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Multigrid Introduction 

!  Linear Solvers (Ax=b) are ubiquitous in scientific computing... 
"  Combustion, Climate, Astrophysics, Cosmology, etc…  

!  Multigrid solves elliptic PDEs using a hierarchical approach 
"  O(N) computational complexity 
"  Geometric Multigrid is specialization in which the linear operator (A) is 

simply a stencil on a structured grid (i.e. matrix-free) 
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“MG V-cycle” 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

Multigrid in Adaptive Mesh 
Refinement Applications 

!  Start with a coarse AMR level 
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!  Add progressively finer AMR levels 
as needed 

!  To solve this potentially large 
 coarse grid (“bottom”) problem, 
there are a number of approaches: 
"  Point Relaxation (slow) 
"  Direct solver (slow) 
"  Switch to Algebraic Multigrid 

(challenging to implement C/F BC’s) 
"  Use an iterative Krylov Solver 

 like BiCGStab (BoxLib/Chombo) 

!  In AMR applications, one performs 
MG solves on different AMR levels. 

!  Unfortunately, one can reach a 
point where further geometric 
restriction is not possible. 
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Classical BiCGStab Performance 
in Geometric Multigrid 
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miniGMG 
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Collection of 
subdomains 
owned by an 
MPI process 

one subdomain 
of 643 elements 

!  miniGMG 
"  compact 3D geometric multigrid Benchmark 
"  can be used to evaluate performance 

 bottlenecks in MG+Krylov methods and 
 prototype new algorithms. 

"  Highly instrumented for detailed 
 timing analysis 

!  We configured miniGMG to proxy BoxLib AMR applications… 
"  Cubical domain decomposed into one 643 subdomain per processor 
"  U-cycle terminated when subdomains are coarsened to 43 
"  Gauss Seidel, Red-Black (“GSRB”) smoother 
"  BiCGStab bottom solver (matrix is never explicitly formed) 
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Classical BiCGStab… 

!  BiCGStab solves Ax=b 
"  vectors x and b are cell-centered 

structured grids (with ghost zones) 
partitioned across multiple nodes. 

"  matrix A is a stencil 
"  requires a few auxiliary vectors 

(grids) 
!  Observe that for each iteration, the 

classical BiCGStab performs… 
"  2 matvecs (Isend/Irecv) 
"  4 dot products (AllReduce) 
"  2 norms (AllReduce) 

While the matrix-vector multiplications simply require point-
to-point (P2P) communication (MPI_Isend/Irecv) with
neighboring processes, the dot products and norms require col-
lective operations (MPI_AllReduce) — global reductions
across the entire machine. In general, depending on the size of
the problem, communication pattern, and parallel concurrency,
either the local computation, P2P communication, or collective
operations could be the performance bottleneck. As we are
focused on a bottom solver in which each process owns only
a 43 box after coarsening, we expect the bottom solve time to
be dominated by either P2P communication or collectives.

Algorithm 1 Classical BiCGStab for solving Ax = b

1: Start with initial guess x0

2: p0 := r0 := b�Ax0

3: Set r̃ arbitrarily so that (r̃, r0) 6= 0
4: for j := 0, 1, . . . until convergence or breakdown do
5: ↵j := (r̃, rj)/(r̃, Apj)
6: xj+1 := xj + ↵jpj

7: qj := rj � ↵jApj

8: Check ||qj ||2 = (qj , qj)1/2 for convergence
9: !j := (qj , Aqj)/(Aqj , Aqj)

10: xj+1 := xj+1 + !jqj

11: rj+1 := qj � !jAqj

12: Check ||rj+1||2 = (rj+1, rj+1)1/2 for convergence
13: �j := (↵j/!j)(r̃, rj+1)/(r̃, rj)
14: pj+1 := rj+1 + �j(pj � !jApj)
15: end for

B. Performance and Scalability of miniGMG with BiCGStab
Figure 2 shows the time-to-solution for a multigrid solve as

one weak-scales from 8 to 4096 processes on Hopper, where
each process has 6 threads (one Opteron chip) and receives
one subdomain (box) of 643 points at the finest grid. Thus,
the problem scales from a domain with N = 1283 points
distributed over 48 cores to N = 10243 using 24,576 cores.
The convergence criterion for miniGMG is to reduce the norm
of the residual on the fine grid by a factor of at least 10�10.
Ideally, geometric multigrid performs O(N) computations, so
one might hope that runtime stays constant while weak-scaling
— reality (solid red line) is far from this.

miniGMG allows us to tabulate time by level. Doing so
allows us to separate the time spent in the traditional multi-
grid V-cycles (dashed green line) from the time spent in
the BiCGStab bottom solver (dashed red line). Whereas the
multigrid part of the solver scales perfectly, the time spent in
the bottom solver grows rapidly. These observations reflect the
general characteristics of weak-scaled applications dependent
on multigrid solvers and motivate the need to address the
performance and scalability of Krylov-based bottom solvers
for geometric multigrid.

C. Breakdown of Bottom Solve Time
Our miniGMG benchmark also allows us to quantify the

breakdown of time in the bottom solver by operation. Fig-
ure 3 (top) clearly shows the vast majority of time in the
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Fig. 2. Breakdown of miniGMG solver time as one weak-scales a problem
with 643 points per process up to 4096 processes (24,576 cores) on Hopper
for our synthetic problem.

bottom solve is spent in MPI_AllReduce. The time spent
in P2P communication is an order of magnitude less and the
time spent in computation is insignificant. Figure 3 (bottom)
shows that the rapid increase in MPI_AllReduce time is
attributable to two effects. First, the total number of BiCGStab
iterations (summed across all V-cycles) increases quickly with
problem size. This should come as no surprise when weak-
scaling an algorithm with potential superlinear computational
complexity. Second, the average time in MPI_AllReduce
per iteration increases with machine scale. This is certainly
plausible given that Hopper’s network topology is a 3D torus
and the PBS job scheduler has been optimized to maximize
machine usage without guaranteeing each job is apportioned
a compact subtorus. The result is an increasing number of
increasingly slower BiCGStab iterations.

As it is difficult to reduce the time required for a collective
operation like MPI_AllReduce without changing either the
MPI implementation, the network architecture, or the job
scheduler, we consider optimizing the bottom solver to reduce
the number of times the collective is performed.

V. CABICGSTAB

Krylov subspace methods are based on projection onto
expanding subspaces, where, in each iteration m, the approx-
imate solution is chosen from the expanding Krylov subspace

Km(A, v) = span{v,Av, . . . , Am�1v}.

The main idea behind s-step Krylov subspace methods is
to block the iteration space into groups of s, splitting the
main loop of the Krylov subspace method into an outer loop
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Baseline Performance 

!  Run miniGMG benchmark on 
Hopper (Cray XE6 at NERSC) 

!  synthetic problem: 
"  variable coefficient helmholtz  
"  periodic boundary conditions 
"  rhs = sum of triangle waves in 

3D each with one period 
across the entire domain 

!  Weak scale to 24K cores… 
"  one 643 box per 6-thread 

process 
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Baseline Performance 

!  Run miniGMG benchmark on 
Hopper (Cray XE6 at NERSC) 

!  synthetic problem: 
"  variable coefficient helmholtz  
"  periodic boundary conditions 
"  rhs = sum of triangle waves in 

3D each with one period 
across the entire domain 

!  Weak scale to 24K cores… 
"  one 643 box per 6-thread 

process 
!  Although multigrid’s O(N) 

complexity should yield 
constant time-to-solution when 
scaling, it is clear time-to-
solution is far from constant. 
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Baseline Performance 

!  using miniGMG’s fine-grained 
timing instrumentation… 

!  time outside the bottom solver 
(traditional multigrid) is constant 
(perfect scaling) 
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Baseline Performance 

!  using miniGMG’s fine-grained 
timing instrumentation… 

!  time outside the bottom solver 
(traditional multigrid) is constant 
(perfect scaling) 

!  However, the time in the 
bottom solver scales very 
poorly 
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Bottom Solver Performance 

!  using miniGMG’s fine-grained 
timing instrumentation… 

!  time outside the bottom solver 
(traditional multigrid) is constant 
(perfect scaling) 

!  However, the time in the 
bottom solver scales very 
poorly 

!  Total time in MPI_AllReduce 
(used for norm’s and dot’s) 
increases rapidly with scale. 
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Bottom Solver Performance 

!  We observe that both… 
"  total number of BiCGStab 

iterations increases with 
problem size 

"  time per MPI_AllReduce() 
increases with scale 

!  Combined, these have a 
multiplicative effect… 
 ever more ever slower iterations 

13 

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

500"

0.0000"

0.0005"

0.0010"

0.0015"

0.0020"

0.0025"

0.0030"

0.0035"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500" 4000" 4500"

It
er
a&

on
s*

Ti
m
e*
(s
ec
on

ds
)*

Processes*(6*threads*each)*

BiCGStab*Solver*on*Hopper*(Weak*Scaling)*

AllReduce"Time"(per"iter.)"

BiCGStab"Itera?ons"
!  Four options: 

"  Accelerate Collectives 
"  Hide Time in Collectives 
"  Amortize Collectives 
"  Eliminate Collectives altogether 
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s-step BiCGStab 
(CABiCGStab) 
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Classical BiCGStab to 
s-Step BiCGStab (CABiCGStab) 

!  Erin Carson, Nick Knight, and Jim 
Demmel derived s-step variants of 
BiCG and BiCGStab [5]… 

!  Blocking BiCGStab’s iteration space 
into blocks of s-steps 

!  Constructing a Krylov subspace [P,R] 
which spans powers of A applied to pm 
and rm 

!  length-N vectors of BiCGStab can be 
expressed in terms of the product of 
[P,R] and length-(4s+1) vectors a,c,d,e. 

!  [Aqj,Apj] = [P,R]T’[dj,aj], where T’ is a 
small locally-replicated matrix 

!  With a little manipulation, BiCGStab’s 
dot products can be expressed in terms 
of a Gram-like matrix and one arrives at 
the s-step algorithm… 

While the matrix-vector multiplications simply require point-
to-point (P2P) communication (MPI_Isend/Irecv) with
neighboring processes, the dot products and norms require col-
lective operations (MPI_AllReduce) — global reductions
across the entire machine. In general, depending on the size of
the problem, communication pattern, and parallel concurrency,
either the local computation, P2P communication, or collective
operations could be the performance bottleneck. As we are
focused on a bottom solver in which each process owns only
a 43 box after coarsening, we expect the bottom solve time to
be dominated by either P2P communication or collectives.

Algorithm 1 Classical BiCGStab for solving Ax = b

1: Start with initial guess x0

2: p0 := r0 := b�Ax0

3: Set r̃ arbitrarily so that (r̃, r0) 6= 0
4: for j := 0, 1, . . . until convergence or breakdown do
5: ↵j := (r̃, rj)/(r̃, Apj)
6: xj+1 := xj + ↵jpj

7: qj := rj � ↵jApj

8: Check ||qj ||2 = (qj , qj)1/2 for convergence
9: !j := (qj , Aqj)/(Aqj , Aqj)

10: xj+1 := xj+1 + !jqj

11: rj+1 := qj � !jAqj

12: Check ||rj+1||2 = (rj+1, rj+1)1/2 for convergence
13: �j := (↵j/!j)(r̃, rj+1)/(r̃, rj)
14: pj+1 := rj+1 + �j(pj � !jApj)
15: end for

B. Performance and Scalability of miniGMG with BiCGStab
Figure 2 shows the time-to-solution for a multigrid solve as

one weak-scales from 8 to 4096 processes on Hopper, where
each process has 6 threads (one Opteron chip) and receives
one subdomain (box) of 643 points at the finest grid. Thus,
the problem scales from a domain with N = 1283 points
distributed over 48 cores to N = 10243 using 24,576 cores.
The convergence criterion for miniGMG is to reduce the norm
of the residual on the fine grid by a factor of at least 10�10.
Ideally, geometric multigrid performs O(N) computations, so
one might hope that runtime stays constant while weak-scaling
— reality (solid red line) is far from this.

miniGMG allows us to tabulate time by level. Doing so
allows us to separate the time spent in the traditional multi-
grid V-cycles (dashed green line) from the time spent in
the BiCGStab bottom solver (dashed red line). Whereas the
multigrid part of the solver scales perfectly, the time spent in
the bottom solver grows rapidly. These observations reflect the
general characteristics of weak-scaled applications dependent
on multigrid solvers and motivate the need to address the
performance and scalability of Krylov-based bottom solvers
for geometric multigrid.

C. Breakdown of Bottom Solve Time
Our miniGMG benchmark also allows us to quantify the

breakdown of time in the bottom solver by operation. Fig-
ure 3 (top) clearly shows the vast majority of time in the
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Fig. 2. Breakdown of miniGMG solver time as one weak-scales a problem
with 643 points per process up to 4096 processes (24,576 cores) on Hopper
for our synthetic problem.

bottom solve is spent in MPI_AllReduce. The time spent
in P2P communication is an order of magnitude less and the
time spent in computation is insignificant. Figure 3 (bottom)
shows that the rapid increase in MPI_AllReduce time is
attributable to two effects. First, the total number of BiCGStab
iterations (summed across all V-cycles) increases quickly with
problem size. This should come as no surprise when weak-
scaling an algorithm with potential superlinear computational
complexity. Second, the average time in MPI_AllReduce
per iteration increases with machine scale. This is certainly
plausible given that Hopper’s network topology is a 3D torus
and the PBS job scheduler has been optimized to maximize
machine usage without guaranteeing each job is apportioned
a compact subtorus. The result is an increasing number of
increasingly slower BiCGStab iterations.

As it is difficult to reduce the time required for a collective
operation like MPI_AllReduce without changing either the
MPI implementation, the network architecture, or the job
scheduler, we consider optimizing the bottom solver to reduce
the number of times the collective is performed.

V. CABICGSTAB

Krylov subspace methods are based on projection onto
expanding subspaces, where, in each iteration m, the approx-
imate solution is chosen from the expanding Krylov subspace

Km(A, v) = span{v,Av, . . . , Am�1v}.

The main idea behind s-step Krylov subspace methods is
to block the iteration space into groups of s, splitting the
main loop of the Krylov subspace method into an outer loop

[5] Erin Carson, Nicholas Knight, James Demmel, “Avoiding 
communication in nonsymmetric Lanczos-based Krylov 
subspace methods”, SIAM J. Sci. Comp., 2013. 
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CABiCGStab 
(algorithm) 

!  In exact arithmetic, the s-step algorithm 
exactly reproduces the classical 
BiCGStab algorithm.  

!  Computation of [P,R] can be done 
sequentially, in pairs, or in a 
communication-avoiding (minimize 
DRAM or #messages) manner. 

!  Construction of [G,g] is essentially an 
odd-shaped matrix multiplication, but 
can be performed with only one 
AllReduce. 

!  There is no communication in the 
inner s-steps of the algorithm. 
"  operations are on the small locally-

replicated vectors a, c, d, e 
"  Convergence checks may be performed 

without additional communication. 
!  Updating the iterates (BiCGStab 

vectors) requires no communication. 
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and similarly,

krm+j+1k2 = (rm+j+1, rm+j+1)1/2 = (cj+1, Gcj+1)1/2,

the convergence checks in lines 8 and 12 can be performed
locally (no communication) for 0  j  s� 1.

Using these transformations, we can block BiCGStab iter-
ates into groups of s, resulting in an outer loop that operates on
blocks of iterates and an inner loop that computes s iterations
of iterate updates. The resulting CABiCGStab method is
shown in Algorithm 2. Observe that the same traditional
breakdown criteria appear and are resolved in Algorithm 2
as in Algorithm 1.

B. Polynomial Bases

We have flexibility in selecting polynomials to use in
construction of P and R (bases for K2s+1(A, pm) and
K2s(A, rm), resp.). The condition number and norm of P and
R have important implications for stability and convergence
in finite precision; in the extreme case, an ill-conditioned
basis can lead to divergence of the residual. The simplest
basis for the Krylov subspace Ki(A, v) is the monomial basis,
i.e., [v, Av, . . . , Ai�1v]. It is well-known, however, that the
monomial basis condition number grows exponentially with
basis size (/ s in our case), which makes its use appropriate
only for small values of s. We can use any basis of the form
[⇢0(A)v, ⇢1(A)v, . . . , ⇢i�1(A)v], where ⇢j is a polynomial
of degree j. Typical choices resulting in well-conditioned
matrices include Newton and Chebyshev polynomials, which
are based on the spectrum of A (see, e.g., [27]).

C. Stability Improvements

We perform minor adjustments to the convergence checks
in Algorithm 2 to handle finite precision roundoff error. In
finite precision, the use of G in computing lines 14 and 18 can
result in small negative numbers for estimates of kqm+jk2 and
krm+j+1k2. In this case, the result is flushed to 0, indicating
convergence. As these convergence checks are entirely local
(no communication) and operate on the tiny coordinate vec-
tors, they are very fast and do not negate our communication-
avoiding benefits attained elsewhere.

D. Implementation in miniGMG and Performance Potential

CABiCGStab (Algorithm 2) provides potential performance
benefits in three areas — reducing the number of collective
communications, reducing the number of P2P communica-
tions, and eliminating vertical (DRAM) data movement. One
can tailor the implementation to optimize for whichever of
these is the bottleneck for the problem and scale in question.

Inter-process communication only occurs in lines 6, 7, and 8
(there is no inter-process communication in the inner (j) loop).
Moreover, the most computationally expensive routines occur
in these three lines as well. All computations in the inner loop
are operations on tiny length-(4s + 1) vectors. We will thus
focus our analysis on the performance benefits of these lines.

Currently, miniGMG uses the monomial basis, i.e.,

[P,R] = [pm, Apm, . . . , A2spm, rm, Arm, . . . , A2s�1rm].

Algorithm 2 CABiCGStab for solving Ax = b

1: Start with initial guess x0

2: p0 := r0 := b�Ax0

3: Set r̃ arbitrarily so that (r̃, r0) 6= 0
4: Construct (4s + 1)-by-(4s + 1) matrix T 0

5: for m := 0, s, 2s, . . . until convergence or breakdown do
6: Compute P , a basis for K2s+1(A, pm)
7: Compute R, a basis for K2s(A, rm)
8: [G, g] := [P,R]T [P,R, r̃]
9: Initialize length-(4s + 1) vectors a0, c0, d0, e0

10: for j := 0 to s� 1 (or convergence/breakdown) do
11: ↵m+j := (g, cj)/(g, T 0aj)
12: ej+1 := ej + ↵m+jaj

13: dj := cj � ↵m+jT
0aj

14: Check ||qm+j ||2 = (dj , Gdj)1/2 for convergence
15: !m+j := (dj , GT 0dj)/(T 0dj , GT 0dj)
16: ej+1 := ej+1 + !m+jdj

17: cj+1 := dj � !m+jT
0dj

18: Check ||rm+j+1||2 = (cj+1, Gcj+1)1/2 for con-
vergence

19: �m+j := (↵m+j/!m+j)(g, cj+1)/(g, cj)
20: aj+1 := cj+1 � �m+j(aj � !m+jT

0aj)
21: end for
22: pm+s := [P,R]as

23: rm+s := [P,R]cs

24: xm+s := [P,R]es + xm

25: end for

One can either perform these matrix-vector multiplications
sequentially (Ak+1pm = A(Akpm)), in pairs
([Ak+1pm, Ak+1rm] = A[Akpm, Akrm]), or in a
communication-avoiding matrix powers [23] implementation
that calculates several powers of A by aggregating MPI
communication, reading A only once from DRAM, and
performing some redundant work. The first approach will
require 4s� 1 P2P communications every s steps — roughly
twice the number of P2P communications for s iterations of
classical BiCGStab (two per iteration). This is the approach
currently used in miniGMG. The second approach can return
this to parity with the classical algorithm with the caveat that
the size of each message is doubled. The benefit of the third
approach heavily depends on the value of s, the increased
number of messages for the depth-⇥(s) ghost zones, the
size of the matrix, and the characteristics of the machine. To
date, the third approach has not shown benefits for miniGMG
bottom solves with 7-point stencils and small s, but it is still
an area of active research.

Line 8 of Algorithm 2 shows the construction of the Gram-
like matrix [G, g]. As [P,R, r̃] contains multiple grids as
columns, the operation [G, g] := [P,R]T [P,R, r̃] is effectively
a series of dot products on grids distributed across thousands
of processes. If performed sequentially, these operations would
require at least 4s2 calls to MPI_AllReduce — clearly
a poor choice. It is thus much better to have each process
aggregate the partial sums into a matrix and perform one
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Bottleneck Analysis Drives 
Implementation Choices 

!  We can decompose CABiCGStab’s run time into three major 
components: 

17 

Construction of Krylov Subspace: 
[P,R] = [p,Ap,…,A2sp, r,Ar,…,A2s-1r] 

Gram-like Matrix: 
[G,g] = [P,R]T[P,R,rt]  

P2P 
MPI + local 

matvecs 
global MPI 
collectives + 

!  In multigrid’s coarse grid solve, local matvecs are free, and MPI 
collectives dominate run time. 

!  We implemented CABiCGStab in miniGMG… 
"  Construct [P,R] sequentially (not performance critical) 
"  Optimized construction of [G,g] to use only 1 collective. 

P2P 
MPI + local 

matvecs 

global MPI 
collectives 

+ 
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Bottleneck Analysis Drives 
Implementation Choices 

!  Other users of BiCGStab (those not using MG) might see the 
matvecs dominate the run time. 

18 

Construction of Krylov Subspace: 
[P,R] = [p,Ap,…,A2sp, r,Ar,…,A2s-1r] 

Gram-like Matrix: 
[G,g] = [P,R]T[P,R,rt]  

!  They should optimize the implementation of the s-step BiCGStab 
algorithm aifferently… 
"  minimize vertical (DRAM) data movement 
"  calculate [Ap,A2p,Ar,A2r] by reading A only once 

P2P 
MPI + 

local 
matvecs 

global MPI 
collectives + 
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CABiCGStab in miniGMG 
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CABiCGStab 
(accuracy) 

!  miniGMG with CABiCGStab (s=4) 
has the same convergence rate 
as using BiCGStab 

!  Note, CABiCGStab uses the L2 
norm for convergence 
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CABiCGStab 
(breakdown of bottom solve time) 

!  CABiCGStab replaces 6s scalar 
reductions with one matrix 
reduction. 

!  CABiCGStab requires twice the 
peer-to-peer MPI communication 
per s steps as the classical 
algorithm. 

!  We observe reduction in collective 
time outweighed increase in P2P 
time. 
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!  Replaced BiCGStab bottom solver 
in miniGMG with CABiCGStab and 
ran scaling experiments… 

!  At 4K processes, CABiCGStab 
more than quadrupled the bottom 
solver performance. 
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Benefits to miniGMG 
from CABiCGStab 

!  Replaced BiCGStab bottom solver 
in miniGMG with CABiCGStab and 
ran scaling experiments… 

!  At 4K processes, CABiCGStab 
more than quadrupled the bottom 
solver performance. 

!  Moreover, it provided MG with a 
2.5x overall speedup. 

!  Thus, it dramatically improved 
parallel efficiency. 
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Can CABiCGStab help 
Real Applications? 

24 
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BoxLib MG Solvers 

!  BoxLib is an AMR MG framework developed at LBL. 
"  uses BiCGStab as a coarse-grid solver 
"  includes both C++ and Fortran versions of BiCGStab. 

!  We implemented both C++ and Fortran versions of CABiCGStab… 
"  allows drop in replacement for BiCGStab 
"  exploits all existing infrastructure for applyOp, BCs, ghost zones, etc… 
"  allows for rapid evaluation on real applications 
"  We exploited BoxLib capabilities to construct [P,R] in pairs. 

 this keeps the number of messages equal to the classical version. 
"  We implemented a Telescoping CABiCGStab algorithm in which we 

steadily increase s. 
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LMC Combustion Application 

!  Low Mach Number Adaptive 
Mesh Refinement Code (LMC) 
"  Navier-Stokes 
"  reactive chemistry 
"  AMR  

!  MG Diffusion Solve 
"  (aα - b∇β∇)u = f 
"  require relatively few bottom solver 

iterations to converge 
"  CABICGStab not applicable 
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LMC - 3D mac_project Solve 

Bottom Solver 
MG Solver (overall) 

!  AMR MG Level Solve 
"  b∇β∇u = f 
"  require lots of bottom solve iterations to convergence 

!  Conducted scaling experiments to 32K cores on Hopper (XE6 at NERSC) 
!  Benefit of CABiCGStab in 3D: 

"  up to 2.5x for the bottom solve 
"  up to 1.5x overall for the MG level solve 
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Nyx Cosmology Application 

!  Cosmological dark matter 
simulation code (SciDAC) 

!  Code is a mix of: 
"  hydrodynamics for gas 
"  cloud-in-cell particles for dark 

matter 
!  Poisson solve for gravitational 

potential… 
"  multi-level AMR MG 
"  constant coefficient 
"  b∇2u = f 
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Nyx - 3D Gravity Solve 

Bottom Solver 
MG Solver (overall) 

!  Conducted scaling experiments to 32K cores on Hopper 
!  Benefit of CABiCGStab 

"  up to 2x win in bottom solve 
"  Unfortunately, bottom solver was only 26-41% of the solve time. 
"  less than 15% speedup overall 
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Conclusions 

!  Geometric multigrid solvers can be bottlenecked by the performance and 
scalablilty of their coarse-grid (bottom) solvers… 
"  Degraded MPI collective performance 
"  super linear computational complexity of Krylov methods 

!  Communication-Avoiding s-step methods: 
"  provide a drop in-replacement for BiCGStab 
"  asymptotically reduce the number of collective operations 
"  are ultimately bounded by P2P MPI communication. 
"  yeild significant speedups on both synthetic and real-world AMR MG solves 

!  CA Krylov methods provide an interesting axis for co-design research: 
"  trade latency (collectives/P2P) performance for bandwidth 
"  trade O(s) fine-grained operations for one coarse-grained operation 
"  trade streaming kernels for 2.5D kernels (good for locality) 
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Future Work 

!  Improve the performance of s-step bottom solvers… 
"  We don’t exploit the fact that the matrix G is symmetric. 
"  Thus, we send twice the data we need to. 
"  Potential performance impediment for large s as G has O(s2) elements. 

!  Explore using s-step methods for DRAM communication avoiding… 
"  Large matrices/vectors don’t fit in cache 
"  matvec’s can dominate the run time 
"  Optimize CABiCGStab (stencil powers or matrix powers) for DRAM data 

movement as previous efforts optimized CAGMRES 

!  Explore true distributed v-cycles in AMR MG solves… 
"  Eliminates collectives altogether 
"  Geometric approach requires integrating the complex BC’s endemic to AMR into 

the restriction operations 
"  Algebraic approach must express the BC’s inside an explicit matrix. 
"  As AMG is memory hungry, it probably should only be applied to mac_project. 
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