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Abstract

This document provides an overview of the benchmark – HPGMG – for ranking
large scale general purpose computers for use on the Top500 list [8]. We provide
a rationale for the need for a replacement for the current metric HPL, some back-
ground of the Top500 list and the challenges of developing such a metric; we discuss
our design philosophy and methodology, and an overview of the specification of the
benchmark. The primary documentation with maintained details on the specifica-
tion can be found at hpgmg.org and the Wiki and benchmark code itself can be
found in the repository https://bitbucket.org/hpgmg/hpgmg.

1 Summary

The High Performance Linpack (HPL) benchmark (and associated Top-500
List [8]) has been a successful metric for ranking high performance computing
systems. HPL became a broadly accepted representative for application per-
formance when it came to prominence in the 1990s, but over time has become
less reflective of the system performance metrics that matter to contempo-
rary science and engineering applications as lower complexity algorithms have
been developed and required for extreme scale computing. We define a met-
ric for ranking the worlds largest general purpose computers that maintains
many of HPL’s desirable qualities: a direct, non-iterative, solver (although
only asymptotically exact) for systems of linear algebraic equations with a
metric of equations solved per second (with a mapping to flops/s). We define
a high performance geometric multigrid (HPGMG) benchmark that provides
a more balanced exercise of machine capabilities, relative to application of
interest in scientific computing, to provide a more accurate proxy for modern
application requirements. HPGMG is composed of computations and data
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access patterns more commonly found in contemporary applications. Using
HPGMG, we aim to create a benchmark for ranking systems that will pro-
mote system design improvements that are better aligned to real scientific
application performance.

2 Introduction

The High Performance Linpack () benchmark is the most widely recognized
and discussed metric for ranking high performance computing systems. When
HPL gained prominence as a performance metric in the early 1990s there was a
strong correlation between its predictions of system rankings and the ranking
that full-scale applications would realize. Computer system vendors pursued
designs that would increase HPL performance, which would in turn improve
overall application performance.

HPL rankings of computer systems are no longer so strongly correlated to real
application performance, especially for the broad set of HPC applications that
analyze differential equations, which tend to have much stronger needs for high
bandwidth and low latency, and tend to access data using irregular patterns.
In fact, we have reached a point where designing a system for good HPL
performance can actually lead to design choices that are wrong for the real
application mix, or add unnecessary components or complexity to the system.
Despite that, due to its long accumulated history, the Top500 list continues to
offer a wealth of information about HPC industry trends and investments, but
the mismatch between observed application performance and HPL ranking has
become unsustainable.

We expect the gap between HPL measurements and the expectations it sets
for real application performance to increase in the future. The lack of cor-
respondence between observed application performance and the expectations
set by HPL leads to skepticism by the application community and a tendency
to prematurely declare success at each major increment of peak flop rate im-
provement when applications are do not see corresponding performance im-
provements. In fact, based on the example set by Tianhe-2, the first 1 Exaflop
HPL will likely to be achieved via brute-force, which will result in design that
is unattractive for real applications. Without intervention, such a develop-
ment will undercut R&D investments to create more usable systems due to
premature declaration of success on achieving the next 1000x milestone in
HPL performance improvement. As a result, we seek a new metric that will
have a stronger correlation to our application base and will therefore drive
system designers in directions that will enhance application performance for
a broader set of HPC applications.
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2.1 Why HPL has lost relevance

HPL factors and solves dense system of linear equations using Gaussian Elim-
ination with partial pivoting. The dominant calculations in this algorithm are
dense matrix-matrix multiplication and related kernels, which can achieve very
high computational intensity. With proper organization of the computation,
data access is predominantly unit stride and is mostly hidden by concurrently
performing computation on previously retrieved data. This kind of algorithm
strongly favors computers with very high floating-point computation rates and
adequate streaming memory systems, and was a reasonably good reflection of
the dominant computational techniques of its day. Furthermore, HPL was a
good proxy for a time when floating point performance and memory capacity
were among the most costly aspects of the design, and represented the most
desirable attribute for such systems. The ability to the benchmark to scale
through many orders of magnitude improvements in hardware performance
improvements, and to memory capacity has enabled it to remain a standard
metric for documenting the historical improvements in the performance of
top systems for three decades – outlasting any other known benchmark for
assessing and ranking system performance.

However, over the lifetime of HPL benchmark and the Top500 list, the develop-
ment of faster and more computationally efficient algorithms has reduced the
use of these highly floating point intensive algorithms in most engineering and
scientific communities. Many of these algorithms are multilevel methods (e.g.,
mesh partitioners, multi-scale methods as well as equation solvers). These al-
gorithms generally have lower or equal complexity in nearly every conceivable
complexity measure (e.g., flops, computational depth, memory usage, mem-
ory movement at all levels of the memory hierarchy) than their predecessors.
For instance multigrid has improved time to solution by reducing the total
number of steps to solution (including requirements for nearly all hardware
performance metrics) in addition to reducing the total number of FLOPs. In
fact, the SCALES report of [6] observed that the history of performance im-
provements in algorithms has achieved 9 orders of magnitude improvement
in delivered application performance during the same period that hardware
improvements delivered a mere 3 orders of magnitude improvement. Today,
algorithms with arithmetic intensity (AI) of 2-4 flops/byte, and lower, are
common. While research and development in algorithm and techniques to in-
crease AI, with the aim to reduce the data movement, HP benchmark should
reflect the higher memory bandwidth and lower latency demands of modern
algorithms and future application.

Not only have the design of algorithms drifted away from the characteristics
that dominated at the time that HPL was first formulated, so too have the
fundamental engineering challenges of HPC hardware design. In the 1980’s
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FLOPS were among the most precious components of HPC systems and rep-
resented a first order engineering challenge to scale. Now, energy consumption
has become a leading design challenge for future HPC systems. Whereas the
energy cost of performing a floating point operation used to be dominant, the
energy consumed by moving the operands for such an operation exceed the
energy cost of the floating point operation because logic performance and cost
has been improving faster than improvements in data movement since 2004.
So HPL is neither reflective of current algorithm design nor is it strongly re-
flective of the most pressing challenges to the design of future computational
hardware. It emphasizes aspects of the hardware that are comparatively easy
to scale (FLOPs) and neglects the emerging challenges such as scaling up the
interconnect and memory bandwidth.

2.2 Historic Challenges to Creating a New HPC Performance Metric

There have been many failed attempts to supplant HPL, partly due to its long
history, but also due to its ability to keep weak-scaling through many orders of
magnitude improvements in memory capacity and peak system performance.
Erich Strohmaier has pointed out that we must choose extensive metrics such
as HPL that are able to rank systems in a manner that tracks growth of ca-
pability even if the metric does not reflect the rate of growth in the metics
that are of most value to the user community [7]. Attempts to supplant HPL
rankings have tended to fail because most common formulations of extensive
metrics tend to correlate (albeit imprecisely) to the overall size of the ma-
chine. Systems that offer more HPL FLOPs tend to be larger, and hence have
larger quantities of the other extensive metrics such as memory bandwidth,
bisection bandwidth, and other key metrics that might be exercised through
scaling. However, the desired outcome is to make the absolute value of the
rankings more closely track observed application performance benefits, and to
offer algorithms challenging enough to reflect programmability concerns for
real systems. This prevents premature declaration of success with each major
performance improvement milestone, which undercut the support from appli-
cations (that are not realizing similar improvements) and undercut research
funding to address the much more difficult hardware and software improve-
ments.

3 Design Principles for a New HPC Performance Metric

A benchmark must reflect improvements to computer systems that benefit our
applications and is essential for documenting future improvements to HPC
systems. The metric should must be designed so that, as we optimize metric
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results for a particular platform, the changes will also lead to performance
improvements realized by real applications. Any new metric we introduce must
satisfy a number of requirements:

• Accurately reflect the characteristics of contemporary high-efficiency algo-
rithms.
• Accurately reflect the principle challenges of future hardware design – a bal-

anced combination of memory bandwidth, interconnect performance (both
for small and large messages), computational performance, and reliability.
It should not be possible to ”cheat” the benchmark by over-provisioning the
hardware in any one of these areas. A machine designed for the sole purpose
of performance on out metric should result in a “pretty good” machine for
scientific and engineering applications.
• The absolute improvements in this benchmark should ultimately be reflec-

tive of performance improvements realizable in real applications, which are
occurring at a much slower rate than improvements in peak FLOPs.
• It must be able to scale through many orders of magnitude improvement

of hardware storage capacity, and performance – much as HPL has for the
past three decades.

No one benchmark can provide an accurate proxy of any particular applica-
tion but we believe that one comprehensive benchmark has two advantages
over the alternative: a weighted set or bag of (simple) benchmarks. One com-
prehensive benchmark, like HPL, has the advantage that it is much easier to
administer, define and adjudicate. Deciding on weights would be a contentious
process (although we have desire parameters that are somewhat similar), and
the current administrators of the top500 list believe that the one monolithic
“solve” approach is highly desirable. Note, our choice of algebraic equation
solvers is somewhat arbitrary as other applications could plausible provide a
framework for a benchmark. The wighted bag of benchmarks and that param-
eters in our benchmark requires explicitly defining machine metrics, measuring
these metrics in the benchmark and applications, and fitting internal param-
eters so as to provide the best proxy for the applications of interest. Posing
a fundamentally hard problem (i.e., a problem with high mathematical com-
plexity) to solve implicitly demands an effective machine. We desire a rational
approach, with modeling and measurements, to benchmark design but models
are not perfect measures of machine effectiveness and so a benchmark that
both implicitly and explicitly demands an effective machine is desirable. The
advantage of the weighted bag of benchmarks is that one has a great deal of
freedom in fitting the benchmark to applications; we believe that HPGMG
provides enough internal parameters (e.g., equations to solve, discretization,
and various multigrid scheduling) to adequately match applications. It is in-
cumbent on us to demonstrate this 3.3.
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3.1 Modeling of Machine Metrics

Metrics to assess the effectiveness of a benchmark as a proxy for an application
or a collection of applications is critical to the rational design and assessment
of a benchmark. To this end we define machine metrics and methodology for
collecting these metrics, collect these metrics for applications, and parameter-
ize (§3.3) our benchmark(s) to best match “applications”. We will be respon-
sive to the community to define the application mix. One goal of benchmark
design is to be flexible enough to adequately match applications in scientific
commuting, however what this exact mix is requires community input. Defi-
nitions of the metrics and methodology can be found on the repository Wiki
(https://bitbucket.org/hpgmg/hpgmg/wiki).

3.2 Design requirements, Goals, and Definition of the Benchmark

An HPC benchmark is a complex socio, economic, political, technical, and
mathematical endeavor. The many failures to supplant HPL attest to this.
We aim to emulate what we see as some of the important aspect of HPL.
In addition to the HPL’s strengths that we have already mentioned we see
additional technical characteristics of HPL that have lead to its success:

(1) A mathematically global, fully coupled, application – solving random
dense linear systems.

(2) An optimal order complexity algorithm for the application – O(N3) work
complexity.

(3) A high quality implementation – Linpack was and is a state-of-the-art
implementation of the numerics of Gauss elimination.

(4) A clear, well defined, valid metric – equations/s with a mapping to flops/s.

We propose a new benchmark to be added to the Top500 list, that
solves a system of algebraic equations with one application of full
geometric multigrid. This proposal address our design requirements as fol-
lows:

Application: We propose to solve a discretization of the variable coefficient
Laplacian problem with an analytic solution on a Cartesian grid in 3D. The
solution of the Laplacian has O(log(N)) computational depth or parallel com-
plexity inherent to the problem. That is, it is a mathematically global problem
and requires a full coupled computation to solve.

Complexity: One full multigrid (FMG) application, [4, 5, 9] §A, has optimal
work complexity of O(N), computational depth of O(log2N), and is a prov-
ably asymptotically exact solver for the constant coefficient Laplacian with a
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convergence rate of the same order as the discretization. We observe and can
verify this asymptotic convergence for non-constant problems within FMG
within our benchmark because FMG has a Cauchy sequence (norms of the
errors and residuals at each level) that can be reported to verify quadratic
convergence. Additionally, we can achieve what is known as “textbook multi-
grid efficiency” where the constant in the complexity is about 10 residual
calculations. Near textbook efficiency has been demonstrated for many appli-
cations including nonlinear, eight field, resistive magneto-hydrodynamics [3].
The computational depth is the square of the theoretical lower bound. This is
apparent non-optimality is actually a feature in that it puts more pressure on
the communication fabric because more work is done on coarse grids where
there is less work to amortize communication latency. There are other multi-
grid cycles, which have different rations of global to local work, and we may
use this a parameter in the benchmark. We use Chebyshev smoothers, which
only require the application of the operator and basic vector operations. While,
Gauss-Seidel is a popular multigrid smoother it requires a separate kernel, is
complex to implement in parallel for high order operators (potentially a good
feature but we have elected not to pursue it) [1], and is not highly desirable
for elliptic operators.

Implementation: We have experts in multigrid, have implemented multigrid
many times between us, consult and are coauthors with the worlds experts on
multigrid, and are thus well qualified to conduct this work. This application
is simple enough that we can deploy implementations that are reasonably
close to optimal, at least in the high level message passing layer. We deploy
reference implementations of the kernels, which can be optimized by users,
that are highly efficient on at least some architectures.

The metric: While flops/s is the published HPL metric, this is not a valid
metric. Strohmaier points out: “... the basic ideas on how to construct a gen-
eralized utility metric for such a purpose. It multiplies all desired quantities
(computing capability) and divides them by undesired quantities...”. HPL cir-
cumvents this problem by, crucially, defining the flop count (and undesirable
quantity) as a function of the the number of equations solved (a desirable
quantity). Our metric is equations solved per second. We can map equations
to flops with a linear function, that depends on many design factors that we
define §3.3, if this is desired by the community. Because we only have an
asymptotically exact method we face the challenge of defining “solved”. One
of the advantages of FMG, besides being efficient and non-iterative, is that
it is equipped with a Cauchy sequence (norms of errors or residuals at each
level) that can be use to verify same order convergence as the discretization.
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3.3 Benchmark Parameters

Given the machine metrics for measuring the computational characteristics
of a code (application and benchmark) we wish our benchmark to demand
a machine that close to that of our applications of interest.Geometric multi-
grid with matrix free operators provides several free parameters that can be
adjusted to improve the fit of benchmark to applications.

The equations and discretizations are a free parameter that can be clearly
defined and understood, and easily verified. Matrix free methods offer a wide
range of arithmetic intensity (a proxy for flop rates), demands for both stream-
ing and cache memory, and complex process cooperation where natural units
of computation like elements or flux surfaces update multiple variables.

Multigrid also allows for the the smoother scheduling, the number of pre and
post smoothing steps at each level, to be specified. Large numbers of smoothing
steps uses more flops in the high intensity operator or smoother kernels and
allows for more loop fusion. More smoothing steps on coarse grids and be used
to tune the amount of work done on coarse grids. Multigrid cycles (e.g., V,
W, and F) can be used as a parameter to also define the proportion of work
on on coarse versus fine grids.

3.4 HPGMG Code Design

We provide a high level harness, or framework code, for the benchmark that
runs the FMG solver and reference implantations of kernels, which contain
all numerics and communication. Our harness uses MPI and given the num-
ber of MPI processes, an optional process index space, and the size of a local
rectangular 3D Cartesian grid on each process, defines a 3D problem domain.
We run FMG with a manufactured solution, generating a right hand side and
verifying the error at each level, calling kernel methods for the numerics (e.g.,
multigrid prolongation and restriction, applying the operator, norms, etc.).
We provide reference implementations of the kernels and users are encour-
aged to write custom kernels and add them to the repository for verification
and public release after the top500 list is published. We discourage writing
new a new harness and reserve the right to reject any submission that does
not use our harness. We encourage users to work with us in providing flex-
ibility that would motivate writing a new harness. For instance, loop fusion
techniques might require that more of the FMG algorithm is abstracted. We
will work with users to provide desired flexibility. If users would like to not
use MPI in the harness, for instance, thus requiring a rewrite of the harness,
we will work with you in certifying new harnesses to add to the benchmark
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repository, again to be publicly available after its publication on the top500
list [2]. Further details of the specification can be found on the repository Wiki
(https://bitbucket.org/hpgmg/hpgmg/wiki).
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Appendices

A Multigrid Methods

Multigrid methods are motivated by the observation that a low resolution dis-
cretization of an operator can capture modes or components of the error that
are expensive to compute directly on a highly resolved discretization. More
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generally, any poorly locally-determined solution component has the potential
to be resolved with coarser representation. This process can be applied recur-
sively with a series of coarse “grids”, thereby requiring that each grid resolve
only the components of the error that it can solve efficiently. These coarse
grids have fewer grid points or work complexity, typically about a factor of
2-4 in each dimension, such that the total amount of work in multigrid itera-
tions can be expressed as a geometric sum that converges to a small factor of
the work on the finest mesh. This is a general process and can be applied to
problems with particles/atoms or pixels as well as the traditional grid or cell
variables considered here. Multigrid provides a basic framework within which
particular multigrid methods can be developed for particular problems.

Geometric multigrid not only provides a powerful basis on which to build
a specific solution algorithm, but also allows for the straightforward use of
nonlinear multigrid, or full approximation scheme (FAS) multigrid [4] and
matrix-free implementations. Figure A.1 shows the standard multigrid FAS
V-cycle and uses the smoother u ← S(A, u, b), the restriction operator Rk+1

k ,
which maps residuals and current solutions from the fine grid space k to the
coarse grid space k+1 (the rows of Rk+1

k are the discrete representation, on the
fine grid, of the coarse grid functions), and the prolongation operator P k

k+1,
which maps the current solution from the coarse grid to the fine grid.

function u←MGV (Ak, uk, fk)
if k > 0

uk ← S(Ak, uk, fk) /* pre-smoothing */
wk−1 ← Rk−1

k (uk) /* restriction of current solution to coarse grid */
pk ← Akuk
τk−1 ← Ak−1wk−1 −Rk−1

k (pk) /* τ correction */
pk−1 ←MGV (Ak−1, wk−1, fk−1 + τk−1)
wk−1 ← pk−1 − wk−1 /* convert to an increment */
uk ← uk + P k

k−1(wk−1) /* prolongate coarse grid correction */
uk ← S(Ak, uk, fk) /* post-smoothing */

else
u0 ← A−1

0 f0 /* accurate solve of coarsest grid */
return uk

Fig. A.1. FAS multigrid V-cycle algorithm

Common notation for this multigrid V-cycle is V(µ1,µ2), where µ1 and µ2 are
the number of pre- and post-smoothing steps, respectively. Figure A.2 shows
the standard full multigrid algorithm.

The complexity of an F-cycle is asymptotically similar to a V-cycle, and it
can be proven to produce a solution with algebraic error that is less than the
incremental error on some problems [9], that is and asymptotically exact solver,
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f0 ← F (0) /* compute RHS */
u0 ← A−1

0 f0 /* coarse grid solve */
k ← 1
while(!done)

uk ← P̄ k−1
k (uk−1) /* FMG prolongation */

fk ← F (k) /* compute RHS */
uk ←MGV (Ak, uk, fk)
ek ← error(uk) /* compute error for convergance test */
k ← k + 1

Fig. A.2. Full multigrid algorithm

and has been demonstrated to be asymptotically exact on many problems,
such as resistive magneto-hydrodynamics [3].
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