Vector IRAM

A Media-oriented Vector Processor with Embedded DRAM

Christoforos Kozyrakis, Joseph Gebis, David Martin, Samuel Williams, Ioannis Mavroidis, Steven Pope, Darren Jones*, David Patterson, and Katherine Yelick

Computer Science Division University of California at Berkeley IBM Microelectronics Hopewell Junction, NY

* MIPS Technologies Inc. Mountain View, CA

Vector IRAM Overview

Vector IRAM

- Microprocessor prototype with
 - A 256-bit vector coprocessor
 - A 16-MByte embedded DRAM memory system
- 150 million transistors, 290 mm²
- 3.2 Gops at 200 MHz
- 1.6 Gops/Watt at 2 W
- Industrial strength vectorizing compiler
- Implemented by 6 graduate students for architecture, design, simulation and testing

Motivation and Goals

Vector IRAM

- Processor features for PostPC systems:
 - High performance on demand for multimedia without continuous high power consumption
 - Tolerance to memory latency
 - Scalable
 - Mature, HLL-based software model
- Design a prototype processor chip
 - Complete proof of concept
 - Explore detailed architecture and design issues
 - Motivation for software development

Key Technologies

Vector IRAM

- <u>Vector processing</u>
 - High performance on demand for media processing
 - Low power for issue and control logic
 - Low design complexity
 - Well understood compiler technology
- Embedded DRAM
 - High bandwidth for vector processing
 - Low power/energy for memory accesses
 - "System on a chip"

Vector Instruction Set

Vector IRAM

- Complete load-store vector instruction set
 - Uses the MIPS64TM ISA coprocessor 2 opcode space
 - Data types supported: 64b, 32b, 16b (and 8b)
 - Architecture state
 - 32 general-purpose vector registers
 - 32 vector flag registers, 16 scalar registers
 - 91 instructions
 - Arithmetic, logical, vector processing
 - Sequential, strided and indexed loads and stores
- Not specified by the ISA
 - Maximum vector register length
 - Functional unit datapath width

Vector ISA Enhancements

Vector IRAM

- DSP support
 - Fixed-point shift, multiply and multiply-add, saturated arithmetic, rounding modes
 - Simple instructions for intra-register permutations for reductions and butterfly operations
 - High performance for dot-products and FFT without the complexity of a random permutation
- Compiler and OS support
 - Conditional execution of vector operations
 - Support for software speculation of load operations
 - MMU-based virtual memory
 - Restartable arithmetic exceptions
 - Valid and dirty bits for vector registers

VIRAM Prototype Architecture

Vector IRAM

Vector Unit Pipeline

Vector IRAM

- Single-issue, in-order pipeline
- Efficient for short vectors
 - Pipelined instruction start-up
 - Full support for instruction chaining, the vector equivalent of result forwarding
- Hides long DRAM access latency
 - Random access latency could lead to stalls due to long load→use RAW hazards
 - Simple solution: "delayed" vector pipeline

Delayed Vector Pipeline

Vector IRAM

- Random access latency included in the vector unit pipeline
- Arithmetic operations and stores are delayed to shorten RAW hazards
- Long hazards eliminated for the common loop cases
- Vector pipeline length: 15 stages

Modular Vector Unit Design

- Single 64b "lane" design replicated 4 times
 - Reduces design and testing time
 - Provides a simple scaling model (up or down) without major control or datapath redesign
- Most instructions require only intra-lane interconnect
 - Tolerance to interconnect delay scaling

Floorplan

Vector IRAM

• Technology: IBM SA-27E

- 0.18µm CMOS
- 6 metal layers (copper)
- 290 mm² die area
 - 225 mm² for memory/logic
 - DRAM: 161 mm²
 - Vector lanes: 51 mm²
- Transistor count: ~150M
- Power supply
 - 1.2V for logic, 1.8V for DRAM
- Peak vector performance
 - 1.6/3.2/6.4 Gops wo. multiply-add (64b/32b/16b operations)
 - 3.2/6.4 /12.8 Gops w. multiply-add
 - 1.6 Gflops (single-precision)

Power Consumption

Vector IRAM

- Power saving techniques
 - Low power supply for logic (1.2 V)
 - Possible because of the low clock rate (200 MHz)
 - Wide vector datapaths provide high performance
 - Extensive clock gating and datapath disabling
 - Utilizing the explicit parallelism information of vector instructions and conditional execution
 - Simple, single-issue, in-order pipeline
- Typical power consumption: 2.0 W
 - MIPS core: 0.5 W
 - Vector unit: $1.0 \text{ W} \pmod{400}$
 - DRAM: 0.2 W (min ~0 W)
 - Misc.: 0.3 W (min ~0 W)

Software Tools

- VIRAM compiler
 - Vectorizing compiler with C/C++/Fortran front-ends
 - Based on the Cray's PDGCS production environment for vector supercomputers
 - Extensive vectorization and optimization capabilities including outer loop vectorization
 - No need to use special libraries or variable types for vectorization
- Other software tools
 - ISA simulator and performance model
 - Assembler, disassembler, debugger

Performance: Efficiency

Vector IRAM

	Peak	Sustained	% of Peak
Image Composition	6.4 GOPS	6.40 GOPS	100%
iDCT	6.4 GOPS	3.10 GOPS	48.4%
Color Conversion	3.2 GOPS	3.07 GOPS	96.0%
Image Convolution	3.2 GOPS	3.16 GOPS	98.7%
Integer VM Multiply	3.2 GOPS	3.00 GOPS	93.7%
FP VM Multiply	1.6 GFLOPS	1.59 GFLOPS	99.6%
Average			89.4%

Performance: Comparison

Vector IRAM

	VIRAM	ММХ	VIS
Image Composition	0.13	-	2.2 (<mark>17.0x</mark>)
iDCT	0.75	3.75 (<mark>5.0x</mark>)	-
Color Conversion	0.78	8.00 (<mark>10.2x</mark>)	-
Image Convolution	1.23	5.49 (<mark>4.5x</mark>)	6.19 (<mark>5.1x</mark>)
QCIF (176x144)	7.1M	33M (<mark>4.6x</mark>)	-
CIF (352x288)	28M	140M (<mark>5.0x</mark>)	-

- QCIF and CIF numbers are in clock cycles per frame
- All other numbers are in clock cycles per pixel
- MMX and VIS results assume no first level cache misses

Performance: FFT (1)

Vector IRAM

Performance: FFT (2)

Vector IRAM

HOT CHIPS 12

17

Conclusions

Vector IRAM

- Vector IRAM
 - An integrated architecture for media processing
 - Based on vector processing and embedded DRAM
 - Simple, scalable, and efficient
- Prototype
 - 16 MBytes DRAM, 256b vector unit
 - 150M transistors, 290 mm²
 - 3.2 Gops, 2 W at 200 MHz
- Prototype status
 - RTL model completed
 - Back-end design and verification in progress
 - Design tape-out in late Fall 2000

Acknowledgments

Vector IRAM

- IBM Microelectronics
- MIPS Technologies Inc.
- Cray Inc.
- Raw research group (MIT)
- Randi Thomas, Thinh Nguyen, Dave Judd, James Beck, Krste Asanovic, and Richard Fromm
- This work has been sponsored by DARPA, NSF, and the California State MICRO program