
Optimizing Sparse Matrix-Multiple Vectors Multiplication for
Nuclear Configuration Interaction Calculations

Hasan Metin Aktulga, Aydın Buluç, Samuel Williams, Chao Yang
Computational Research Division
Lawrence Berkeley National Lab

{hmaktulga, abuluc, swwilliams, cyang}@lbl.gov

Abstract—Obtaining highly accurate predictions on the prop-
erties of light atomic nuclei using the configuration interaction
(CI) approach requires computing a few extremal eigenpairs of
the many-body nuclear Hamiltonian matrix. In the Many-body
Fermion Dynamics for nuclei (MFDn) code, a block eigensolver is
used for this purpose. Due to the large size of the sparse matrices
involved, a significant fraction of the time spent on the eigenvalue
computations is associated with the multiplication of a sparse
matrix (and the transpose of that matrix) with multiple vectors
(SpMM and SpMM T). Existing implementations of SpMM
and SpMM T significantly underperform expectations. Thus, in
this paper, we present and analyze optimized implementations
of SpMM and SpMM T. We base our implementation on
the compressed sparse blocks (CSB) matrix format and target
systems with multi-core architectures. We develop a performance
model that allows us to understand and estimate the perfor-
mance characteristics of our SpMM kernel implementations, and
demonstrate the efficiency of our implementation on a series
of real-world matrices extracted from MFDn. In particular,
we obtain 3-4× speedup on the requisite operations over good
implementations based on the commonly used compressed sparse
row (CSR) matrix format. The improvements in the SpMM
kernel suggest we may attain roughly a 40% speed up in the
overall execution time of the block eigensolver used in MFDn.

Keywords—Sparse Matrix Multiplication; Block Eigensolver;
Nuclear Configuration Interaction; Extended Roofline Model

I. INTRODUCTION

The solution of the quantum many-body problem transcends
several areas of physics and chemistry. Nuclear physics faces
the multiple hurdles of a very strong interaction, three-nucleon
interactions, and complicated collective motion dynamics. The
configuration interaction (CI) method allows computing the
many-body wave functions associated with the discrete energy
levels of nuclei with high accuracy. Typically, one is only
interested in 10-20 low energy states, which can be computed
by partially diagonalizing the nuclear many-body Hamiltonian.

Many-body Fermion Dynamics for nuclei (MFDn) is the
state-of-the-art nuclear CI code used for studying the struc-
tures of light nuclei. MFDn consists of two major parts, (i)
the construction of the Hamiltonian matrix Ĥ , and (ii) the
computation of its lowest eigenpairs. Ĥ is constructed in
a many-body basis space based on the harmonic oscillator
single-particle wave functions. Since Ĥ is a large symmetric
sparse matrix, a parallel iterative eigensolver is preferred [1].

One of the biggest challenges in CI calculations is the
massive size of Ĥ (millions to billions of rows and billions to
trillions of nonzeros depending on the nucleus of interest and

the desired accuracy level) and the size of its eigenvectors.
Although one may be motivated to calculate Ĥ on-the-fly,
the construction of Ĥ is computationally very expensive.
Thus, rather than reconstructing it at each iteration of the
eigensolver, Ĥ is constructed once at the beginning and
is preserved throughout the computation in MFDn. Conse-
quently, calculations that are possible using this approach are
limited by a supercomputer’s memory capacity and compute
capability. In order to eliminate redundant computations during
the expensive matrix construction phase and to cut the memory
requirements, only half of the symmetric Ĥ matrix is stored
in the distributed memory available on a cluster. Therefore
each processor owns both a sub-matrix in the lower triangle,
as well as its transposed counterpart in the upper triangle. A
unique 2D triangular processor grid is used to carry out the
computations in parallel in this case [2], [3]. The accuracy
that can be obtained through computations in single-precision
arithmetic is sufficient to calculate the physical observables of
interest in MFDn. Therefore the Hamiltonian matrix is stored
in single-precision to further reduce the memory requirements.

While a Lanczos-based eigensolver is commonly used for
symmetric sparse matrices, MFDn can use the locally optimal
block preconditioned conjugate gradient (LOBPCG) [4], a
block eigensolver, for a number of reasons. First, the LOBPCG
algorithm allows the use of many-body wave functions from
lower model spaces (less accurate but inexpensive calcula-
tions) to be used as good initial guesses. Second, a pre-
conditioner can be built based on an understanding of the
underlying physics of the problem to improve the convergence
rate of the LOBPCG algorithm. In the Lanczos algorithm,
one cannot make use of an initial guess nor a preconditioner.
Finally and most relevant to our focus in this paper, LOBPCG
algorithm requires the multiplication of a sparse matrix with
multiple vectors (SpMM), whereas the Lanczos algorithm
uses the sparse matrix vector multiplication (SpMV) as a
building block. Since the SpMV operation has a low arithmetic
intensity, the overall performance of the Lanczos algorithm
would ultimately be limited by the processor’s DRAM band-
width. On the other hand, in SpMM, one can make use of
the increased data locality in the vector block and attain
much higher floating-point operation performance on modern
multicore architectures.

As noted above, distributed memory parallel approaches are
necessary to solve the actual problems of interest in MFDn.

During matrix construction, a well-balanced distribution of
the overall load to the compute nodes is ensured through
heuristics that are outside the scope of this paper. In this
work, we focus on the performance of local thread-parallel
SpMM computations within a single process. Since only half
of the Hamiltonian matrix is stored, each process must perform
a conventional SpMM as well as the transpose operation
SpMM T (Y = ATX). As we show in Section VI, due to
the large size of the sparse matrices involved, a significant
fraction of the time spent on the eigenvalue computations is
actually associated with the sparse matrix computations.

While we focus on MFDn in this paper, the implications
of improved SpMM performance are broader. For example,
spectral clustering, one of the most promising clustering
techniques, uses the eigenvectors associated with the smallest
eigenvalues of the Laplacian of the data similarity matrix to
partition the graph into various clusters [5], [6]. For a k-
way clustering problem, k eigenvectors are needed, where
typically 10 ≤ k ≤ 100, an ideal range for block eigensolvers.
Additional uses of SpMM are explained in the related work
(Section VII).

In this paper, we present a new implementation for the
SpMM kernel, CSB COO, which is based on the compressed
sparse block (CSB) framework [7]. We target the high-end
multicore processors of the Cray XC30 (Edison) at NERSC.
We develop a performance model that allows us to understand
and estimate the performance characteristics and bottlenecks
of our SpMM kernel implementations. We demonstrate the
efficiency of our implementation with respect to existing
methods for the regular SpMM operation and the transpose
operation on a series of real-world matrices extracted from
MFDn. In particular, we obtain 3-4× speedup compared
to a row-wise thread-parallel implementation that uses the
compressed sparse row (CSR) format. The improvements in
the SpMM kernel implies an about 40% speed-up in the overall
execution time of the block eigensolver.

II. EIGENVALUE PROBLEM IN MFDN

The eigenvalue problem arises in nuclear structure calcula-
tions because the nuclear wave functions Ψ are solutions of
the many-body Schrödinger’s equation:

Hψ = Eψ (1)

H =
∑
i<j

(pi − pj)2

2mA
+

∑
i<j

Vij +
∑

i<j<k

Vijk + . . . (2)

In the CI approach, both the wave functions ψ and the Hamil-
tonian H are expanded in a finite basis of Slater determinants
(anti-symmetrized product of single-particle states). Each el-
ement of this basis is referred to as a many-body basis state.
The representation of H under this basis expansion is a sparse
symmetric matrix Ĥ . Thus, in CI calculations, Schrödinger’s
equation becomes a finite-dimensional eigenvalue problem,
where one is interested in the lowest eigenvalues (energies)
and their associated eigenvectors (wave functions). Many-body
basis state i corresponds to the ith row and column of the

0 2 4 6 8 10 12 14
N

max

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

M
-s

ch
em

e
b

as
is

 s
p

ac
e

d
im

en
si

o
n

4He
6Li
8Be
10B
12C
16O
19F
23Na
27Al

0 2 4 6 8 10
N

max

10
0

10
3

10
6

10
9

10
12

10
15

n
u
m

b
er

 o
f

n
o
n
ze

ro
 m

at
ri

x
 e

le
m

en
ts

16O, dimension
2-body interactions
3-body interactions
4-body interactions
A-body interactions

Fig. 1. The dimension and the number of non-zero matrix elements of the
various nuclear Hamiltonian matrices as a function of the truncation parameter
Nmax.

Hamiltonian matrix. A nonzero in the Hamiltonian matrix
indicates the presence of an interaction between different
many-body basis states. Both the total number of many-body
states (the dimension of Ĥ) in our adopted harmonic oscillator
(HO) basis and the total number of nonzero matrix elements
in Ĥ are controlled by the number of nuclear particles, the
truncation parameter Nmax, and the maximum number of
HO quanta above the minimum for a given nucleus (see
Figure 1). Higher Nmax values yield more accurate results for
a given nucleus, but at the expense of an exponential growth
in problem size.

As mentioned above, to find the lowest nev number of
eigenvalues and eigenvectors of Ĥ , we use the locally optimal
block preconditioned conjugate gradient (LOBPCG) algo-
rithm [4]. Algorithm 1 gives the pseudocode for a simplified
version of the LOBPCG algorithm without a preconditioner.
LOBPCG is a subspace iteration method where we start with
an initial guess about the eigenvectors (ψ0) and refine our
guess at each iteration of the solver (ψ0). So in Alg. 1,
ψi, Ri and Pi correspond to dense blocks of vectors. In
order to ensure good convergence, the dimension of the initial
subspace, m, is typically set to 1.5 to 2 times the number of

desired eigenpairs nev. Since we need 10-25 lowest eigenpairs
in MFDn, the dense vector block typically has a width of
15 to 48. For numerical stability, the converged eigenpairs
are locked, i.e. m gets smaller as the algorithm progresses.
Therefore in Section V, values of m that are of interest to us
ranges from 1 to 48.

Algorithm 1: Pseudocode of the LOBPCG algorithm
without a preconditioner, which is used for solving the
eigenvalue problem ĤΨ = EΨ .

Input: Ĥ , matrix of dimensions n× n;
Input: Ψ0, a block of vectors of dimensions n×m;
Output: Ψ and E such that ‖ĤΨ − ΨE‖F is small, and ΨTΨ = I;
Orthonormalize the columns of Ψ0;
P0 ← 0;
for i = 0, 1, . . . , until convergence do

Ei = ΨTi ĤΨi;
Ri ← ĤΨi − ΨiEi
Apply the Rayleigh-Ritz procedure on span{Ψi, Ri, Pi};
Ψi+1 ← argmin

Y ∈span{Ψi,Ri,Pi},Y T Y=I

trace(Y T ĤY)

Pi+1 ← Ψi+1 − Ψi;
Check convergence;

III. EXPERIMENTAL SETUP

A. MFDn test matrices

In this paper, we use a series of real-world matrices ex-
tracted from MFDn. Since our focus is on the performance of
single-node sparse matrix computations, we use a small par-
tition of the sparse matrices that arise in actual computations.
We have three such test cases, labeled “Nm6”, “Nm7”, and
“Nm8”, which are extracted from matrices that correspond to
the truncated Hamiltonian of the 10B nucleus at Nmax = 6, 7
and 8 cutoff levels, respectively. The actual Hamiltonian matri-
ces are very large and therefore nominally distributed across
15, 45, and 190 processes in the actual MFDn calculations.
The sparsity of Ĥ is determined by the underlying interaction
potential. A 2-body interaction potential has been used to
construct our matrices. Each processor receives a different
sub-matrix of the Hamiltonian, but these sub-matrices have
very similar sparsity structures. In this paper, we use processor
1’s sub-matrix as our input for performance optimization and
evaluation. Figure 2 gives a MATLAB spy sparsity plot of the
Nm6 matrix, where each nonzero block is marked by a dot
with the intensity of each dot representing the nonzero density
of the corresponding block.

Table I enumerates the test matrices used in this paper. Note
that the test matrices have millions of rows and hundreds of
millions of nonzeros. As we will discuss in Section IV, we
use the compressed sparse block (CSB) format [7] in our
SpMM implementation. Therefore a sparse matrix is stored
in blocks of size β × β. When blocked with β = 6000,
we observe that both the number of blocked rows and the
average number of nonzeros per nonzero block remains high.
Moreover, the sparsity pattern ensures that 41-64% of these
blocks are nonzero. Unfortunately, there is a high variance

Fig. 2. Sparsity structure of the local Nm6 matrix at process 1 in an MFDn run
with 15 processes. A block size of β = 6000 is used. Each dot corresponds
to a block with nonzero matrix elements in it. Darker colors indicate denser
nonzero blocks.

Matrix Nm6 Nm7 Nm8
Rows 2,412,566 4,985,944 7,583,735

Columns 2,412,569 4,985,944 7,583,938
Nonzeros (nnz) 429,895,762 648,890,590 592,325,005
Blocked Rows 403 831 1264

Blocked Columns 403 831 1264
nnz per Block 7991 4191 2311

TABLE I
MFDN MATRICES (PER-PROCESS SUB-MATRIX) USED AS DRIVERS FOR

OUR OPTIMIZATION EFFORTS. FOR THE PURPOSES OF THESE STATISTICS,
ALL MATRICES WERE CACHE BLOCKED USING β = 6000, AND THE

NUMBER OF THREADS P = 12.

on the number of nonzeros per nonzero block making load
balancing a potential challenge.

B. Cray XC30 (Edison)

In this paper, we use the Cray XC30 MPP at NERSC
(Edison) which contains more than 10 thousand, 12-core Xeon
E5 CPUs [8]. Each of the 12 cores runs at 2.4 GHz and is
capable of executing one AVX (8×32-bit SIMD) multiply and
one AVX add per cycle and includes both a private 32 KB L1
data cache and a 256 KB L2 cache. Although the per-core
L1 bandwidth exceeds 75 GB/s, the per-core L2 bandwidth is
less than 40 GB/s. There are two 128-bit DDR3-1866 memory
controllers that provide a sustained STREAM bandwidth of
52 GB/s per processor. The cores, the 30MB last-level L3
cache and memory controllers are interconnected with a com-
plex ring network-on-chip which can sustain a bandwidth of
about 23 GB/s per core. Given this complex memory hierarchy
of varying capacities and bandwidths, the ultimate bottlenecks

Cray XC30 (Edison)
Core Intel Ivy Bridge

Clock (GHz) 2.4
Data Cache (KB) 32+256

Memory-Parallelism HW-prefetch
Processor Xeon E5-2695 v2

Cores/CPU 12
Threads/CPU 241

Last-level L3 Cache/CPU 30 MB
Single-Precision GFlop/s 460.8
Aggregate L2 Bandwidth 480 GB/s
Aggregate L3 Bandwidth 276 GB/s

STREAM Bandwidth2 52 GB/s
Memory per NUMA node 32 GB

TABLE II
OVERVIEW OF EVALUATED PLATFORMS. 1WITH HYPER THREADING. BUT

ONLY 12 THREADS WERE USED IN OUR COMPUTATIONS. 2MEMORY
BANDWIDTH IS MEASURED USING THE STREAM COPY BENCHMARK.

to performance can be extremely non-intuitive and require
performance modeling. The characteristics of this machine are
summarized in Table II.

We use the Intel Fortran compiler (version 13.1.3) with the
options -fast -openmp and constrain our experiments to a
single processor as a proxy for a MPI process. For comparisons
with original CSB, which uses Intel Cilk Plus for parallelism,
we use the Intel C++ compiler (version 13.1.3) with flags
-O2 -no-ipo -parallel -restrict -xAVX. Since Intel
Cilk Plus uses dynamically loaded libraries that are not na-
tively supported by the Cray operating system, we use the
cluster compatibility mode [9], a solution that enables Cray
machines to run every application that runs on a standard
Linux cluster with only a small performance degradation.

IV. MULTIPLICATION OF THE SPARSE MATRIX WITH
MULTIPLE VECTORS

We denote the local partition of Ĥ by A and Ψi by X . As
can be seen in Table I, the number of rows and columns of A
are typically very close to each other. Therefore, for simplicity,
we take A to be a square matrix and denote its dimension by
N . Y is the output vector block. Both X and Y are dense
vector blocks of dimensions N by m. Naively, one can realize
SpMM by applying one SpMV to each column of the block of
vectors X . In this paper, we use a row-major layout for X as
it matches well with the other routines in LOBPCG. Thus, for
spatial locality, the simplest SpMM implementation should be
implemented as an extension of SpMV in which the operation
on scalar elements yi =

∑
Ai,jxj becomes an operation on

m-element vectors Yi =
∑
Ai,jXj . This operation can be

implemented as a for-loop for each nonzero.

A. CSR Format (Baseline)

The most common sparse matrix storage format is com-
pressed sparse rows (CSR) in which the nonzeros of each
matrix row are stored consecutively as a list in memory.

One maintains an array of pointers (which are simply integer
offsets) into the list of nonzeros in order to mark the beginning
of each row. An additional index array is used to keep the
column indices of the nonzeros. Nonzero values and column
indices are stored in separate arrays of length nnz , and the row
pointers array is of length N + 1. For single-precision sparse
matrices whose rows and columns can be addressed with 32-
bit integers (i.e., n ≤ 232 − 1), the storage cost for the CSR
format is 8nnz + 4N + 1. One may reuse matrices stored in
the CSR format for the SpMM T operation by reinterpreting
row pointers and column indices as column pointers and row
indices, respectively. Such an interpretation would correspond
to a compressed-sparse column (CSC) representation in which
one operates on columns rather than row sums to implement
the SpMM T operation.

B. Cache-blocked CSB Format

MFDn’s very large block of vectors (10mMB to 30mMB
each) coupled with its matrices’ sparsity pattern make attaining
locality on the block of vectors very difficult with the CSR
representation. After a few rows, it is likely that vector data
will have been evicted from the L2 cache, while after a
few hundred rows, it is very likely that data will have been
evicted from even the last level L3 cache. Moreover, during
the SpMM T operation, CSC’s scatter operation coupled with
the reduction required for threading can significantly impede
performance. Thus, it is imperative that we adopt a data
structure that can attain good locality for the vector blocks
and does not suffer from the performance penalties associated
with the CSR and CSC implementations.

Our data structure for storing sparse matrices is a variant of
the compressed sparse blocks (CSB) format [7]. For a given
block size parameter β, CSB nominally partitions an N ×N
matrix into β × β blocks. When β is on the order of

√
N ,

we can address nonzeros within each block by using half the
bits needed to index into the rows and columns of the full
matrix (16 bits instead of 32 bits). Therefore, for β =

√
N ,

the storage cost of CSB matches the storage cost of traditional
formats such as CSR. In addition, CSB automatically enables
cache blocking [10], [11]. Each β × β block is independently
addressable through a 2D array of pointers. SpMM operation
can be performed by processing this 2D array by rows,
while SpMM T can be realized by processing it via columns.
Although one can easily thread across either the rows or the
columns without any need for temporary storages, threading
across both presents a data hazard which must be resolved.

The formal CSB definition does not specify how the nonze-
ros are stored within a block. An existing implementation
of CSB for sparse matrix-vector (SpMV) and sparse matrix-
transpose-vector (SpMV T) multiplication stores nonzeros
within each block using a space filling curve to exploit
data locality and enable efficient parallelization of the blocks
themselves [7].

Pβ

β

β
m X

A
Y

block 2 Pβ

m
block 1

Fig. 3. Computational structure of the SpMM operation Y=AX with P = 4
threads. After initializing Y to zero, the operation proceeds by performing all
Pβ × β local SpMM operations Y=AX+Y one blocked row at a time. The
operation ATX is realized by permuting the blocking (β × Pβ blocks) and
implementing a local SpMM T on a cache block.

C. Implementation and Optimization

In this paper, our baseline SpMM implementation was
written in Fortran using the CSR format for the matrices.
The operation Y = AX was threaded using an !$omp
parallel do with dynamic scheduling over the rows of the
matrix, while the transpose operation Y = ATX was threaded
over columns where each thread uses a private copy of the
block of destination vectors Y . These private copies are then
merged to complete the operation.

On a multi-core CPU like the Xeon E5 with 12 cores,
the CSR implementation described above is certainly not
suitable for performing SpMM T on large sparse matrices.
Keeping a private copy of the output vector for each thread
requires an additional O(NmP) storage, where P denotes
the number of threads. The fact that more storage space than
the sparse matrix itself would be needed for values of m as
small as 8 in the Nm8 testcase shows how significant the
memory overheads can actually be. Keeping several private
output vector copies may also adversely effect data reuse in
cache. Therefore we implemented the rowpart algorithm. It
uses the CSR implementation for SpMM, but to perform the
SpMM T operation, the sparse matrix is preprocessed and
divided into row partitions with equal number of nonzeros
for load-balancing purposes. To ensure good performance,
each thread maintains a starting and ending index of its row
partition boundaries for each column. The rowpart implemen-
tation requires an extra storage space of only O(NP) and the
preprocessing overheads are insignificant when used with an
iterative solver.

Our new parametrized implementation for SpMM and
SpMM T, CSB/OpenMP, is based on the CSB format. Like
the other implementations described above, CSB/OpenMP
is written in Fortran using OpenMP for thread parallelism.
As visualized in Figure 3, the matrix is partitioned into
β × β blocks which are stored in coordinate format (COO)
with 16-bit indices and 32-bit single-precision values. When

performing AX , threading creates block rows of size Pβ×N ;
while performing ATX , threads sweep through block columns
of size N×Pβ and one uses the COO’s row indices as column
indices and vice versa. We tune for the optimal value of β for
each value of m for each matrix.

For the comparisons with the original Cilk-based CSB, we
extended the fully parallel SpMV and SpMV T algorithms [7]
in CSB to operate on multiple vectors. We refer to the resulting
implementation as CSB/Cilk in this paper. We used a vector
of std::array’s, a compile-time fixed-sized variant of the
built-in arrays for storing X and Y . This effectively creates
tall-skinny matrices in row major order. We aligned those input
and output vectors to 32-byte boundaries for efficient vector-
ization. CSB heuristically determines its block parameter β
itself, considering the parallel slackness, size of the L2 cache,
and the addressability by 16-bit indices. The β chosen for
the single vector case was 16,384 or 8,192 (depending on
the matrix), and it got progressively smaller all to way to
β = 1024 as m increases due to increased L2 working set
limitations.

The SpMM and SpMM T implemented using CSB/Cilk
employ three levels of parallelism. For the SpMV case (the
transpose case is symmetric), it first parallelizes across block
rows, then within dense block rows using temporary vectors,
and finally within each sufficiently dense block if needed. The
analysis relies on the fact that the additional parallelization
costs of second and third levels are amortized since they are
only performed on sufficiently dense blocks and block rows
that threaten load balance. Such blocks and block rows can
be shown to have enough work to amortize the parallelization
overheads. Our SpMM and SpMM T CSB/OpenMP imple-
mentations differ from the CSB/Cilk implementation in the
sense that the OpenMP versions do not parallelize within
individual block rows (in the case of SpMM) or block columns
(in the case of SpMM T).

In all four implementations (CSR, rowpart, CSB/OpenMP,
CSB/Cilk), the innermost loops (Yi =

∑
Ai,jXj for SpMM

and Yj =
∑
Ai,jXi for SpMM T) were manually unrolled

for each value of m. In Fortran !$dir simd directives
and in C #pragma simd always pragmas were used. We
inspected the assembly code to verify that the compiler gen-
erated packed SIMD/AVX instructions for best performance.
To minimize TLB misses, we use large pages by loading
craype-hugepages2M module in the Cray programming
environment during compilation and runtime.

D. Performance Expectations

Conventional wisdom suggests that SpMV performance is a
function of DRAM STREAM bandwidth and data movement
from compulsory misses [12] on matrix elements. Program-
mers may thus use a simplified Roofline model [13] to bound
SpMV time by 8 · nnz/BWstream for single-precision CSR
matrices [14]. This success has lead to some programmers as-
suming that performing SpMV’s on multiple right-hand sides
(SpMM) is essentially no more expensive than performing
one SpMV. Unfortunately, this is premised on three major

assumptions — (i) compulsory misses for the vectors are small
compared to the matrix, (ii) there are few capacity misses
associated with the vectors, and (iii) cache bandwidth does
not limit performance. The former is certainly invalidated once
the number of right-hand sides reaches two-thirds the average
number of nonzeros per row (assuming an 8-byte total space to
store single precision nonzeros, 4-byte single-precision vector
elements, and a write-allocate cache). The second is only
true for low-bandwidth matrices that demand working sets
smaller than the last-level cache. The final assumption is
highly dependent on microarchitecture, matrix sparsity, and the
value of m. We easily demonstrate that for MFDn’s matrices
and moderate values of m, this conventional wisdom fails to
provide a reasonably tight performance bound.

In this paper, we construct a new Roofline performance
model that captures how cache locality and bandwidth interact
to constrain performance for CSB-like sparse kernels. Let
us consider three progressively more restrictive cases: vector
locality in the L2, vector locality in the L3, and vector locality
in DRAM. As it is highly unlikely a β×β block attains good
vector locality in the tiny L1 caches, we will ignore this case.
Although potentially an optimistic assumption, we assume we
may always hit peak L2, L3, or DRAM bandwidth with the
caveat that, on average, we overfetch 16 bytes.

First, if we see poor L1 locality for the block of vectors
but good L2 locality, then for each nonzero, CSB must read 8
bytes of nonzero data, 4m bytes of the source vector, and 4m
bytes of the destination vector. It may then perform 2m flops
and write back 4m bytes of destination data. Thus we perform
2m flops and must move 8+12m bytes at an idealized 40 GB/s
per core on Edison. Ultimately, this limits CSB performance
to 6.6 GFlop/s per core, or about 80 GFlop/s per chip. One
should observe that we have assumed high locality in the L2.
As this is unlikely, this bound is rather loose.

Unfortunately, static analysis of sparse matrix operations has
its limits. In order to understand how locality in the L3 and L3
bandwidth constrain performance we implemented a simplified
L2 cache simulator to calculate the number of capacity misses
associated with accessing X and Y . For each β × β block
the simulator tries to estimate the size of the L2 working set
based on the average number of nonzeros per column. When
the average number of nonzeros per column is less than one,
then the working set is bound to (8m+32)·nnz bytes — each
nonzero requires a block of the source vector and a block of the
destination vector plus overfetch. When the average number of
nonzeros per column reaches one, we saturate the working set
at 8mβ bytes — full blocks of source and destination vectors.
If the working set is less than the L2 cache capacity we must
move 8 · nnz + 4mβ bytes when the number of nonzeros per
column is equal to or greater than 1 and (8 + 4m+ 16) · nnz
bytes (but never more than 8 · nnz + 4mβ bytes) when the
number of nonzeros per column is less than 1 (miss on the
nonzero and the source vector). If the working set exceeds the
cache capacity, then we forgo any assumptions on reuse of X
or Y in the L2 and incur (8+4m+16) ·nnz +8mβ bytes of
data movement. Thus, the resultant bound on data movement

is dependent on both m and the matrix in question.
Finally, let us consider the bound arising from a lack of

locality in the L3 and finite DRAM bandwidth. As shown
in Figure 3, CSB matrices are partitioned into blocks of size
β × β, and P threads stream through block rows (or block
columns for ATX) performing local SpMM operations on
blocks of size Pβ×β. If one thread (a β×β block) gets ahead
of the others, then it will likely run slower as it is reading
X from DRAM while the others are reading X from the
last-level cache. Thus, we created a second simplified cache
simulator to track DRAM data movement. However, rather
than tracking how individual cores process each β × β block,
it tracks how a chip processes each Pβ × β block. Thus, the
model streams through the block rows of a matrix like Figure 2
and for each nonzero Pβ × β block examines its cache to
determine whether the corresponding block of X is present.
If it misses, then it fetches the entire block (proxy for prefetch
and TLB effects) and increments the data movement tally. If
the requisite cache working set exceeds the cache capacity,
then we evict a block (LRU policy). Additionally, we add
the nonzero data movement and the read-modify-write data
movement associated with the destination block of vectors Y
(8Nm bytes).

Ultimately, we may combine the estimates for DRAM,
L2, and L3 data movement to provide a narrow range of
expected SpMM performance as a function of m. Thus, for
low arithmetic intensity (small m), the Roofline suggests we
will be DRAM-bound, when the Roofline plateaus, it does so
not because of peak flop/s, but because of either L2 or L3
bandwidth. In the future, we could use this lightweight simu-
lator as a model-based replacement for the current expensive
empirical tuning of beta.

V. SPMM RESULTS

In this section, we present SpMM and SpMM T per-
formance results for our various optimized implementations
across the set of test matrices. We report the average per-
formance obtained over two iterations where the number of
requisite floating-point operations is 2 · nnz ·m.

A. CSB Benefit

Figure 4 presents both SpMM (Y = AX) and SpMM T
(Y = ATX) performance for the Nm6 matrix as a function
of m (the number of vectors). We observe that for m = 1, a
conventional CSR SpMV implementation does about as well
as can be expected. However, as m increases, the benefit
of CSB variants’ blocking on cache locality is manifested.
The CSB/OpenMP version delivers noticeably better better
performance than the CSB/Cilk implementation. This may be
due in part to additional parallelization overheads of the Cilk
version (that uses temporary vectors to introduce parallelism
at the block row and block computation levels) or performance
issues associated with Cray’s cluster compatibility mode. Ulti-
mately, we see performance saturate at better than 65 GFlop/s
by m = 16. This represents a roughly 45% increase in
performance over CSR, and 20% increase over CSB/Cilk.

0
10
20
30
40
50
60
70
80
90

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
CSR/OpenMP

0
10
20
30
40
50
60
70
80
90

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
rowpart/OpenMP
CSR/OpenMP

Fig. 4. Optimization benefits on Edison using the Nm6 matrix for SpMM
(top) and SpMM T (bottom) as a function of m (the number of vectors).

CSB truly shines when performing SpMM T. The ability to
efficiently thread the computation coupled with improvements
in locality allow CSB/OpenMP to realize a 35% speedup for
SpMV over CSR and nearly a 4× improvement in SpMM for
m ≥ 16. The row partitioning scheme had only a minor benefit
and only at very large m. Moreover, CSB ensures SpMM and
SpMM T performance are now comparable (67 GFlop/s vs
62 GFlop/s with OpenMP) — a clear requirement as both
computations are required for MFDn with LOBPCG.

As a very important note, we would like to point out that
the increase in arithmetic intensity afforded by SpMM allows
for more than 5× increase in performance over SpMV. This
should be an inspiration to explore algorithms that transform
numerical methods from being bandwidth-bound (SpMV) to
compute-bound (SpMM).

B. Tuning for the Optimal Value of β

As discussed previously, we wish to maintain a working
set for the X and Y blocks of vectors as deeply as possible
in the cache hierarchy. Each β × β block demands a βm
working set in the L2 for X as well as Y . Thus, as m
increases, we are motivated to decrease β. Figure 5 plots
performance of the combined SpMM and SpMM T operation
using CSB/OpenMP on the Nm8 matrix as a function of m

0
5

10
15
20
25
30
35
40
45
50

1 4 8 12 16 24 32 48 64 80 96

G
Fl

op
/s

#vectors (m)

B=6K
B=4K
B=2K

Fig. 5. Performance benefit on the combined SpMM and SpMM T operation
from tuning the value of β for the Nm8 matrix.

for varying β. For small m, there is either sufficient cache
capacity to maintain locality on the block of vectors, or the
other performance bottlenecks are so pronounced that they
mask any capacity misses. However, for large m (we show
up to m = 96 for illustrative purposes), we clearly see that
progressively smaller β are the superior choice as they ensure
a constrained resource (e.g. L3 bandwidth) is not flooded with
cache capacity miss traffic. Still, note in Figure 5 that no matter
what β value is used, the maximum performance obtained
for m > 48 is lower than the peak of 45 Gflops/s achieved
for lower values of m. This suggests that for large values
of m, it may be better to perform the SpMM and SpMM T
computations as batches of tasks with narrow vector blocks.
In the following sections, we always use the best value of β
for a given value of m.

C. Speedup for Combined [AX,ATX] Operation

LOBPCG on the symmetric matrices of MFDn requires
the computation of both AX and ATX on each iteration.
Moreover, we wish to understand the performance benefit for
the larger (and presumably more challenging) MFDn matrices.
The net benefit is the reduction in the total time required for
the two operations, and not a simple geometric mean of their
GFlop rates.

Figure 6 presents the combined performance of AX and
ATX as a function of m for our three MFDn test matrices.
Clearly, the CSB-like implementations deliver extremely good
performance for the combined operation with the Fortran
CSB/OpenMP delivering the best performance. We observe
that as expected, as one increase the number of vectors m,
performance increases to a point at which it saturates. A naive
understanding of locality would suggest that regardless of ma-
trix size, the ultimate SpMM performance should be the same.
However, as one moves to the larger and sparser matrices,
performance saturates at lower values. Understanding these
effects and providing possible remedies requires introspection
of our performance model.

D. Performance Analysis

In Figure 6, we also provide three Roofline performance
bounds based on DRAM, L3, and L2 data movements and
bandwidth limits as described in Section IV-D. In all cases,
we use the empirically determined optimal value of β for each
m as a parameter in our performance model. The L2 and L3
bounds take the place of the traditional in-core (peak flop/s)
performance bounds. Bounding data movement for small m
(where compulsory data movement dominates) is trivial and
thus accurate. However, as m increases, capacity and conflict
misses start dominating. In this space, quantifying the volume
of data movement in a deep cache hierarchy with an unknown
replacement policy and unknown reuse pattern is difficult at
best. As Figure 2 clearly demonstrates, the matrices in question
are not random (worst case), but exhibit some structure. Thus,
one should remember that these Roofline curves for large m
are not strict performance bounds but rather guidelines.

Clearly, for small m performance is highly-correlated with
DRAM bandwidth. As we proceed to larger m, we see an
inversion for the sparser matrices where L3 bandwidth can
surpass DRAM bandwidth as the preeminent bottleneck. We
observe that for the denser Nm6 matrix, performance is
close to our optimistic L2 bound. Nevertheless, the model
suggests that the L3 bandwidth is the true bottleneck while
DRAM bandwidth does not constrain performance for m ≥ 8.
Conversely, the sparser Nm8’s performance is well correlated
with the DRAM bandwidth bound for m ≤ 16 at which point
the L3 and DRAM bottlenecks reach parity.

Ultimately, our Roofline model tracks the performance
trends well and highlights potential bottlenecks — DRAM,
L3, and L2 bandwidths and capacities — as one transitions to
larger m or larger and sparser matrices.

VI. PERFORMANCE IMPLICATIONS

In this section, we investigate the performance implications
of using CSB/OpenMP in MFDn. For this purpose, we have
computed the 10 lowest eigenpairs of the Hamiltonian matrix
arising in 10B, Nmax=7 calculations, the problem from where
the Nm7 matrix was extracted. This computation has been
run on 540 cores of Edison using 45 MPI processes with 12
OpenMP threads each. The initial subspace size is set to 16,
and it gradually shrinks as eigenpairs converge. It took 70
iterations for the LOBPCG solver to converge to the 10 lowest
eigenpairs in this case. In Table III, we report the running times
of major computational parts in MFDn for this test.

The existing LOBPCG eigensolver uses the CSR-based
rowpart method without manually unrolled innermost loops
and explicit SIMDization. Therefore the SpMM and SpMM T
computations in MFDn attain lower flop rates than what has
been reported for rowpart in Section V. We estimate that our
CSB/OpenMP implementation is slightly more than 3× faster
compared to MFDn’s rowpart implementation for values of
m=1, 4, 8, 12 and 16. As a result, we expect that using
the CSB/OpenMP implementation for this case would give
about 38% improvement in the eigensolver phase, and 32%
improvement overall.

0

10

20

30

40

50

60

70

80

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
rowpart/OpenMP
CSR/OpenMP
Roofline (DRAM)
Roofline (L3)
Roofline (L2)

0

10

20

30

40

50

60

70

80

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
rowpart/OpenMP
CSR/OpenMP
Roofline (DRAM)
Roofline (L3)
Roofline (L2)

0

10

20

30

40

50

60

70

80

1 4 8 12 16 24 32 48

G
Fl

op
/s

#vectors (m)

CSB/OpenMP
CSB/Cilk
rowpart/OpenMP
CSR/OpenMP
Roofline (DRAM)
Roofline (L3)
Roofline (L2)

Fig. 6. SpMM and SpMM T combined performance results on Edison using
the Nm6, Nm7 and Nm8 matrices (from top to bottom) as a function of m
(the number of vectors).

We note that on a machine like Edison, which has 32 GBs of
memory per NUMA node, actual MFDn computations would
use much larger local matrices that occupy 20-25 GBs of
memory as opposed to the testcases we have used in this study.
This means significantly more nonzeros with a relatively small
increase in matrix dimensions. So in actual runs, SpMM would
be more expensive than other vector operations required for
LOBPCG. Also the matrices we used have been extracted from
calculations involving 2-body interactions only. In fact, more
accurate calculations are possible using 3-body interaction
matrices, which have 10-50× more nonzeros per row/column.

TABLE III
Running times of major parts in MFDn for 10B, Nmax=7 calculations. Computing the 10 lowest eigenpairs requires 70 iterations of the LOBPCG

solver.

eigensolve phase
matrix construction SpMM LOBPCG other communication

Time (s) 48.1 171.8 93.4 40.5
Percentage in Eigensolver – 57% 30% 13%
Percentage in Total 14% 49% 26% 11%

So again in this case, SpMM and SpMM T would constitute
a larger fraction of the LOBPCG solver and the total running
time. Consequently, we expect the impact of the CSB/OpenMP
implementation to be even higher in actual scientific compu-
tations with MFDn.

VII. RELATED WORK

Gropp et al. suggested the use of multiple right hand sides
for SpMV in a computational fluid dynamics application in
order to improve memory bandwidth limitations [15]. SpMM
is one of the core operations supported by the autotuned
sequential sparse matrix library, OSKI [16]. OSKI’s parallel
successor, pOSKI, currently does not currently support SpMM
although it is a work in progress [17].

Liu et al. [18] recently investigated strategies to improve
the performance of SpMM1 using SIMD instructions such as
AVX/SSE that are available in modern multicore machines.
Their driving application is the motion simulation of biolog-
ical macromolecules in solvent using the Stokesian dynamics
method. Apart from major differences in matrix structure
and sparsity, our work differs substantially by offering a
solution for both SpMM and SpMM T with roughly the same
performance. Furthermore, our Roofline model goes beyond
the DRAM bandwidth and compute limits by accounting for
the data transfers in L2 and last-level caches.

Block methods that rely on SpMM is used to solve large-
scale sparse singular value problems [19], with most popular
methods being the subspace iteration and block Lanzcos.
Singular value decomposition can be used to perform dimen-
sionality reduction tasks such as latent semantic indexing [20].
More generally, iterative Krylov subspace methods such as
BiCG, QMR, IDR, and GMRES, can be extended to block
Krylov methods [21] that enable larger search space explo-
ration and potentially higher performance due to increased
data reuse. Our techniques will have a positive impact on the
performance and adoption of these block Krylov methods.

VIII. CONCLUSIONS

The performance of Lanczos-based eigensolvers are increas-
ingly constrained by DRAM bandwidth. With chips increas-
ingly approaching pin count limits, future increases in DRAM
bandwidth are constrained by the rate at which DRAM and

1Liu et al. actually uses the name GSpMV for “generalized” SpMV. We
refrain from doing so because the same name has been used in conflicting
contexts such as SpMV for graph algorithms where the scalar operations can
be arbitrarily overloaded.

interconnect technology can progress. Block eigensolvers pro-
vide an attractive alternative as they are sufficiently compute-
intensive to relegate DRAM bandwidth to a secondary bot-
tleneck. In this paper, we examine performance optimization
techniques for the dominant compute kernels found in the
LOBPCG algorithm – SpMM and SpMM T. Conceptually
SpMM performs a sparse matrix-vector multiplication on a
block of m vectors. Using many-body nuclear Hamiltonian
test matrices extracted from MFDn, we demonstrate that the
use of compressed sparse blocks (CSB) format in conjunc-
tion with tuning and one pragma can accelerate SpMM and
SpMM T performance by up to 1.5× and 4×, respectively.
Such speedups may allow for roughly a 40% speedup in
LOBPCG, when it is used as the eigensolver in MFDn.

Additionally, we construct a new Roofline model that cap-
tures the effects of finite L2 and L3 bandwidth and cache
capacity misses in addition to the traditional metrics of cache
compulsory misses and DRAM bandwidth. When used to
analyze performance, we are able to quickly highlight how
the performance bottleneck transitions from DRAM bandwidth
to either L2 or L3 bandwidth as we increase m or as our
matrices get sparser. Such insights may help drive either
future computer architectures to focus on locality and on-
chip bandwidths or possibly partitioning software that could be
cognizant of various capacity and bandwidth constrains when
reordering a matrix.

In the future, we plan on conducting detailed scaling,
analysis, and optimization of LOBPCG at scale as there are
non-obvious tradeoffs between computer science optimization
strategies and reduced algorithmic performance. Such studies
will be conducted on not only Edison, but also Blue Gene/Q
machines like Mira.

ACKNOWLEDGMENTS

Support for this work was provided through Scientific
Discovery through Advanced Computing (SciDAC) program
funded by U.S. Department of Energy Office of Advanced
Scientific Computing Research and Office of Nuclear Physics.
The authors have been funded through the FASTMath Institute,
the NUCLEI project and the SUPER project as part of the
SciDAC program under the contract DE-AC02-05CH11231.
This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under contract
DE-AC02-05CH11231.

REFERENCES

[1] P. Maris, H. M. Aktulga, M. A. Caprio, Ü. V. Çatalyürek, E. G. Ng,
D. Oryspayev, H. Potter, E. Saule, M. Sosonkina, J. P. Vary et al.,
“Large-scale ab initio configuration interaction calculations for light
nuclei,” Journal of Physics: Conference Series, vol. 403, no. 1, p.
012019, 2012.

[2] H. M. Aktulga, C. Yang, E. Ng, P. Maris, and J. Vary, “Topology-aware
mappings for large-scale eigenvalue problems,” Euro-Par 2012 Parallel
Processing, no. Lecture Notes in Computer Science (LNCS), pp. 830–
842, 2012.

[3] H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P. Vary, “Improving
the scalability of symmetric iterative eigensolver for multi-core plat-
forms,” Concurrency and Computation: Practice and Experience, 2013.

[4] A. V. Knyazev, “Toward the optimal preconditioned eigensolver: Locally
optimal block preconditioned conjugate gradient method,” SIAM journal
on scientific computing, vol. 23, no. 2, pp. 517–541, 2001.

[5] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang, “Parallel
spectral clustering in distributed systems,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 33, no. 3, pp. 568–586, 2011.

[6] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[7] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in SPAA, 2009, pp. 233–244.

[8] “Edison website,” http://www.nersc.gov/users/computational-systems/
edison.

[9] Z. Zhao, Y. H. He, and K. Antypas, “Cray cluster compatibility mode
on hopper,” in Cray Users Group Conference (CUG’12), Stuttgart,
Germany, 2012.

[10] R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, “When cache
blocking of sparse matrix vector multiply works and why,” Applicable
Algebra in Engineering, Communication and Computing, vol. 18, no. 3,
pp. 297–311, 2007.

[11] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Dem-
mel, “Optimization of sparse matrix-vector multiplication on emerging

multicore platforms,” in Proc. SC2007: High performance computing,
networking, and storage conference, 2007.

[12] M. D. Hill and A. J. Smith, “Evaluating Associativity in CPU Caches,”
IEEE Trans. Comput., vol. 38, no. 12, pp. 1612–1630, 1989.

[13] S. Williams, A. Watterman, and D. Patterson, “Roofline: An insightful
visual performance model for floating-point programs and multicore
architectures,” Communications of the ACM, April 2009.

[14] S. Williams, “Auto-tuning performance on multicore computers,” Ph.D.
dissertation, University of California, Berkeley, December 2008.

[15] W. Gropp, D. Kaushik, D. Keyes, and B. Smith, “Toward realistic
performance bounds for implicit cfd codes,” in Proceedings of parallel
CFD, vol. 99, 1999, pp. 233–240.

[16] R. Vuduc, J. W. Demmel, and K. A. Yelick, “Oski: A library of
automatically tuned sparse matrix kernels,” in Journal of Physics:
Conference Series, vol. 16, no. 1. IOP Publishing, 2005, p. 521.

[17] J.-H. Byun, R. Lin, K. A. Yelick, and J. Demmel, “Autotuning sparse
matrix-vector multiplication for multicore,” Technical report, EECS
Department, University of California, Berkeley, Tech. Rep., 2012.

[18] X. Liu, E. Chow, K. Vaidyanathan, and M. Smelyanskiy, “Improving the
performance of dynamical simulations via multiple right-hand sides,”
in IEEE International Parallel & Distributed Processing Symposium
(IPDPS). IEEE, 2012, pp. 36–47.

[19] M. W. Berry, “Large-scale sparse singular value computations,” Interna-
tional Journal of Supercomputer Applications, vol. 6, no. 1, pp. 13–49,
1992.

[20] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” JASIS, vol. 41,
no. 6, pp. 391–407, 1990.

[21] M. H. Gutknecht, “Block krylov space methods for linear systems with
multiple right-hand sides: an introduction,” in Modern Mathematical
Models, Methods and Algorithms for Real World Systems, A. Siddiqi,
I. Duff, and O. Christensen, Eds. Anamaya Publishers, 2007, pp. 420–
447.

http://www.nersc.gov/users/computational-systems/edison
http://www.nersc.gov/users/computational-systems/edison

