memory controllers and quick-path for re-
mote socket communication and coherency. At the other end of the spectrum is
IBM’s Blue Gene/P (BGP) quad-core processor. BGP is a single-socket, dual-
issue in-order architecture providing substantially lower throughput and band-
width while dramatically reducing power. Finally, we included Sun’s dual-socket,
8-core Niagara architecture (Victoria Falls). Although its peak bandwidth is
similar to Clovertown and Nehalem, its peak flop rate is more inline with BGP.
Rather than depending on superscalar execution or hardware prefetchers, each
of the eight strictly in-order cores supports two groups of four hardware thread
contexts (referred to as Chip MultiThreading or CMT) — providing a total of
64 simultaneous hardware threads per socket. The CMT approach is designed
to tolerate instruction, cache, and DRAM latency through fine-grained multi-
threading.

Core Intel Intel IBM Sun
Architecture Nehalem Core2 PowerPC 450 Niagara2

superscalar superscalar dual issue dual issue
Type

ooo† ooo in-order in-order

Threads/Core 2 1 1 8

Clock (GHz) 2.66 2.66 0.85 1.16

DP GFlop/s 10.7 10.7 3.4 1.16

L1 Data Cache 32KB 32KB 32KB 8KB

Private L2 Data Cache 256KB — — —

Xeon Xeon Blue Gene/P UltraSparc
Socket X5550 E5355 Compute T5140 T2+

Architecture Nehalem Clovertown Chip Victoria Falls

Cores per Socket 4 4 (MCM) 4 8

shared 2×4MB
L2/L3 $

8MB
(shared by 2)

8MB 4MB

primary memory HW HW HW
parallelism paradigm prefetch prefetch prefetch

MT

Xeon Xeon Blue Gene/P UltraSparc
System X5550 E5355 Compute T5140 T2+

Architecture Nehalem Clovertown Node Victoria Falls

Sockets per SMP 2 2 1 2

DP GFlop/s 85.3 85.3 13.6 18.7

DRAM BW 21.33(read) 42.66(read)
(GB/s)

51.2
10.66(write)

13.6
21.33(write)

DP Flop:Byte Ratio 1.66 2.66 1.00 0.29

DRAM Capacity (GB) 12 16 2 32

DRAM Type DDR3-1066 FBDIMM-667 DDR2-425 FBDIMM-667

System Power (W) § 375 530 31‡ 610

Threading Pthreads Pthreads Pthreads Pthreads

Compiler icc 10.0 icc 10.0 xlc 9.0 gcc 4.0.4

Table 1. Architectural summary of evaluated platforms. §All system power is measured
with a digital power meter while under a full computational load. ‡Power running
Linpack averaged per blade. (www.top500.org) †out-of-order (ooo).

4 Stencil Characteristics

The left panel of Figure 2 shows the näıve 27-point stencil code after it has been
loop unrolled once. The number of reads (from the memory hierarchy) per stencil
is 27, but the number of writes is only one. However, when one considers adjacent
stencils, we observe substantial reuse. Thus, to attain good performance, a cache
(if present) must filter the requests and present only the two compulsory (in 3C’s
parlance) requests per stencil to DRAM [5]. There are two compulsory requests

Flops Näıve Arithmetic Potential
per Cache Intensity Benefit from

Stencil Stencil refs Näıve Tuned Auto-tuning

27-pt 30 28 0.75 1.25 (1.88)
27-pt CSE 18 10 0.45 0.75 (1.13)

1.65× (2.5×)

Table 2. Average stencil characteristics. Arithmetic Intensity is defined as the To-
tal Flops / Total bytes. We assumes 8 bytes each for compulsory read and write, 8
bytes write-allocate traffic, and 16 bytes for capacity misses. The numbers in parenthe-
ses assume cache bypass. The rightmost column, Potential Benefit from Auto-tuning, is
computed by dividing the tuned arithmetic intensity by the näıve arithmetic intensity.
If memory bandwidth is the bottleneck, this is the largest speedup we should expect
to see.

per stencil because every point in the grid must be read once and written once.
One should be mindful that many caches are write allocate. That is, on a write
miss, they first load the target line into the cache. Such an approach implies
that writes generate twice the memory traffic as reads even if those addresses
are written but never read. The two most common approaches to avoiding this
superfluous memory traffic are write through caches or cache bypass stores.

Table 2 illustrates the dramatic difference in the per stencil averages for the
number of loads and floating-point operations, both for the basic stencil as well
as the highly optimized common subexpression elimination (CSE) version of
the stencil. Although an ideal cache would distill these loads and stores into 8
bytes of compulsory DRAM read traffic and 8 bytes of compulsory DRAM write
traffic, caches are typically not write through, infinite or fully associative, and
näıve codes are not cache blocked. As such, we expect an additional 8 bytes
of DRAM write allocate traffic, and another 16 bytes of capacity miss traffic
(based on the caches found in superscalar processors and the reuse pattern of
this stencil) — a 2.5× increase in memory traffic. Auto-tuners for structured
grids will actively or passively attempt to elicit better cache behavior and less
memory traffic on the belief that reducing memory traffic and exposed latency
will improve performance. If the auto-tuner can eliminate all cache misses, we
can improve performance by 1.65×, but if the auto-tuner also eliminates all write
allocate traffic, then it may improve performance by 2.5×.

5 Stencil Optimizations

Compilers utterly fail to achieve satisfactory stencil code performance because
implementations optimal for one microarchitecture may deliver suboptimal per-
formance on another. Moreover, their ability to infer legal domain-specific trans-
formations, given the freedoms of the C language, is limited. To improve upon
this, there are a number of optimizations that can be performed at the source
level to increase performance, including: NUMA-aware data allocation, array
padding, multilevel blocking (shown in Figure 3), loop unrolling and reordering,

for (k=1; k <= nz; k++) {!

 for (j=1; j <= ny; j++) {!

 for (i=1; i < nx; i=i+2) {!

 next[i,j,k] = !

 alpha * (now[i,j,k])!

 +beta * (!

 now[i,j,k-1] + now[i,j-1,k] +!

 now[i,j+1,k] + now[i,j,k+1] +!

 now[i-1,j,k] + now[i+1,j,k]!

)!

 +gamma * (!

 now[i-1,j,k-1] + now[i-1,j-1,k] +!

 now[i-1,j+1,k] + now[i-1,j,k+1] +!

 now[i,j-1,k-1] + now[i,j+1,k-1] +!

 now[i,j-1,k+1] + now[i,j+1,k+1] +!

 now[i+1,j,k-1] + now[i+1,j-1,k] +!

 now[i+1,j+1,k] + now[i+1,j,k+1]!

)!

 +delta * (!

 now[i-1,j-1,k-1] + now[i-1,j+1,k-1] +!

 now[i-1,j-1,k+1] + now[i-1,j+1,k+1] +!

 now[i+1,j-1,k-1] + now[i+1,j+1,k-1] +!

 now[i+1,j-1,k+1] + now[i+1,j+1,k+1]!

);!

 next[i+1,j,k] = !

 alpha * (now[i+1,j,k])!

 +beta * (!

 now[i+1,j,k-1] + now[i+1,j-1,k] +!

 now[i+1,j+1,k] + now[i+1,j,k+1] +!

 now[i,j,k] + now[i+2,j,k]!

)!

 +gamma * (!

 now[i,j,k-1] + now[i,j-1,k] +!

 now[i,j+1,k] + now[i+1-1,j,k+1] +!

 now[i+1,j-1,k-1] + now[i+1,j+1,k-1] +!

 now[i+1,j-1,k+1] + now[i+1,j+1,k+1] +!

 now[i+2,j,k-1] + now[i+2,j-1,k] +!

 now[i+2,j+1,k] + now[i+2,j,k+1]!

)!

 +delta * (!

 now[i,j-1,k-1] + now[i,j+1,k-1] +!

 now[i,j-1,k+1] + now[i,j+1,k+1] +!

 now[i+2,j-1,k-1] + now[i+2,j+1,k-1] +!

 now[i+2,j-1,k+1] + now[i+2,j+1,k+1]!

);!

 }!

 }!

}!

for (k=1; k <= nz; k++) {!

 for (j=1; j <= ny; j++) {!

 for (i=1; i < nx; i=i+2) {!

 sum_edges_0 =!

 now[i-1,j,k-1] + now[i-1,j-1,k] +!

 now[i-1,j+1,k] + now[i-1,j,k+1];!

 sum_edges_1 =!

 now[i,j,k-1] + now[i,j-1,k] +!

 now[i,j+1,k] + now[i,j,k+1];!

 sum_edges_2 =!

 now[i+1,j,k-1] + now[i+1,j-1,k] +!

 now[i+1,j+1,k] + now[i+1,j,k+1];!

 sum_edges_3 =!

 now[i+2,j,k-1] + now[i+2,j-1,k] +!

 now[i+2,j+1,k] + now[i+2,j,k+1];!

 sum_corners_0 =!

 now[i-1,j-1,k-1] + now[i-1,j+1,k-1] +!

 now[i-1,j-1,k+1] + now[i-1,j+1,k+1];!

 sum_corners_1 =!

 now[i,j-1,k-1] + now[i,j+1,k-1] +!

 now[i,j-1,k+1] + now[i,j+1,k+1];!

 sum_corners_2 =!

 now[i+1,j-1,k-1] + now[i+1,j+1,k-1] +!

 now[i+1,j-1,k+1] + now[i+1,j+1,k+1];!

 sum_corners_3 =!

 now[i+2,j-1,k-1] + now[i+2,j+1,k-1] +!

 now[i+2,j-1,k+1] + now[i+2,j+1,k+1];!

 center_plane_1 =!

 alpha * now[i,j,k] +!

 beta * sum_edges_1 + gamma * sum_corners_1;!

 center_plane_2 =!

 alpha * now[i+1,j,k] +!

 beta * sum_edges_2 + gamma * sum_corners_2;!

 side_plane_0 =!

 beta * now[i-1,j,k] +!

 gamma * sum_edges_0 + delta * sum_corners_0;!

 side_plane_1 =!

 beta * now[i,j,k] +!

 gamma * sum_edges_1 + delta * sum_corners_1;!

 side_plane_2 =!

 beta * now[i+1,j,k] +!

 gamma * sum_edges_2 + delta * sum_corners_2;!

 side_plane_3 =!

 beta * now[i+2,j,k] +!

 gamma * sum_edges_3 + delta * sum_corners_3;!

 next[i,j,k] =!

 side_plane_0 + center_plane_1 + side_plane_2;!

 next[i+1,j,k] =!

 side_plane_1 + center_plane_2 + side_plane_3;!

 }!

 }!

}!No CSE CSE

Fig. 2. Pseudo-code for one grid sweep using a 27-point stencil. Both panels have code
that has been loop unrolled once in the unit-stride (x) dimension. However, the left
panel does not exploit common subexpression elimination (CSE), while the right panel
does. For instance, the value of the variable sum corners 1 is computed twice in the
left panel, but only once in the right panel. The variables sum edges * in the right
panel are graphically displayed in Figure 4(b), while the variables sum corners * are
shown in Figure 4(c). In this example, the left panel performs 30 flops/point, while the
right panel performs 29 flops/point; however, with more loop unrollings, the CSE code
will approach 18 flops/point.

+Y

+Z

(b)
Decomposition into

Thread Blocks

(c)
Decomposition into

Register Blocks

(a)
Decomposition of a Node Block

into a Chunk of Core Blocks

RYRX
RZ

CY

C
Z

CX

TYTX

NY

N
Z

NX

+X
(unit stride) TY

C
Z

TX

Fig. 3. Four-level problem decomposition: In (a), a node block (the full grid) is broken
into smaller chunks. One core block from the chunk in (a) is magnified in (b). A single
thread block from the core block in (b) is then magnified in (c) and decomposed into
register blocks.

x x x x
y y y y

z z z z

(a) (b) (c) (d)

Fig. 4. Visualization of common subexpression elimination. (a) Reference 27-point
stencil. (b)-(d) decomposition into 7 simpler stencils. As one loops through x, 2 of the
stencils from both (b) and (c) will be reused for x + 1.

as well as prefetching for cache-based architectures. These well known optimiza-
tions were detailed in our previous work [4]. Remember, Jacobi’s method is both
out-of-place and easily parallelized (theoretically, stencils may be executed in
any order). This greatly facilitates our parallelization efforts as threads must
only synchronize via a barrier after executing all their assigned blocks. In this
paper, we detail a new common subexpression elimination optimization.

Common subexpression elimination (CSE) involves identifying and eliminat-
ing common expressions across several stencils. This type of optimization can
be considered to be an algorithmic transformation because of two reasons. First,
the flop count is being reduced, and second, the flops actually being performed
may be performed in a different order than our original implementation. Due to
the non-associativity of floating point operations, this may well produce results
that are not bit-wise equivalent to those from the original implementation.

Optimization parameter tuning range
Category Parameter Name x86 BG/P VF

NUMA Aware X N/A X
Data

Pad by a maximum of: 32 32 32
Allocation

Pad to a multiple of: 1 1 1

CX NX NX {8...NX}
Core Block Size CY {4...NY} {4...NY} {4...NY}

CZ {4...NZ} {4...NZ} {4...NZ}
Domain TX CX CX {8...CX}
Decomp

Thread Block Size
TY CY CY {8...CY}

Chunk Size {1... NX×NY×NZ
CX×CY×CZ×NThreads

}

RX {1...8} {1...8} {1...8}
Register Block Size RY {1...4} {1...4} {1...4}

RZ {1...4} {1...4} {1...4}
Low (explicitly SIMDized) X X N/A
Level Prefetching Distance {0...64} {0...64} {0...64}

Cache Bypass X — N/A

Search Strategy Iterative Greedy
Tuning

Data-aware X X X
Table 3. Attempted optimizations and the associated parameter spaces explored by
the auto-tuner for a 2563 stencil problem (NX, NY, NZ = 256). All numbers are in
terms of doubles.

Consider Figure 4. If one were to perform the reference stencil for succes-
sive points in x, we perform 30 flops per stencil. However, as we loop through
x, we may dynamically create several temporaries (unweighted reductions) —
Figure 4(b) and (c). For stencils at x and x + 1, there is substantial reuse of
these temporaries. On fused multipy-add (FMA)-based architectures, we may
implement the stencil by creating these temporaries and performing a linear
combination using three temporaries from Figure 4(b), three from Figure 4(c)
and the stencil shown in Figure 4(d). On the x86 architectures, we create a sec-
ond group of temporaries by weighting the first set, the pseudo-code for which
is shown in the right panel of Figure 2. With enough loop unrollings in the inner
loop, the CSE code has a lower bound of 18 flops/point. Disappointingly, neither
the gcc nor icc compilers were able to apply this optimization automatically.

6 Auto-Tuning Methodology

Thus far, we have described our applied optimizations in general terms. In order
to take full advantage of the optimizations mentioned in Section 5, we developed
an auto-tuning environment [4] similar to that exemplified by libraries like AT-
LAS [13] and OSKI [12]. To that end, we first wrote a Perl code generator that
produces multithreaded C code variants encompassing our stencil optimizations.

Optimization A

O
pt

im
iz

at
io

n
B

Optimization A

O
pt

im
iz

at
io

n
B

1 2 2

3

Optimization A

O
pt

im
iz

at
io

n
B

 4

Optimization A

O
pt

im
iz

at
io

n
B

5

4 3

First pass through 2D optimization space Second pass through 2D optimization space

Fig. 5. Visualization of the iterative greedy search algorithm.

This approach allows us to evaluate a large optimization space while preserving
performance portability across significantly varying architectural configurations.

The parameter space for each optimization individually, shown in Table 3,
is certainly tractable — but the parameter space generated by combining these
optimizations results in a combinatorial explosion. Moreover, these optimizations
are not independent of one another; they can often interact in subtle ways that
vary from platform to platform. Hence, the second component of our auto-tuner
is the search strategy used to find a high-performing parameter configuration.

To find the best configuration parameters, we employed an iterative “greedy”
search. First, we fixed the order of optimizations. Generally, they were ordered by
their level of complexity, but there was some expert knowledge employed as well.
This ordering is shown in the legend of Figure 6; the relevant optimizations were
applied in order from bottom to top. Within each individual optimization, we
performed an exhaustive search to find the best performing parameter(s). These
values were then fixed and used for all later optimizations. We consider this to
be an iterative greedy search. If all applied optimizations were independent of
one another, this search method would find the global performance maxima.
However, due to subtle interactions between certain optimizations, this usually
won’t be the case. Nonetheless, we expect that it will find a good-performing set
of parameters after doing a full sweep through all applicable optimizations.

In order to judge the quality of the final configuration parameters, two metrics
can be used. The more useful metric is the Roofline model [15], which provides
an upper bound on kernel performance based on bandwidth and computation
limits. If our fully tuned implementation approaches this bound, then further
tuning will not be productive. However, the Roofline model is outside the scope
of this paper. Instead, we can gain some intuition on the quality of our final
parameters by doing a second pass through our greedy iterative search. This
is represented by the topmost color in the legends of Figure 6. If this second
pass improves performance substantially, then our initial greedy search obviously
wasn’t effective.

Figure 5 visualizes the iterative greedy search algorithm for a domain where
there are only two optimizations: A and B. As such, the optimization space is
only two dimensional. Given an initial guess at the ideal optimization parameters
(point #1), we search over all possible values of optimization A while keeping

optimization B fixed. The best performing configuration along this line search
then becomes point #2. Starting from point #2, we then search all possible
values of optimization B while keeping optimization A fixed. This produces an
even better performing configuration — point #3. At this point we’ve completed
one pass through the greedy algorithm. We make the algorithm iterative by
repeating the procedure, but starting at point #3. This results in successively
better points #4 and #5.

In reality, we are dealing with many more than just two optimizations, and
thus a significantly higher dimensional search space. This is the same parameter
search technique that we employed in our earlier work for tuning the 3D 7-point
stencil [4], however here we employ two passes across the search space.

6.1 Architecture Specific Exceptions

Due to limited potential benefit and architectural characteristics, not all ar-
chitectures implement all optimizations or explore the same parameter spaces.
Table 3 details the range of values for each optimization parameter by architec-
ture. In this section, we explain the reasoning behind these exceptions to the
full auto-tuning methodology. To make the auto-tuning search space tractable,
we typically explored parameters in powers of two.

Both the x86 and BG/P architectures rely on hardware stream prefetching as
their primary means for hiding memory latency. As previous work [7] has shown
that short stanza lengths severely impair memory bandwidth, we prohibit core
blocking in the unit stride (X) dimension, so CX = NX. Thus, we expect the
hardware stream prefetchers to remain engaged and effective.

Although the standard code generator produces portable C code, compilers
often fail to effectively SIMDize the resultant code. As such, we created sev-
eral instruction set architecture (ISA) specific variants that produce explicitly
SIMDized code for x86 and Blue Gene/P using intrinsics. For x86, the option of
using a non-temporal store movntpd to bypass the cache was also incorporated.

Victoria Falls is also a cache-coherent architecture, but its multithreading
approach to hiding memory latency is very different than out-of-order execution
coupled with hardware prefetching. As such, we allow core blocking in the unit
stride dimension. Moreover, we allow each core block to contain either 1 or 8
thread blocks. In essence, this allows us to conceptualize Victoria Falls as either
a 128 core machine or a 16 core machine with 8 threads per core.

7 Results and Analysis

In our experiment, we apply a single out-of-place stencil sweep at a time to a
2563 grid. The reference stencil code uses only two large flat 3D scalar arrays
as data structures, and that is maintained through all subsequent tuning. We
do increase the size of these arrays with an array padding optimization, but
this does not introduce any new data structures nor change the array ordering.
In addition, in order to get accurate measurements, we report the average of

Xeon X5550
(Nehalem)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8
Fully Threaded Cores

G
S

te
n

ci
ls

/
s

Xeon X5355
(Clovertown)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 4 8
Cores

G
S

te
n

ci
ls

/
s

2nd pass through greedy search

+Common Subexpression Elimination
(another register and core blocking search)

+Cache Bypass (i.e. movntpd)

+Explicit SIMDization
(another register and core blocking search)

+Explicit SW Prefetching

+Register Blocking
(portable C code)

+Core Blocking

+Thread Blocking

BlueGene/P

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 4
Cores

G
S
te
n
ci
ls
/
s

UltraSparc T2+ T5140
(Victoria Falls)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16
Fully Threaded Cores

G
S

te
n

ci
ls

/
s

+Array Padding

+NUMA-aware allocation

Reference Implementation

Fig. 6. Stencil performance. Before the Common Subexpression Elimination optimiza-
tion is applied, “GStencil/s” can be converted to “GFlop/s” by multiplying by 30
flops/stencil. Note, explicitly SIMDized BG/P performance was slower than the scalar
form both with and without CSE. As such, it is not shown.

at least 5 timings for each data point, and there was typically little variation
among these readings.

Below we present and analyze the results from auto-tuning the stencil on each
of the four architectures. To ensure fairness, across all architectures we ordered
threads to first exploit all the threads on a core, then populate all cores within
a socket, and finally use multiple sockets.

In all our figures, we present performance as GStencil/s (109 stencils per
second) to allow a meaningful comparison between CSE and non-CSE kernels.
In addition, in Figures 6 and 7, we stack optimization bars to represent the
performance as the auto-tuning algorithm progresses through the greedy search
(i.e. subsequent optimizations are built on best configuration of the previous
optimizations).

7.1 Nehalem Performance

We see in Figure 6 that the performance of the reference implementation im-
proves by 3.3× when scaling from 1 to 4 cores, but then drops slightly when we
use all 8 cores across both sockets. This performance quirk is eliminated when
we apply the NUMA-aware optimization.

There are several indicators that strongly suggest that it is compute-bound —
core blocking shows only a small benefit, cache bypass doesn’t show any benefit,

Xeon X5550 (Nehalem)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fully Threaded Cores

G
S

te
n

ci
ls

/
s

+Two pass greedy search
+CSE
+Cache Bypass
+SIMDization
+SW Prefetching
+Register Blocking
+Core Blocking
+Padding
+NUMA-Aware
Naïve

1 2 4 8

gcc on the left,
icc on the right

Fig. 7. A performance comparison between two compilers when auto-tuning the 27-
point stencil on Nehalem. At each core count along the x-axis, the left stacked bar
shows the performance of the gcc compiler, while the right stacked bar shows that of
the icc compiler.

performance scales linearly with the number of cores, and the CSE optimization
is successful across all core counts. Nonetheless, after full tuning, we now see a
3.6× speedup when using all 8 cores. Moreover, we also see parallel scaling of
8.1× when going from 1 to 8 cores — the ideal multicore scaling.

It is important to note that the choice of compiler plays a significant role
in the effectiveness of certain optimizations as well as the final auto-tuning per-
formance. For instance, Figure 7 shows the performance for both the gcc and
icc compilers when tuning on Nehalem. There are several interesting trends
that can be read from this graph. For instance, at every core count, the perfor-
mance of gcc after applying register blocking is slightly below icc’s näıve (or
näıve with NUMA-aware using all 8 cores) performance. Therefore, it is likely
that the gcc compiler’s unrolling facilities are not as good as icc’s. In addi-
tion, core blocking improves icc performance by at least 18% at the higher core
counts, but it does not show any benefit for gcc. As Nehalem is nearly equally
memory- and compute-bound, slightly inferior code generation capabilities will
hide memory bottlenecks.

A notable deficiency in both compilers is that neither one was able to elim-
inate common subexpressions for the stencil. This was confirmed by examining
the assembly code generated by both compilers; neither one reduced the flop
count from 30 flops/point. As seen in Figure 2, the common subexpressions
only arise when examining several adjacent stencil operations. Thus, a compiler
must loop unroll before trying to identify common subexpressions. However, even
when we explicitly loop unrolled the stencil code, neither compiler was able to
exploit CSE. It is unclear whether the compiler lacked sufficient information to
effect an algorithmic transformation or simply lacks the functionality. Whatever
the reason for this, explicit CSE code improves performance by 25% for either
compiler at maximum concurrency.

In general, icc did at least as well as gcc on the x86 architectures, so only
icc results are shown for these platforms. However, the more bandwidth-limited
the kernel, the less icc’s advantage.

7.2 Clovertown Performance

Unlike the Nehalem chip, the Clovertown is a Uniform Memory Access machine
with an older front side bus architecture. This implies that the NUMA-aware
optimization will not be useful and the 27-point stencil will likely be bandwidth-
constrained.

As shown in Figure 6, memory bandwidth is clearly an issue at the higher
core counts. When we run on 1 or 2 cores, cache bypass is not helpful, while
the CSE optimization produces speedups of at least 30%, implying that the
lower core counts are compute-bound. However, as we scale to 4 and 8 cores,
we observe a transition to being memory-bound. The cache bypass instruction
improves performance by at least 10%, while the effects of CSE are negligible.
All in all, full tuning resulted in a 1.9× improvement using all 8 cores, as well
as a 2.7× speedup when scaling from 1 to 8 cores.

7.3 Blue Gene/P Performance

Unlike the two previous architectures, the IBM Blue Gene/P implements the
PowerPC ISA. In addition, the xlc compiler does not generate or support cache
bypass at this time. As a result, the best arithmetic intensity we can achieve 1.25.
The performance of Blue Gene/P seems to be compute-bound — as seen in Fig-
ure 6, memory optimizations like padding, core blocking, or software prefetching
make no noticeable difference. The only optimizations that help performance are
computation-related, like register blocking and CSE. Moreover, after full tuning,
the 27-point stencil kernel shows perfect multicore scaling; going from 1 to all 4
cores results in a performance improvement of 3.9×.

It is important to note that while we did pass xlc the SIMDization flags
when compiling the portable C code, we did not use any pragmas or functions
like #pragama unroll, #pragama align, or alignx() within the code. Inter-
estingly, when we modified our stencil code generator to explicitly produce SIMD
intrinsics, we observed a 10% decrease in performance of the CSE implementa-
tion. One should note that unlike x86, Blue Gene does not support an unaligned
SIMD load. As such, to load a stream of consecutive elements where the first is
not 16-byte aligned, one must perform permutations and asymptotically require
two instructions for every two elements. Clearly this is no better than a scalar
implementation of one load per element.

7.4 Victoria Falls Performance

Like the Blue Gene/P, the Victoria Falls does not exploit cache bypass. More-
over, it is a highly multi-threaded architecture with low-associativity caches.

27pt Performance

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

Nehalem Clovertown BGP VF

G
S

te
n

ci
ls

/
s

auto-tuned CSE
auto-tuned reference

27pt Power Efficiency

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Nehalem Clovertown BGP VF

G
S

te
n

ci
ls

/
s/

k
W

auto-tuned CSE
auto-tuned reference

Fig. 8. A performance comparison for all architectures at maximum concurrency after
full tuning. The graph displays performance for the auto-tuned stencil without common
subexpression elimination (beige) and with it (blue).

To exploit these characteristics, we introduced the thread blocking optimiza-
tion specifically for Victoria Falls. In the original implementation of the stencil
code, each core block is processed by only one thread. When the code is thread
blocked, threads are clustered into groups of 8; these groups work collectively on
one core block at a time.

The reference implementation, shown in Figure 6, scales well. Nonetheless,
auto-tuning was still able to achieve significantly better results. Many optimiza-
tions combined together to improve performance, including array padding, core
blocking, common subexpression elimination, and a second sweep of the greedy
algorithm. After full tuning, performance improved by 1.8× when using all 16
cores, and we also see parallel scaling of 13.1× when scaling to 16 cores. The fact
that we almost achieve linear scaling strongly hints that it is compute-bound.

The Victoria Falls performance results are even more impressive considering
that one must regiment 128 threads to perform one operation; this is 8 times as
many as the Nehalem, 16 times more than Clovertown, and 32 times more than
the Blue Gene/P.

7.5 Cross Platform Performance and Power Comparison

At ultra scale, power has become a severe impediment to increased performance.
Thus, in this section not only do we normalize performance comparisons by
looking at entire nodes rather than cores, we also normalize performance with
power utilization. To that end, we use a power efficiency metric defined as the
ratio of sustained performance to sustained system power — GStencil/s/kW.
This is essentially the number of stencil operations one can perform per Joule
of energy.

The evolution of x86 multicore chips from the Intel Clovertown, to the Intel
Nehalem is an intriguing one. The Clovertown is a uniform memory access archi-

tecture that uses an older front-side bus architecture and supports only a single
hardware thread per core. In terms of DRAM, it employs FBDIMMs running at
a relatively slow 667 MHz. Consequently, it is not surprising to see in Figure 8
that the Clovertown is the slowest x86 architecture. In addition, due in part
to the use of power-hungry FBDIMMs, it is also the least power efficient x86
platform (as evidenced in Figure 8). As previously mentioned, Intel’s new Ne-
halem improves on previous x86 architectures in several ways. Notably, Nehalem
features an integrated on-chip memory controller, the QuickPath inter-chip net-
work, and simultaneous multithreading (SMT). It also uses three channels of
DDR3 DIMMs running at 1066 MHz. On the compute-intensive CSE kernel, we
still see a 3.7× improvement over Clovertown.

The IBM Blue Gene/P was designed for large-scale parallelism, and one
consequence is that it is tailored for power efficiency rather than performance.
This trend is starkly laid out in Figure 8. Despite Blue Gene/P delivering the
lowest performance per SMP among all architectures, it still attained the best
power efficiency. It should be noted that Blue Gene/P is two process technology
generations behind Nehalem (90nm vs. 45nm).

Victoria Falls’ chip multithreading (CMT) mandates one exploit 128-way
parallelism. We see that Victoria Falls achieves better performance than either
Clovertown or Blue Gene/P. However, in terms of power efficiency, it is second
to last, better than only Clovertown. This should come as no surprise given they
both use power-inefficient FBDIMMs.

8 Conclusions

In this work, we examined the application of auto-tuning to a 27-point stencil on
a wide range of cache-based multicore architectures. The chip multiprocessors
examined in our study lie at the extremes of a spectrum of design trade-offs
that range from replication of existing core technology (multicore) to employing
large numbers of simple multithreaded cores (CMT) to power-optimized designs.
Results demonstrate that parallelism discovery is only a small part of the perfor-
mance challenge. Of equal importance is selecting from various forms of hardware
parallelism and enabling memory hierarchy optimizations.

Our work leverages the use of auto-tuners to enable portable, effective opti-
mization across a broad variety of chip multiprocessor architectures, and success-
fully achieves the fastest multicore stencil performance to date. Clearly, auto-
tuning was essential in providing substantial speedups regardless of whether the
computational balance ultimately became memory or compute-bound; on the
other hand, the reference implementation often showed poor (or even negative)
scalability. Analysis shows that although every optimization was useful on at
least one architecture (Figure 6), highlighting the importance of optimization
within an auto-tuning framework, the portable C auto-tuner (without SIMDiza-
tion and cache bypass) often delivered very good performance. This suggests one
could forgo optimality for productivity without much loss.

Results show that Nehalem delivered the best performance of any of the
systems, achieving more than a 6× speedup compared the previous generation
Intel Clovertown — due, in-part, to the elimination of the front-side bus in favor
of on-chip memory controllers. However, the low-power BG/P design offered one
of the most attractive power efficiencies in our study, despite its poor single
node performance; this highlights the importance of considering these design
tradeoffs in an ultrascale, power intensive environment. Due to the complexity of
reuse patterns endemic to stencil calculations coupled with relatively small per-
thread cache capacities, Victoria Falls was perhaps the most difficult machine to
optimize — it needed virtually every optimization. Through use of performance
models like Roofline [15], future work will bound how much further tuning is
required to fully exploit each of these architectures.

Now that power has become the primary impediment to future processor
performance improvements, the definition of architectural efficiency is migrating
from a notion of “sustained performance” towards a notion of “sustained per-
formance per watt.” Furthermore, the shift to multicore design reflects a more
general trend in which software is increasingly responsible for performance as
hardware becomes more diverse. As a result, architectural comparisons should
combine performance, algorithmic variations, productivity (at least measured by
code generation and optimization challenges), and power considerations.

9 Acknowledgments

We would like to express our gratitude to Sun for their machine donations. This
work and its authors are supported by the Director, Office of Science, of the
U.S. Department of Energy under contract number DE-AC02-05CH11231 and
by NSF contract CNS-0325873. This research used resources of the Argonne
Leadership Computing Facility at Argonne National Laboratory, which is sup-
ported by the Office of Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357. Finally, we express our gratitude to Microsoft, Intel, and
U.C. Discovery for providing funding (under Awards #024263, #024894, and
#DIG07-10227, respectively) and for the Nehalem computer used in this study.

References

1. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R.Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-
ishnan, and S. Weeratunga. The NAS Parallel Benchmarks. Technical Report
RNR-94-007, NASA Advanced Supercomputing (NAS) Division, 1994.

2. M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differ-
ential equations. Journal of Computational Physics, 53:484–512, 1984.

3. L. Collatz. The Numerical Treatment of Differential Equations. Springer-Verlag,
1960.

4. K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patter-
son, J. Shalf, and K. Yelick. Stencil Computation Optimization and Auto-Tuning

on State-of-the-art Multicore Architectures. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ, USA,
2008. IEEE Press.

5. M. D. Hill and A. J. Smith. Evaluating Associativity in CPU Caches. IEEE Trans.
Comput., 38(12):1612–1630, 1989.

6. S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Implicit and
explicit optimizations for stencil computations. In ACM SIGPLAN Workshop
Memory Systems Performance and Correctness, San Jose, CA, 2006.

7. S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick. Impact of modern
memory subsystems on cache optimizations for stencil computations. In 3rd Annual
ACM SIGPLAN Workshop on Memory Systems Performance, Chicago,IL, 2005.

8. T. Kim. Hardware-aware analysis and optimization of stable fluids. In I3D ’08:
Proceedings of the 2008 symposium on Interactive 3D graphics and games, pages
99–106, New York, NY, USA, 2008. ACM.

9. A. Lim, S. Liao, and M. Lam. Blocking and array contraction across arbitrar-
ily nested loops using affine partitioning. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, June 2001.

10. G. Rivera and C. Tseng. Tiling optimizations for 3D scientific computations. In
Proceedings of SC’00, Dallas, TX, November 2000. Supercomputing 2000.

11. S. Sellappa and S. Chatterjee. Cache-efficient multigrid algorithms. International
Journal of High Performance Computing Applications, 18(1):115–133, 2004.

12. R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of automatically tuned
sparse matrix kernels. In Proc. of SciDAC 2005, J. of Physics: Conference Series.
Institute of Physics Publishing, June 2005.

13. R. C. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimization of
Software and the ATLAS project. Parallel Computing, 27(1-2):3–35, 2001.

14. S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Lattice Boltzmann
simulation optimization on leading multicore platforms. In Interational Conference
on Parallel and Distributed Computing Systems (IPDPS), Miami, Florida, 2008.

15. S. Williams, A. Watterman, and D. Patterson. Roofline: An insightful visual per-
formance model for floating-point programs and multicore architectures. Commu-
nications of the ACM, April 2009.

