
Software Design Space Exploration

for Exascale Combustion Co-design�

Cy Chan, Didem Unat, Michael Lijewski, Weiqun Zhang,
John Bell, and John Shalf

Lawrence Berkeley National Laboratory

Abstract. The design of hardware for next-generation exascale com-
puting systems will require a deep understanding of how software op-
timizations impact hardware design trade-offs. In order to characterize
how co-tuning hardware and software parameters affects the performance
of combustion simulation codes, we created ExaSAT, a compiler-driven
static analysis and performance modeling framework. Our framework can
evaluate hundreds of hardware/software configurations in seconds, pro-
viding an essential speed advantage over simulators and dynamic analysis
techniques during the co-design process. Our analytic performance model
shows that advanced code transformations, such as cache blocking and
loop fusion, can have a significant impact on choices for cache and mem-
ory architecture. Our modeling helped us identify tuned configurations
that achieve a 90% reduction in memory traffic, which could significantly
improve performance and reduce energy consumption. These techniques
will also be useful for the development of advanced programming models
and runtimes, which must reason about these optimizations to deliver
better performance and energy efficiency.

1 Introduction

One of the challenges facing the scientific computing community is to ensure ap-
plications will perform well on future exascale machines years in advance of their
arrival. Meeting the extreme power and performance challenges of HPC system
design over the next decade requires a tightly coupled hardware/software co-
design process that optimizes both the application and the hardware to meet
target performance, power, and cost requirements [1]. Tuning software or hard-
ware in isolation is insufficient to reach the optimal balance of these design goals.
To this end, we require a capability to rapidly estimate the performance of sci-
entific applications in various potential hardware and software configurations.

We present the ExaSAT (Exascale Static Analysis Tool) framework, which
enables us to rapidly explore the effects of code optimizations on the perfor-
mance of a target application in the context of varying hardware parameters.

� This manuscript has been authored by an author at Lawrence Berkeley National
Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of
Energy. The U.S. Government retains, and the publisher, by accepting the article
for publication, acknowledges, that the U.S. Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for U.S. Government purposes.

J.M. Kunkel, T. Ludwig, and H. Meuer (Eds.): ISC 2013, LNCS 7905, pp. 196–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Software Design Space Exploration for Exascale Combustion Co-design 197

Previous work includes cycle-accurate hardware simulators such as RAMP Gold
[2] and discrete event simulators such as SST [3], which produce more accurate
performance predictions than are feasible with static analysis but are more com-
putationally expensive. Dynamic binary instrumentation tools such as Pin [4]
can also be used to analyze the performance of a code by capturing events dur-
ing code execution, but are subject to the quirks of the x86 ISA and compiler.
In contrast, our framework provides a quantitative measure of application re-
quirements through static code analysis, allowing us to characterize the co-design
parameter space much more quickly than would be possible with simulators or
dynamic analysis alone. Aspen [5] is a recent notation based language for ana-
lytical modeling where the programmer inserts a description of the application’s
performance behavior into the code. ExaSAT automatically generates a per-
formance model directly from the source code without requiring programmer
intervention, allowing us to analyze larger codes more easily.

We applied our framework to two combustion proxy applications (CNS and
SMC) that were developed by the DOE Exascale Combustion Codesign Center
(ExaCT) [6] to provide a representative set of core computational kernels re-
quired for combustion simulation. The majority of stencil computations at the
heart of these codes are memory bandwidth bound on current architectures [7,8]
and are predicted to become even more so on future architectures as computa-
tional throughput is expected to increase faster than memory bandwidth [9,10].
Furthermore, data movement is expected to become an increasingly important
contributor to power consumption for exascale machines [11,12].

Because memory traffic is so critical, our analysis focuses on the effects of
software optimizations that are intended to reduce data movement between the
CPU and memory, rather than reducing the number of floating point operations.
We examine optimal cache blocking (or tiling) and loop fusion code transforma-
tions and their effect on hardware design trade-offs as they relate to application
performance for our combustion proxy applications. The software design space
is parameterized to expose many of the potential realizations of the application
and constituent kernels so that the best implementation can be selected. Apply-
ing our framework, we observe up to a 45% and 90% reduction in memory traffic
when we apply optimal tiling and aggressive loop fusion, respectively.

Hardware complexity has increased to the point that current compilers are no
longer able to automatically produce the code optimizations needed to achieve
optimal performance on every target architecture. This paper demonstrates the
impact of advanced code transformations that are beyond the capability of cur-
rent compilers to produce and provides guidance for the development of new
programming models and runtimes that will support these transformations. We
discuss the following contributions in this work:

– We designed and implemented a fast, flexible static analysis and performance
modeling framework and XML-based intermediate representation that can
be used to estimate the performance of stencil computations and help explore
trade-offs for co-design.

198 C. Chan et al.

– We utilized our framework to profile the characteristics and estimate the
performance of two combustion code variants: CNS and SMC, under a variety
of hardware and software configurations.

– We used this model to illustrate the impact of cache blocking and loop fusion
optimizations on hardware trade-offs, in particular how they affect cache size
and memory bandwidth requirements.

– Our framework provides the deep code analysis and modeling necessary for
future programming models and runtimes to reason about choices and make
adaptations without a costly combinatorial search.

– Our analysis serves as a key vehicle for communicating with our industry
partners for co-designing an exascale machine.

2 CNS and SMC Combustion Codes

To represent the characteristics of a range of combustion applications, we stud-
ied two proxy applications developed by the ExaCT project. The CNS code is a
simple proxy that integrates the compressible Navier-Stokes equations assuming
constant transport properties. It is intended to capture the computational char-
acteristics of the dynamical core of a combustion simulation. The SMC code is a
more advanced proxy for the direct numerical simulation combustion code S3D
[13], adding detailed models for chemical species diffusion and kinetics. SMC
contains the key elements of both the dynamical core and the chemical kinetics
components of S3D; however, it uses a simpler temporal integration algorithm
that does not include automatic error control. Both codes are based on the
high-accuracy solution of a system of PDEs of the form:

∂U

∂t
+∇ · F(U) = ∇ · D(U) + S .

HereU is a vector of unknowns, representing density, energy and three components
of momentum with an additional density for each chemical species, for a total of
5 + Ns unknowns where Ns is the number of species in the problem (1 for CNS).
The termsF ,D, andS correspond to hyperbolic transport, nonlinear diffusive pro-
cesses and chemical source terms, respectively. The dynamical core uses 8th-order
stencil operations to approximate spatial derivatives, converting the system into a
large collection of ordinary differential equations that are integrated using a third-
order, low-storage,TVDRunge-Kutta scheme [14,15]. The chemical source term is
a computationally intensive single-point physics routine that uses a large number
of computationally expensive transcendental function evaluations. Further details
on our approach will be presented in a forthcoming paper [16].

Figure 1 illustrates the most data-intensive stencil access pattern used in the
CNS and SMC codes. This stencil reads values four grid elements deep in both
directions of each of three dimensions; however, there are many other stencil
patterns in the code that read only a subset of the points shown. Our tool
separately analyzes each stencil access for every array in every loop to estimate
working sets and data movement.

Software Design Space Exploration for Exascale Combustion Co-design 199

+y

+x

+z

U(x,y,z,t)

Fig. 1. 3D stencil access pattern in the SMC and CNS codes

Table 1 shows some computational properties of the codes studied. In addi-
tion to the ones shown, we also analyzed versions of the SMC code with 21,
71, and 107 chemical species, where the number of species varies with fuel type,
from hydrogen to methane to biofuels. The CNS code (which simulates dynamics
only) and the SMC dynamics codes have very different computational charac-
teristics compared with the SMC chemistry codes. In our analysis, we utilize the
bytes per flop (B/F) ratio, which represents the required number of bytes to be
transferred between the processor and off-chip memory divided by the required
number of floating point operations needed for a particular code. The division
and transcendental operations are weighted since they cost more than adds and
multiplies (see Section 4.2 for details).

An algorithm with a low B/F ratio will likely be computationally bound, while
one with a high B/F ratio will likely be memory bandwidth bound. The CNS
and SMC dynamics codes have a relatively high B/F ratio especially in a cache
constrained environment (up to 2.22). They exhibit a high degree of data reuse
both within and across loops, resulting in a lot of potential to reduce memory
traffic using the optimizations discussed in this work. In contrast, the chemistry
code is dominated by expensive floating point divisions and trancendental func-
tions with a relatively light memory access requirement, resulting in a much
lower B/F ratio. For the 53 species SMC code, the difference is roughly two
orders of magnitude (0.01 vs. 1.48, cache-constrained). We expect the dynamics
code to be bandwidth bound on most current and future architectures while the
chemistry code will remain compute bound.

Although this paper focuses mainly on memory traffic optimizations that im-
prove the performance of the dynamics codes, there are computational optimiza-
tions such as vectorization or pipelining that could help improve the throughput
of the chemistry codes. Furthermore, the disparity in arithmetic intensity be-
tween the dynamics and chemistry codes suggests that co-scheduling could have
each code utilize different parts of the processor simultaneously. Support for
such optimizations within a programming model and runtime will be explored
in future work.

200 C. Chan et al.

Table 1. CNS and SMC code characteristics (for 1, 9, and 53 chemical species). RK =
Runge-Kutta step. †Weighted flops. ‡Cache available to group of threads cooperating
on a working set.

CNS SMC Dynamics SMC Chemistry

Num. 3D spatial loops 14 27 1

Number of species 1 9 53 9 53

Adds 821 7005 30677 619 7923
Flops/point Muls 797 7871 34860 815 9432
per RK Divs 6 66 374 39 540

Trans 1 1 1 51 710

Resident 40 157 685 20 108
Arrays/RK Reads 92 557 2405 20 108

Writes 40 253 1045 9 53

Bytes/Flop† Unlimited $ 1.32 0.82 0.74 0.03 0.01

512 kB $‡ 2.22 1.25 1.48 0.03 0.01

3 Software Design Space

3.1 Cache Blocking

The first optimization, cache blocking, focuses on reducing capacity misses (see
[17] for more on 3C’s cache model) as a core sweeps through the problem’s itera-
tion space. Tiling the iteration sweep reduces the size of the working set required
to enable temporal reuse of data. If the working set is reduced to within the size
of available on-chip memory, capacity misses can be reduced or eliminated, thus
decreasing the necessary memory traffic between the CPU and DRAM.

The relationship between working set, cache size, and memory traffic can
sometimes cause unexpected performance effects. For example, many program-
mers may parallelize a triply nested loop by associating an OpenMP parallel

for pragma with the outermost loop (see Figure 2). This strategy yields the
coarsest grain parallelism, which minimizes the overhead of spawning and sync-
ing the resulting threads. However, parallelizing the middle loop instead reduces
the working set of each thread by a factor of four (the number of threads). If
the reduced working set now fits into the cache, then there may be a significant
performance benefit. There is a trade-off in this scenario between cache size,
memory bandwidth, and the costs of spawning and syncing threads.

Another trade-off for tiling is redundant ghost zone traffic that must be pulled
in for each block. The ghost zone consists of neighboring cells outside of the tile
that must be read due to the shape of the stencil access pattern (see Figure 1).
The left diagram in Figure 3 shows a single, unblocked tile with ghost zones on
the outside the tile. As the tile size is decreased (center and right diagrams), the
ghost zones overlap with neighboring blocks (indicated with deeper shading).

Previous work has shown the benefits of cache blocking stencil codes [8,7].
In this paper, we are interested more in illustrating the co-design trade-offs
that are exposed by software optimizations such as blocking, rather than the

Software Design Space Exploration for Exascale Combustion Co-design 201

Fig. 2. Working sets that result from using OpenMP parallel for with the outermost
vs. middle loop with four threads. Each color/number indicates the subgrid updated
by a thread. Bold regions indicate the working set tile.

��������	
� �
������	
� �
������	
�

Fig. 3. 2D representation of the cache blocking optimization in the X and Y dimen-
sions. Overlapping ghost zones are indicated by the deeper shading in the diagram.

raw performance benefits enabled. To this end, we developed a cache model to
estimate the level of data reuse given different configurations. For any particular
cache configuration, a blocking strategy may be chosen that balances the penalty
of capacity misses against the overhead of redundant ghost-cell traffic. This
optimization exposes a trade-off in hardware between cache size and memory
bandwidth explored further in Section 5.

3.2 Loop Fusion

The second optimization, loop fusion, focuses on eliminating the need to stream
arrays in and out of memory. While some compilers already implement fusion,
they tend to do so to enhance instruction level parallelism and to help hide
latency. In contrast, we apply loop fusion for the purpose of decreasing memory
traffic by reducing the number of times arrays are transferred to or from memory
[18].

Figure 4 shows an example of a loop fusion optimization. In Scenario 1, array
A must be streamed from memory twice compared to just once for Scenario 2.

202 C. Chan et al.

��������	�
��������
�
�	��
�����	���

��������	�
��������
���	��
�����	���
�	���

��������	�
��������
�
�
�����	���
���	��
�����	���
��

�������������	���
�����
�����������������
�	���������
�
������� ��!"��#���$	�%�"�"%��&�'�((��

�������������	���������
�
�
������� ��!"�����

�"����	����� �"����	�����

Fig. 4. Example of loop fusion code optimization

Also in Scenario 1, array B must be streamed to memory and back, while in
the fused case the array can be replaced with a temporary variable (so long as
B is not needed afterwards). Assuming cache bypassed writes, this optimization
reduces memory traffic from 5N to 2N , where N is the size of each array.

The trade-off for fusing loops is that the register and cache working sets grow,
potentially causing a reduction in performance if the working sets no longer fit
within on-chip memory. Loop fusion exposes a trade-off in the hardware involving
the balance of memory bandwidth with registers and cache size. Our framework
allows us to explore the impact of this transformation on memory traffic in the
context of varying on-chip memory capacities. We will explore a couple strategies
for applying loop fusion and their effects in Section 5.

4 Methodology

4.1 Framework and Toolchain

We developed a stencil-specific static analysis and performance modeling tool
to help estimate the performance of target codes on various potential hardware
platforms. Figure 5 illustrates our framework, which consists of roughly two
stages of analysis. The first stage, which is built on top of the ROSE compiler
[19], takes Fortran code as an input and extracts key characteristics about the
computation and data access patterns and stores them in an XML intermediate
representation (XML-IR). Data in the XML-IR include (but are not limited to)
the following:

– Loop nest structure, bounds, and strides
– Floating point operations
– Scalar accesses (number of reads and writes)
– Array accesses (number of reads and writes for each index)

The second stage (written in Python) combines the XML-IR with user-provided
problem parameters (e.g. box size, number of chemical species), machine pa-
rameters (e.g. computational throughput, cache size, memory bandwidth), and
software optimizations (e.g. loop transformations) to produce estimates of key
performance metrics such as working set sizes, DRAM traffic, B/F ratio, and ex-
ecution time. The resulting performance model can be executed within a script

Software Design Space Exploration for Exascale Combustion Co-design 203

�����(����
����(�

���'�	���
��
	�(�(�

���
���
��������������
�'��
�(������

��'���������
��
'���'����
����������

�(���
�
�
�����(�

�
���
���
����

����	�

�
������
�
�
�����(�

Fig. 5. ExaSAT Tool Chain

to rapidly explore parameter configurations, and it can additionally produce
spreadsheets, dependency graphs, and tables with additional details such as ar-
ray residency and access frequency, memory footprints, and state variable statis-
tics. When applied to the SMC proxy application, our framework can evaluate
roughly 900 hardware/software configurations per minute on a laptop. More
details will be provided in future work [20].

4.2 Hardware and Performance Model

We utilize a simple hardware model (shown in Figure 6) that abstracts the ma-
chine as a collection of parallel hardware cores with some parameterized on-chip
memory. Our hardware model exposes the following architectural parameters,
which were identified through discussion with industry participants in the DOE
Fast Forward program:

– Aggregate computational throughput
– Aggregate memory bandwidth
– Cache or scratchpad size
– Cache line and word sizes
– Cost of special functions (e.g. divisions or transcendentals)

���� ���� ���� ����

�����	
�
���

���
��� ��� ��� ���

Fig. 6. Hardware model featuring the CPU with two levels of on-chip cache and sepa-
rate DRAM connected by a bus

The CPU model is agnostic to the number of cores, instead taking the ag-
gregate computational throughput as a model parameter. The memory model

204 C. Chan et al.

similarly utilizes a parameter specifying the aggregate bandwidth between the
CPU and the DRAM (i.e. the STREAM bandwidth) over the memory bus.
Figure 6 shows an example cache configuration with private L1 caches and a
partitioned, shared L2 cache. While there are many other possible on-chip mem-
ory configurations, we are mainly interested in the resulting bandwidth filtering
capability, which is primarily determined by the total amount of (non-inclusive)
on-chip memory per thread or group of cooperating threads. The performance
model focuses on aggregate performance of the machine rather than simulating
individual components and their interactions, It captures the costs of the com-
putational workload and data movement and the performance implications of
data reuse (or lack thereof).

The performance of an application is estimated in the following way: let α be
the aggregate computational throughput of the machine and β be the aggregate
memory bandwidth. Also, let C be the application’s total computational work
andD be the total necessary data movement between the CPU’s on-chip memory
and DRAM. Then the estimated running time is T = max(Tc, Td), where Tc =

C
α

is the CPU time and Td = D
β is the DRAM time. Our modeling framework is not

intended to provide exact performance predictions, but rather sets a performance
upper-bound in the spirit of the Roofline model [21].

Since some floating point operations such as divides and transcendentals can
take significantly longer to execute than adds and multiplies, our performance
model can weight these special operations according to their relative costs. For
this paper, we weighted the costs of these operations according to their non-
SIMD throughput on the Intel Sandy Bridge architecture [22,23]. The resulting
weighted flop count determines the estimated CPU time of the computation.
Figures 7(a) and 7(b) show the significance of weighting the floating point op-
erations by their cost. In the chemistry module of the SMC proxy application,
the CPU time is dominated by transcendentals, even though the transcendental
operation count is a small percentage of the total flops.

(a) (b)

Fig. 7. (a) Floating point instruction mix and (b) CPU Time (Tc) for the chemistry
part of the SMC code for 53 chemical species, assuming divides and trancendentals
take a relative factor of 39x and 125x longer than the adds and multiplies, respectively

Software Design Space Exploration for Exascale Combustion Co-design 205

���� ������ �����

�

	

�

	

�

	

Fig. 8. Working set sizes to enable different levels of reuse for an example 7-point 3D
stencil. The block is swept in a triply nested loop with the X dimension swept in the
innermost loop and Z in the outermost.

Memory and Cache Model. In order to determine D, the total data move-
ment, our cache model captures the data reuse pattern that occurs with sten-
ciled array accesses. The on-chip memory is modeled as an ideal, fully-associative
cache with a least-recently used (LRU) replacement policy. Our model assumes
reuse of data will occur if the associated working set is small enough to fit in
on-chip memory. Actual cache behavior is likely to under-perform in compari-
son due to conflict misses and imperfect replacement, though our model should
capture the first-order behavior of a finite-cache memory system. Threads on
a chip may cooperate to gain the benefit of a larger aggregate memory space
in which to store a shared working set, possibly enabling larger block sizes and
reduced memory traffic; however, the costs of sharing data between the caches
on the chip are not included in our model. The amount of memory traffic re-
quired to execute a particular stencil loop is determined by the amount of the
on-chip memory available per group of threads collaborating on a working set.
Our model uses the specified cache size to 1) determine what temporal reuse of
data will occur as threads sweep through the grid and 2) estimate the resulting
cache miss traffic.

Figure 8 shows the working set sizes needed to enable reuse between cells,
pencils, and planes. If no on-chip memory is available, every array access in the
kernel requires data to be transferred from DRAM. If the cell working set (left)
fits in cache, then those values will remain in cache for reuse on the next cell
iteration. Similarly, if the pencil working set (middle) fits into cache, there will
be reuse between pencil sweeps, and so forth. Based on the shape of the stencil
access pattern, our model computes 1) the sizes of the working sets and 2) the
resulting memory traffic for each of the reuse cases. This information is then
combined with hardware and software parameters to determine the estimated
memory traffic and DRAM time required for each array in every loop in the
code.

If on-chip data movement is a concern, a conservative estimate can be made by
limiting the size of modeled on-chip memory to the size of the private L1 cache;
however, the resulting memory traffic estimates produced by our model will be
the total traffic between the L1 cache and the next level of on-chip memory
rather than the traffic between the CPU and DRAM. Our methodology could

206 C. Chan et al.

potentially be extended in future work to do a multi-level analysis that computes
bandwidth filtering and performance modeling at every level of cache.

Model Validation. Figure 9 shows the effect of tiling with three simple 7-point
stencil benchmark kernels on a single node of the NERSC “Hopper” Cray XE6
using 3843 data grids. Table 2 shows properties of the benchmarked machine.
We measured the execution time for 24 concurrent threads (1 thread per core)
with no software prefetch or cache bypass used. To first-order approximation,
the measured execution times correlate well with our model’s predictions with
respect to optimal execution times and block sizes. The model departs from
measurement for smaller blocks as the hardware prefetchers are no longer able
to hide load latencies for short stanza accesses. We also observe the effect of
the machine’s randomized cache replacement policy, which smooths the sharp
transition in the model at the point where the working set grows larger than the
cache and capacity misses begin to occur. Since static analysis does not resolve
system behavior to the same degree of precision as an event simulator in the
interest of speed and flexibility, our results are necessarily more comparative
than absolute in nature. That said, we believe valuable lessons can be learned
from examining the trade-offs exposed by our analysis framework in the co-design
parameter space.

���

���

���

����

��� ���� ����

��
	�

�
�

��
��

	�
��

��
�

���������	�

	
��
�
�������
���
	��
�
�������
���
	
��
�
�����
��
��
�
	��
�
�����
��
��
�
	
��
�
������������
	��
�
������������

Fig. 9. Measured and modeled execution times for various blocking sizes for three
benchmark finite difference kernels

5 Results

Since the optimizations studied do not change the amount of computation (flops)
required, the B/F ratio can be used as a proxy metric for memory traffic (and
thus execution time) in memory bandwidth bound codes. In this context, the
B/F ratio is an indicator of relative code performance independent of a particular
machine’s specifications, and is useful when making comparisons between code
requirements and machine capabilities during the design process.

Software Design Space Exploration for Exascale Combustion Co-design 207

Table 2. Properties of a NERSC Cray XE6 compute node [24]. All numbers given are
per node except cache, which are given per core. †Data cache.

One NERSC “Hopper” Node

CPUs Opteron 6172

Sockets / Cores 2 / 24

Peak Compute 201.6 Gflop/s

Priv. L1/L2 $ 64 kB†/ 512 kB

Shared L3 $ 1 MB / core

Mem. Interface DDR3-1333

Mem. Channels 8

Peak Mem. BW 72 GiB/s

STREAM BW ∼51 GiB/s

Peak B/F Ratio 0.38

5.1 Cache Blocking

Figure 10 shows the B/F ratio for the CNS proxy application for different block
sizes and on-chip cache sizes. In many cases there is insufficient cache to enable
the best reuse case outlined in Section 4.2. Blocking the iteration space reduces
the sizes of the working sets needed to enable reuse, but incurs the overhead
of pulling in additional ghost zones for the smaller blocks. This overhead is
illustrated by the unlimited cache case, where the B/F ratio increases as the
block size decreases. For a fixed block size, as the amount of cache is reduced,
more capacity misses occur, increasing the B/F ratio. For a fixed cache size, we
observe the minimum B/F ratio typically occurs at the largest block size whose
working sets still fit within cache. The multiple inflection points are due to the
code’s various loops having different working set sizes and reuse behaviors.

�����

�����

�����

�����

�����

�����

�����

�� �� 	� �
� ���
�� ��	�

��
��
���

��
��
	

��

�	
�
������

�
����
�����

�����
�����

��
����
�����

�����
�����

�����
�����

����������
�����

Fig. 10. Byte to flop ratio for various block and cache sizes

Figure 11 shows that as chemical species are added to the simulation, the
memory traffic required per Runge-Kutta step increases across all block sizes.

208 C. Chan et al.

��

��

��

���

���

���

����

����

�� �� �� ��� ��� ��� ����

�
��

��
��
��
	

��
��
�

��
��
��

��
��

�

�����������

	
���������
��������

	
���������������������

	
��������
��������

	
��������������������

��	�����
��������

��	�����������������

Fig. 11. Memory traffic per Runge-Kutta step as block size, cache size, and number
of chemical species are varied

Since the working set size increases with number of species, the optimal block size
for a fixed amount of cache decreases. In cases with a large number of chemical
species, augmenting the cache resources on the chip would reduce the blocking
overhead and ease memory bandwidth requirements.

5.2 Loop Fusion

We examined two variants of the loop fusion optimization: simple and aggressive.
We use the term stencil dependency to refer to a data dependency between loops
where data written by the first loop is read by the second in a stencil (non-point-
wise) access pattern. In the simple fusion case, only loopswith no stencil dependen-
cies are fused, while in the aggressive fusion case, all loops in the solver are fused.
Simple fusion can be applied withoutmajor changes to the loop bodies, but aggres-
sive fusion requires the introduction of temporary buffers and a staggered update
strategy to replace arrays with stencil dependencies. While our framework is able
to model the effects of cache blocking without any manual code modification, the
loop fusion transformations studied herewere implementedmanually using the de-
pendency graphs generatedby our tool for guidance. Analysis of the resulting fused
code was then handled by our framework.

Figure 12 shows the dependency graphs generated by our framework (simpli-
fied for clarity) corresponding to the different fusion cases for the CNS code. The
ovals correspond to loops in the solver, while rectangles represent data arrays.
The arrows show which arrays are read and written by each loop (dashed arrows
represent stencil dependencies).

Figure 13 shows the bandwidth filtering that results for the CNS code us-
ing various cache sizes and loop fusion strategies. For each point in the graph,
the cache blocking strategy was independently chosen to minimize the resulting
memory traffic in our model. The stair-step pattern observed with the simple
fusion scenario is a result of the transition between cell, pencil, and plane reuse

Software Design Space Exploration for Exascale Combustion Co-design 209

����������
�	
��
��
�������

�����
��������
�	���
��
��������������

����
����
�
�������

�	���
��
���������
����

Fig. 12. Dependency graph showing loop fusion optimizations

cases as explained in Section 4.2. As expected, increasing the cache size intro-
duces the opportunity to substantially reduce memory bandwidth requirements.

������

�����

����

��

��

��

��

�� �� ��� ��� ���� ����� ����� ������

��
�

���
��
��
��
��

��
�

���
����
���� �

����������
	�
��
��������
����
����
��������

Fig. 13. Bandwidth filtering diagram for the CNS code for different loop fusion strate-
gies

For small caches, there is typically only modest benefit from using loop fusion
because the larger fused working sets require smaller block sizes to fit into cache.
However, once the cache is large enough to fit the fused working sets, the benefits
can be dramatic. For the largest cache, a 6.7x reduction in B/F ratio can be
attained for the CNS code using the aggressive fusion strategy, but even with
only 128 kB of cache the traffic is reduced by 2.1x compared to the unfused
strategy.

5.3 Analysis

Given the size of the on-chip memory in our hardware configuration, we can
choose the best overall optimization strategy to minimize memory traffic. As a
result of applying the best combination of blocking and fusion strategies, the
realizable bandwidth filtering curve is the minimum across the curves shown in
Figure 13.

In some cases, making the trade-off of dedicating extra die area for cache can
lead to a substantial benefit in power and performance from reduced memory

210 C. Chan et al.

)�))�

)�*)�

+�))�

+�*)�

,�))�

,�*)�

-�))�

-�*)�

.�))�

+� /� 0.� *+,� .)10�

��
��
���

��
��
	�
��

��
������������

�����	���
��2�����������	���
��2���������	���

Fig. 14. Impact of software optimizations on the trade-off between cache size and
memory bandwidth for the CNS code

traffic and lower bandwidth requirements. The effect on this trade-off due to
software optimization is illustrated in Figure 14 for the CNS code. Tiling pro-
vides up to a 45% improvement versus the baseline unoptimized code at cache
capacities larger than 8 kB. Loop fusion has the potential to filter bandwidth
by as much as 90% compared to baseline, but it requires a cache larger than
64 kB. Similarly, Figure 15 shows the impact of the code optimizations on the
53 species SMC dynamics code. The stair-step pattern resulting from the tran-
sition between reuse cases is more prominent here due to the larger working
sets. The SMC code has a lower baseline B/F ratio compared with CNS due to
the arithmetic complexity of the code, but the minimum cache size for blocking
improvements is higher than CNS due to the increased amount of data handled.
Furthermore, several loops in the SMC code can be fused without large working
set penalties, improving performance even with small cache sizes. Tiling provides
up to a 39% improvement versus the baseline unoptimized code, while fusion can
reduce traffic by up to 60% versus baseline.

The lowered bandwidth requirements due to these optimizations could have
a significant beneficial impact on energy efficiency of future systems. However,

��

����

����

����

����

��

����

����

����

����

��

�� �� 	�� ����
��� ����� �����

��
��
���

��
��
	�
��

��
������������

�
�������
�����������������
���������������

Fig. 15. Impact of software optimizations on the trade-off between cache size and
memory bandwidth for the 53 species SMC dynamics code

Software Design Space Exploration for Exascale Combustion Co-design 211

the larger cache sizes required could be difficult to implement without moving
towards a scratchpad memory implementation, such as the one used in the STI
Cell processor. Our results show that it is essential to consider both software op-
timizations and hardware design parameters simultaneously. These observations
would not have been apparent from benchmarking on fixed hardware alone.

6 Conclusions and Future Work

We developed a compiler-based framework that is able to automatically con-
struct performance models directly from source code and applied it to explore
trade-offs in the hardware design space using the CNS and SMC combustion
proxy applications. Using this approach, we demonstrate tuned hardware/
software configurations that achieve up to 45% and 90% reductions in compul-
sory memory traffic with the application of optimal data tiling and aggressive
loop fusion, respectively. We believe this kind of deep code analysis and perfor-
mance modeling demonstrates the importance for future advanced runtimes to
make dynamic adaptations in the context of changing computing environments
without a costly combinatorial search. Our analysis serves as a key vehicle for
communicating with our vendor partners for co-designing an exascale machine.

We wish to generalize our approach and make it practical to apply these
techniques to larger, more complex codes. Because the optimizations studied
here require significant code transformations, current compilers are unable to
perform them automatically. We are using the lessons learned here to guide
the development of programming models and frameworks that will enable the
automation of our code transformation and performance analysis techniques. For
example, we are exploring the use of functional semantics and annotations to
help reason about data flows and on-chip memory footprints. In summary, our
work demonstrates the utility of a co-design approach, which explores the design
space of software optimizations with parameterized hardware and offers deeper
insight into the future of application and machine design.

Acknowledgements. The authors would like to thank George Michelogian-
nakis and Sam Williams for their insightful comments during the preparation of
this paper. All authors from Lawrence Berkeley National Laboratory were sup-
ported by the Office of Advanced Scientific Computing Research in the Depart-
ment of Energy Office of Science under contract number DE-AC02-05CH11231.
This work is part of the DOE Center for Exascale Simulation of Combustion in
Turbulence (ExaCT) and the DOE Co-Design for Exascale (CoDEx) projects.

References

1. Mohiyuddin, M., et al.: A design methodology for domain-optimized power-efficient
supercomputing. In: SC 2009, pp. 12:1–12:12. ACM, New York (2009)

2. Tan, Z., et al.: RAMPGold: An FPGA-based architecture simulator for multiproces-
sors. In: 2010 47th ACM/IEEE Design Automation Conference (DAC), DAC 2010,
pp. 463–468 (June 2010)

212 C. Chan et al.

3. Janssen, C.L., et al.: A simulator for large-scale parallel computer architectures.
International Journal of Distributed Systems and Technologies 1(2), 57–73 (2010)

4. Luk, C.-K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: PLDI 2005, pp. 190–200. ACM, New York (2005)

5. Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for performance
modeling. In: SC 2012, pp. 84:1–84:11. IEEE Computer Society Press, Los Alamitos
(2012)

6. ExaCT: Center for exascale simulation of combustion in turbulence. Website
(2013), http://exactcodesign.org

7. Datta, K., et al.: Stencil computation optimization and auto-tuning on state-of-
the-art multicore architectures. In: SC 2008, pp. 4:1–4:12. IEEE Press, Piscataway
(2008)

8. Rivera, G., Tseng, C.-W.: Tiling optimizations for 3d scientific computations. In:
Supercomputing 2000. IEEE Computer Society, Washington, DC (2000)

9. Kogge, P., et al.: Exascale computing study: Technology challenges in achieving
exascale systems (2008)

10. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges.
In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010.
LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011)

11. Miller, D.A.B.: Rationale and challenges for optical interconnects to electronic
chips. In: Proc. IEEE, pp. 728–749 (2000)

12. Borkar, S.: Design challenges of technology scaling. IEEE Micro 19(4), 23–29 (1999)
13. Chen, J.H., et al.: Terascale Direct Numerical Simulations of Turbulent Combus-

tion Using S3D. Comput. Sci. Disc. 2(015001) (2009)
14. Gottleib, S., Shu, C.: Total variation diminishing Runge-Kutta schemes. Mathe-

matics of Computation 67(221), 73–85 (1998)
15. Qiu, J., Shu, C.: Runge-Kutta discontinuous Galerkin method using WENO lim-

iters. SIAM J. Sci. Comp. 26(3), 907–929 (2005)
16. Zhang, W., et al.: Multirate higher-order discretization approaches for the multi-

component, reaction compressible Navier-Stokes equations (in preparation)
17. Hill, M.D., Smith, A.J.: Evaluating associativity in cpu caches. IEEE Trans. Com-

put. 38(12), 1612–1630 (1989)
18. Ding, C., Kennedy, K.: Improving effective bandwidth through compiler enhance-

ment of global cache reuse. J. Parallel Distrib. Comput. 64(1), 108–134 (2004)
19. Quinlan, D.J., Miller, B., Philip, B., Schordan, M.: Treating a user-defined parallel

library as a domain-specific language. In: IPDPS 2002, p. 324. IEEE Computer
Society (2002)

20. Unat, D., Chan, C., et al.: Exasat: A static analysis and performance modeling
tool for exascale co-design (in preparation)

21. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commununications of the ACM 52(4),
65–76 (2009)

22. Williams, S.: Intel Sandy Bridge SVML benchmark results (2012)
23. Vladimirov, A.: Arithmetics on Intel’s Sandy Bridge and Westmere CPUs: not all

FLOPS are created equal. Colfax International (2012)
24. NERSC: Cray XE6 (Hopper). Website (2013),

http://www.nersc.gov/users/computational-systems/hopper

http://exactcodesign.org
http://www.nersc.gov/users/computational-systems/hopper

	Software Design Space Exploration for Exascale Combustion Co-design
	Introduction
	CNS and SMC Combustion Codes
	Software Design Space
	Cache Blocking
	Loop Fusion

	Methodology
	Framework and Toolchain
	Hardware and Performance Model

	Results
	Cache Blocking
	Loop Fusion
	Analysis

	Conclusions and Future Work

