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o) f Multigrid Introduction

< Linear Solvers (Ax=Db) are ubiquitous in scientific computing...
= Combustion, Climate, Astrophysics, Cosmology, etc...

< Multigrid solves elliptic PDEs using a hierarchical approach
= O(N) computational complexity

» Geometric Multigrid is specialization in which the linear operator (A) is
simply a stencil on a structured grid (i.e. matrix-free)
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/\I m Multigrid in Adaptive Mesh

Refinement Applications

< Start with a coarse AMR level
< Add progressively finer AMR levels
as needed

< In AMR applications, one performs
MG solves on different AMR levels.

» Unfortunately, one can reach a
point where further geometric
restriction is not possible.

< To solve this potentially large

coarse grid (“bottom”) problem,
there are a number of approaches:
» Point Relaxation (slow)
= Direct solver (slow)

=  Switch to Algebraic Multigrid
(challenging to implement C/F BC’s)

= Use an iterative Krylov Solver
like BiCGStab (BoxLib/Chombo)
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Classical BiCGStab Performance
in Geometric Multigrid

e _ AWRENCE BERKELEY NATIONAL LABORATORY =t



S

MminiGMG

%* mInIGMG one subdomain
. . . of 643 elements
= compact 3D geometric multigrid Benchmark — R
= can be used to evaluate performance .’
bottlenecks in MG+Krylov methods and cbadmaits
. owned by an
prototype new algorithms. MPI process

= Highly instrumented for detailed
timing analysis

<+ We configured miniGMG to proxy BoxLib AMR applications...
= Cubical domain decomposed into one 643 subdomain per processor
= U-cycle terminated when subdomains are coarsened to 43
» Gauss Seidel, Red-Black (“GSRB”) smoother
= BiCGStab bottom solver (matrix is never explicitly formed)
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Classical BiCGStab...

Al

gorithm 1 Classical BiCGStab for solving Ax = b

1
2
3
4

e

10:
11:
12:
13:
14:

15

. Start with initial guess xg
:Poi=To Z:b—ACCO
: Set 7 arbitrarily so that (7,79) # 0

: for 5 :=0,1,... until convergence or breakdown do
a; = (7,75)/(F, Apj)
Tj+1 7= Tj + 0;p;
qj =15 — aj Ap;
Check ||g;j]|2 = (g;,q;)'/? for convergence
wj = (¢;, Aq;)/(Agj, Agj)
Tjp1 1= Tjp1 + wjqj
i1 = 5 — wiAg;
Check ||7j41]]2 = (7j41,7j41)1/? for convergence
ﬁj = (O‘j/wj)(fa rj-}—l)/(ﬂ T]')
Pjt+1 = Tj41 + B (p; — wjApj)
. end for

% BiCGStab solves Ax=b

= vectors x and b are cell-centered
structured grids (with ghost zones)
partitioned across multiple nodes.

= matrix A is a stencil
» requires a few auxiliary vectors
(grids)
% Observe that for each iteration, the
classical BiCGStab performs...
= 2 matvecs (Isend/lrecv)
» 4 dot products (AlIReduce)
= 2 norms (AllIReduce)
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Baseline Performance

< Run miniGMG benchmark on
Hopper (Cray XE6 at NERSC)
< synthetic problem:
= variable coefficient helmholtz
= periodic boundary conditions

* rhs = sum of triangle waves in
3D each with one period
across the entire domain

% Weak scale to 24K cores...

= one 643 box per 6-thread
process
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Baseline Performance

*» Run miniGMG benchmark on

Hopper (Cray XE6 at NERSC) 2.000
» synthetic problem: 1.800
= variable coefficient helmholtz 1.600 /’\v
= periodic boundary conditions 1.400 N

\ . 1.200

* rhs = sum of triangle waves in
3D each with one period
across the entire domain

» Weak scale to 24K cores...

= one 643 box per 6-thread
process

MG Solve Time on Hopper (Weak Scaling)

=@M G Solver

1.000

0.800 -

Time (seconds)

0.600 -

0.400

0.200

. e 0.000 . . : . . . . :
* Although mUItlg”d S O(N) 0 500 1000 1500 2000 2500 3000 3500 4000 4500

complexity should yield Processes (6 threads each)
constant time-to-solution when

scaling, it is clear time-to-

solution is far from constant.
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% Baseline Performance

< using miniGMG’s fine-grained
timing instrumentation... 2.000
. . =@=MG Solv

+ time outside the bottom solver a0 || bottom . /
(traditional multigrid) is constant 1600

(perfect scaling) 1.400
1.200

MG Solve Time on Hopper (Weak Scaling)

1.000

0.800 -

Time (seconds)

0.600 -

0.400

0.200

0.000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Processes (6 threads each)
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% Baseline Performance

< using miniGMG’s fine-grained
timing instrumentation... 2.000
< time outside the bottom solver 1.800

(traditional multigrid) is constant 1600 |

(perfect scaling) 1400

<+ However, the time in the g 1200

bottom solver scales very £ 1.000
poorly E 0.800 -
0.600 -

0.400

0.200

0.000

MG Solve Time on Hopper (Weak Scaling)

=@=MG Solver

|-m- MG Solver(-bottom)
K /

=4- Bottom Solver v

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Processes (6 threads each)
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% Bottom Solver Performance

» using miniGMG’s fine-grained

.. . . BiCGStab Solver on Hopper (Weak Scaling)
timing instrumentation... 2.000

< time outside the bottom solver 1.800
(traditional multigrid) is constant 1600
(perfect scaling) 1400 . P

< However, the time in the g 200 AN T e
bottom solver scales very 8 1.000 /ﬁi‘w,::/ e
poorly E 0.800 J':;" -

2 Total time in MPI_AlIReduce VT e
(used for norm’s and dot’s) o " -4- Bottom Solver Time (total) [
increases rapidly with scale. 0 / - - MPI_AllReduce Time (total)|

0.000 . . T . T T T

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Processes (6 threads each)
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% Bottom Solver Performance

<+ We observe that both... _
BiCGStab Solver on Hopper (Weak Scaling)

= total number of BiCGStab 0.0035 500
iterations increases with _a——h——a 450
. 0.0030
problem size /.—.//< / [ 400
= time per MPI_AIlIReduce() 0.0025 \/ - 350
increases with scale 0 o / L 300
. § 0.0020 ~ e
<% Combined, these have a 8 / - 250 &
multiplicative effect... £ 0.0015 7 //4 200 =
ever more ever slower iterations  o.oow0 | / - 150
1 - 100
o2 : . 0.0005 =o=AllReduce Time (per iter.) ||
Four Optlons. . ¥ =&=BiCGStab Iterations F 30
» Accelerate Collectives 0.0000 _ e—— 0
= Hide Time in Collectives 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Processes (6 threads each)

= Amortize Collectives
= Eliminate Collectives altogether
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s-step BiCGStab
(CABiICGStab)
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Algorithm 1 Classical BiCGStab for solving Az = b

1: Start with initial guess g
2: po :=To = b— Axg
3. Set 7 arbitrarily so that (7,rg) # 0

Classical BiCGStab to
s-Step BiCGStab (CABICGStab)

Erin Carson, Nick Knight, and Jim
Demmel derived s-step variants of
BiCG and BiCGStab [9]...

4: for 5 :=0,1,... until convergence or breakdown do + Blocking BiCGStab's iteration space

50 a; = (7,15)/(F, Ap;) -

6 wja1 =3+ asp; into blocks of s-steps

7. g =71 — a;Ap; < Constructing a Krylov subspace [P,R]
8 Check [|g;]|2 = (gj,q;)"/? for convergence which spans powers of A applied to p,,
9o wj = (g5, Aq;)/(Agy, Agj)

andr,

10: Tjr1 = Tjp1 + w;iq; .

1 iy i= g — wiAg; < length-N vectors of BiCGStab can be
122 Check ||7j41||2 = (7j41,7j41)"/? for convergence expressed in terms of the product of

130 = (%/%’)(%T{H)/(ﬁzj) | [P,R] and length-(4s+1) vectors a,c,d,e.
14: Pit1 :=Tir1 + 0i(p; —wW;Ap; . _ ) y

5. end g;; JHLTRIA + [Aqg,Ap] = [P,R]T’[d;a], where T' is a

small locally-replicated matrix

With a little manipulation, BiCGStab’s
dot products can be expressed in terms
of a Gram-like matrix and one arrives at
the s-step algorithm...

[5] Erin Carson, Nicholas Knight, James Demmel, “Avoiding
communication in nonsymmetric Lanczos-based Krylov
subspace methods”, SIAM J. Sci. Comp., 2013.
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Algorithm 2 CABiCGStab for solving Az = b

1: Start with initial guess zg

2: poi=T0:=b— Axg

3. Set 7 arbitrarily so that (7,79) # 0

4: Construct (4s + 1)-by-(4s + 1) matrix 7"

5: for m := 0, s,2s, ... until convergence or breakdown do

6: Compute P, a basis for Kos11(A, pm)

7: Compute R, a basis for Cos(A,7,,)

8: (G, g] =[P, R]T[P7 R, 7]

9: Initialize length-(4s + 1) vectors ag, ¢, do, €g

10: for j := 0 to s — 1 (or convergence/breakdown) do

1 myj = (9,¢)/(9,T"a;)

12: €jt+1 ‘=€ + Q4405

13: dj =cCj — Oém+jT/0,j

14: Check ||gmjl|2 = (d;, Gd;)/? for convergence

15: Wm+j = (dj, GT/dj)/(T/dj, GT/dj)

16: €j+1 = €41+ wm+jdj

17: Cj+1 = dj — wm+jT’dj

18: Check ||Tm+j+1H2 = (Cj+1,GCj+1)1/2 for con-
vergence

19: Bintj = (Cmyj/wm5)(9,¢i41)/(9, ¢5)

20: Aj+1 1= Cj41 — ﬁm‘l'j (aj — wm+jT’aj)

21: end for

22: Pm+s = [P’ R]as

23: Tmats = [P, R|cs

24: Tmts = [P, Rles + zp,

25: end for

L)

*,

*,

CABICGStab

(algorithm)

In exact arithmetic, the s-step algorithm
exactly reproduces the classical
BiCGStab algorithm.

Computation of [P,R] can be done
sequentially, in pairs, orin a
communication-avoiding (minimize
DRAM or #messages) manner.

Construction of [G,g] is essentially an
odd-shaped matrix multiplication, but
can be performed with only one
AllReduce.

There is no communication in the
inner s-steps of the algorithm.

= operations are on the small locally-
replicated vectors a, c, d, e

= Convergence checks may be performed
without additional communication.

Updating the iterates (BiCGStab
vectors) requires no communication.
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Bottleneck Analysis Drives

Implementation Choices

<+ We can decompose CABICGStab’s run time into three major

components:
Construction of Krylov Subspace: Gram-like Matrix:
[P,R] = [p,Ap,...,A%p, rAr,...,A% ] [G,g] = [P,R]"[P,R,r]
[ A [ A
£ + g . global MP]
collectives

< In multigrid’s coarse grid solve, local matvecs are free, and MPI
collectives dominate run time.

<+ We implemented CABiICGStab in miniGMG...

= Construct [P,R] sequentially (not performance critical)
= Optimized construction of [G,g] to use only 1 collective.
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crecesd] .ﬁl Bottleneck Analysis Drives

Implementation Choices

< Other users of BiCGStab (those not using MG) might see the
matvecs dominate the run time.

Construction of Krylov Subspace: Gram-like Matrix:
[P,R] = [p,Ap,...,A%p, r,Ar,..., A%r] [G,g] = [P.R]'[P,R,rt]
[ ) [ )
= + local + Colecives
matvecs

< They should optimize the implementation of the s-step BiCGStab
algorithm aifferently...
= minimize vertical (DRAM) data movement
= calculate [Ap,A%p,Ar,A?%r] by reading A only once
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CABICGStab in miniGMG
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e § CABICGStab

(accuracy)

Max Norm after each V-Cycle

< miniGMG with CABICGStab (s=4) 1.E+00
has the same convergence rate 1.E-01 ~®-bicgstab
as using BiCGStab 1E-02 —e—cabicgstab

% Note, CABiCGStab uses the L2 1E-03
norm for convergence

I

I

1.E-04

m

6 1.E-05

1.E-06

Max N

1.E-07

1.E-08

1.E-09

1.E-10

1_E-11 I I I I I I I I I
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e § CABICGStab

(breakdown of bottom solve time)

Breakdown of Bottom Solver

<+ CABICGStab replaces 6s scalar 1.500
reductions with one matrix :
. B MPI (collectives)
reduction. 1950 - B \PI (P2P) -
<+ CABICGStab requires twice the B BLAS3
peer-to-peer MPl communication 1000 - B BLAS] -
per s steps as the classical 2 B applyOp
algorithm. 8 O residual
$ 0.750 -
< We observe reduction in collective o
time outweighed increase in P2P £
time. 0.500 -
0.250 -
0.000 -

BiCGStab CABICGStab
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Benefits to miniGMG
from CABICGStab

BERKELEY LAB

<+ Replaced BiCGStab bottom solver MG Solver on Hopper (Weak Scaling)

in miniGMG with CABiCGStab and > ___(only bottom time shown]
ran scaling experiments... 1800 ) = Efszzsbtab
% At 4K processes, CABICGStab 600
more than quadrupled the bottom _ **® R oS
solver performance. £ 1200 AR
$ 1.000 e
é 0.800 ,,:', = 4.2*
0.600 ,‘r"
0.400 ,“ P —— _}_{
0.200 __'f_,.;.,;r""*” i
0.000 . . . . T T . .

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Processes (6 threads each)
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/\| ‘.ﬁ Benefits to miniGMG

from CABiCGStab

<+ Replaced BiCGStab bottom solver

in miniGMG with CABICGStaband
ran scaling experiments... 800

< At 4K processes, CABICGStab e
more than quadrupled the bottom _ *”
solver performance. g 1.200

% Moreover, it provided MG with a £ 1.000
2.5x overall speedup. £ 0800

% Thus, it dramatically improved 0600
parallel efficiency. 0.400
0.200

0.000

MG Solve Time on Hopper (Weak Scaling)

=@=MG Solver (BiCGStab)

1| -a- BicGstab /./:
| =@=MG Solver (CABiCGStab)

-4- CABiCGStab

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Processes (6 threads each)
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Can CABiICGStab help
Real Applications?
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BoxLib MG Solvers

< BoxLib is an AMR MG framework developed at LBL.

uses BiCGStab as a coarse-grid solver
includes both C++ and Fortran versions of BiCGStab.

<+ We implemented both C++ and Fortran versions of CABICGStab...

allows drop in replacement for BiCGStab

exploits all existing infrastructure for applyOp, BCs, ghost zones, etc...
allows for rapid evaluation on real applications

We exploited BoxLib capabilities to construct [P,R] in pairs.

this keeps the number of messages equal to the classical version.

We implemented a Telescoping CABiICGStab algorithm in which we
steadily increase s.
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LMC Combustion Application

>

o0

D)

o0

4

o0

L)

>

0

D)

Low Mach Number Adaptive

Mesh Refinement Code (LMC) - LMC - 3D mac_project Solve
= Navier-Stokes B Bottom Solver
= reactive chemistry zz | (=M Solver (overall)
= AMR

1.5x -

MG Diffusion Solve
» (aa-bVBRV)u=f

1.0x -

Performance Benefit
from CABiCGStab

0.5x -

= require relatively few bottom solver 0.0x -
iterations to converge 64 512 4096 32768 48 384 3072 24576
= CABICGStab not applicable Flat MPI MPI+OpenMP
AMR MG Level Solve
= bVBVU-=f

= require lots of bottom solve iterations to convergence
Conducted scaling experiments to 32K cores on Hopper (XE6 at NERSC)

Benefit of CABICGStab in 3D:

= up to 2.5x for the bottom solve
= up to 1.5x overall for the MG level solve
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Nyx Cosmology Application

.0

>

o0

D)

*.0

Cosmological dark matter

simulation code (SciDAC) - Nyx - 3D Gravity Solve
Code is a mix of: B Bottom Solver
; ' 2.0x B MG Solver (overall) [

» hydrodynamics for gas

» cloud-in-cell particles for dark
matter

Poisson solve for gravitational

potential... 0.0x -
= multi-level AMR MG 64 512 4096 32768 48 384 3072 24576
= constant coefficient Flat MP| MPI+OpenMP
= bVeu=f

Conducted scaling experiments to 32K cores on Hopper

Benefit of CABICGStab
= up to 2x win in bottom solve
» Unfortunately, bottom solver was only 26-41% of the solve time.
= |ess than 15% speedup overall

1.5x

1.0x -

Performance Benefit
from CABICGStab

0.5x A
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Conclusions

meeeseseeeeeessssss _ AWRENCE BERKELEY NATIONAL LABORATORY =it



S

— _
’N Conclusions

< Geometric multigrid solvers can be bottlenecked by the performance and
scalablilty of their coarse-grid (bottom) solvers...
» Degraded MPI collective performance
= super linear computational complexity of Krylov methods

>

D)

»  Communication-Avoiding s-step methods:

= provide a drop in-replacement for BiCGStab

= asymptotically reduce the number of collective operations

» are ultimately bounded by P2P MPI communication.

» vyeild significant speedups on both synthetic and real-world AMR MG solves

D)

>

D)

> CA Krylov methods provide an interesting axis for co-design research:
= trade latency (collectives/P2P) performance for bandwidth

» trade O(s) fine-grained operations for one coarse-grained operation

» trade streaming kernels for 2.5D kernels (good for locality)

D)
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:% Future Work

< Improve the performance of s-step bottom solvers...
» We don’t exploit the fact that the matrix G is symmetric.
= Thus, we send twice the data we need to.
= Potential performance impediment for large s as G has O(s?) elements.

< Explore using s-step methods for DRAM communication avoiding...
= Large matrices/vectors don't fit in cache

= matvec’s can dominate the run time

» Optimize CABICGStab (stencil powers or matrix powers) for DRAM data
movement as previous efforts optimized CAGMRES

< Explore true distributed v-cycles in AMR MG solves...

» Eliminates collectives altogether

= Geometric approach requires integrating the complex BC’s endemic to AMR into
the restriction operations

= Algebraic approach must express the BC’s inside an explicit matrix.

= As AMG is memory hungry, it probably should only be applied to mac_project.
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