
Compiler Generation and Autotuning of
Communication-Avoiding Operators for Geometric

Multigrid

Protonu Basu
Anand Venkat

Mary Hall
University of Utah

Salt Lake City, Utah 84112

Samuel Williams
Brian Van Straalen

Leonid Oliker
Lawrence Berkeley National Laboratory

Berkeley, CA 94720

Abstract—This paper describes a compiler approach to intro-
ducing communication-avoiding optimizations in geometric multi-
grid (GMG), one of the most popular methods for solving partial
differential equations. Communication-avoiding optimizations re-
duce vertical communication through the memory hierarchy and
horizontal communication across processes or threads, usually at
the expense of introducing redundant computation. We focus on
applying these optimizations to the smooth operator, which suc-
cessively reduces the error and accounts for the largest fraction of
the GMG execution time. Our compiler technology applies both
novel and known transformations to derive an implementation
comparable to manually-tuned code. To make the approach
portable, an underlying autotuning system explores the tradeoff
between reduced communication and increased computation, as
well as tradeoffs in threading schemes, to automatically identify
the best implementation for a particular architecture and at each
computation phase. Results show that we are able to quadruple
the performance of the smooth operation on the finest grids
while attaining performance within 94% of manually-tuned code.
Overall we improve the overall multigrid solve time by 2.5×
without sacrificing programer productivity.

I. INTRODUCTION

Geometric multigrid (GMG) is an important family of
algorithms used by computational scientists to accelerate the
convergence of iterative solvers for linear systems. In GMG,
floating-point computation is dwarfed by the overhead of data
movement, making managing the memory hierarchy and cross-
processor communication critical to achieving high perfor-
mance. Prior work on optimizing the stencil computations that
are contained within GMG have led to techniques like cache
oblivious algorithms, time skewing, wavefront optimizations
and overlapped tiling [8], [12], [13], [19], [20], [23], [28],
[32], [35], [36]. For many of these efforts, the problems were
simplified as compared to real-world applications, using 2-
dimensional or constant-coefficient stencils without control
flow and starting from a sequential specification rather than
parallel specification.

As modern architectures continue to grow in core count
and exhibit a hierarchy of complex inter-thread and inter-
process interactions, new communication-avoiding techniques
have been introduced for GMG that encapsulate several of the
optimizations mentioned above. Communication-avoiding op-
timizations reduce vertical communication through the mem-

ory hierarchy and horizontal communication across processes
or threads, usually at the expense of introducing redundant
computation. Programmers generally need to introduce these
optimizations manually, while attempting to discern the opti-
mal combination of parameters, thus resulting in a significant
growth in code complexity and non-portability across different
architectures. This paper describes how to perform these
optimizations automatically by a compiler, generating high-
performing code from a relatively straightforward expression
of a set of operators in a scalable MPI implementation. Our
starting point is the miniGMG benchmark that is intended to
represent use of GMG in real-world scalable applications. This
benchmark was previously manually tuned across several ar-
chitectures in [30] and compared to the Roofline Performance
Model [33]. Our goal is to automate the communication-
avoiding optimizations applied manually in [30], and lay the
groundwork for a domain-specific optimization framework
supporting GMG in scalable applications.

We focus on optimizations required for the smooth op-
erator, the most compute-intensive portion of GMG. Vertical
communication-avoiding optimizations necessitate the support
for data-flow analysis, which must be incorporated into the
transformations to enable (1) fusing several operators so that
intermediate data remains in cache from definition to use; (2)
avoiding writes back to memory of temporary data; as well
as (3) creating a wavefront so that multiple planes can share
data in cache with a minimal cache working set. A horizontal
communication-avoiding optimization adds ghost zones to
reduce the frequency of inter-processor communication at the
expense of redundant computation. While many of these op-
timizations rely on composing standard loop transformations,
most would not be implemented in a standard compiler as they
are either domain-specific (e.g., introduction of ghost zones),
or specifically effective for GMG classes of computations.

The compiler system of this research effort employs au-
totuning to make these optimizations portable across different
architectures. Autotuning systems employ empirical techniques
to evaluate the suitability of a search space of possible
implementations of a computation. Communication-avoiding
smooth operators aggregate communication and perform some
redundant work in the ghost zones in order to dramatically
improve locality in the last-level cache. The wavefront op-

progress within V-cycle	

Fig. 1. The Multigrid V-cycle for solving Luh = fh. Superscripts represent
grid spacing. For large problems, a high-performance, iterative solver is
employed at the bottom (coarsest grids).

timization exploits reuse deeper in the memory hierarchy
(L1/L2), but risks exceeding capacity limitations if applied
too aggressively. The granularity of profitable thread-level
parallelism depends on both architecture and the level in the
GMG V-cycle. Through autotuning, these tradeoffs can be
explored to select the context-specific optimal solutions, across
a variety of architectures.

The main contribution of this work is the first exploration
of compiler-directed communication-avoiding optimization for
GMG. As compared to prior research on domain-specific
compilers for the stencil computations that are included within
GMG [15], [25], [37], our work more closely addresses the
needs of real-world applications because it optimizes in the
context of an existing scalable parallel benchmark (miniGMG),
and it examines the complex and more representative opera-
tor Gauss-Seidel Red Black rather than the simpler Jacobi.
Additionally, we enable autotuning to derive the ghost zone
depth and threading strategies, thus allowing the automation
of differing optimization schemes across individual levels of
the V-cycle. This infrastructure is therefore adaptable to next-
generation platforms with increasing memory-hierarchy and
threading complexity. Overall, we demonstrate portability with
a 4x improvement for the most time consuming smooth of the
V-cycle, while attaining up to 94% of previously published,
highly hand-tuned performance [30].

II. GEOMETRIC MULTIGRID

Multigrid solvers calculate a correction to the solution
at the current grid resolution using a solution on a coarser
grid. This process may be expressed recursively. Geometric
multigrid (GMG) begins with a structured mesh, where each
progressively coarser grid contains half the grid points in each
dimension. Given the fact that the operators are the same
irrespective of grid spacing, this exponential reduction in grid
sizes can bound multigrid’s computational complexity to O(N)
where N is the number of variables. When performance is
highly correlated to computational complexity, the time spent
on the finer grids will dominate the run time.

Figure 1 visualizes the structure of a multigrid V-cycle
for solving Luh = fh in which L is the operator, u is the
solution, f is the right-hand side, and superscripts represent
grid spacings. At each grid spacing, multiple smooth operators
reduce the error in the solution. The smooth can be a simple

Collection of
subdomains
owned by an
MPI process

one subdomain
of 643 elements

Thread 0 Thread 1 Thread 2 Thread 3

Fig. 2. Visualization of the domain/process/subdomain hierarchy in miniGMG
(left) and the threaded GSRB wavefront strategy within the application of
smooth() to each subdomain (right).

relaxation such as Jacobi, or something more complex like a
Gauss-Seidel, Red-Black (GSRB).

The right-hand side of the next coarser grid is defined as
the restriction of the residual (fh−Luh). Eventually, the grid
(or collection of grids) cannot be coarsened any further using
geometric multigrid. At that point, most algorithms switch to a
bottom solver that can be as simple as multiple relaxations or
as complicated as algebraic multigrid, a Krylov iterative solver,
or a direct sparse solver. Once the coarsest grid is solved,
the multigrid algorithm applies the solution (a correction) to
progressively finer grids. This requires an interpolation of u2h
onto uh. At each level, a smooth operator is applied to the
new correction.

For problems on relatively few nodes, the performance of
smooth on the finer grids dominates the run time. In this paper,
we therefore focus on the smooth bottleneck, optimizing both
the simpler Jacobi that is common to compiler papers [15],
[18], [23], and the more complex Gauss-Seidel, Red-Black
(GSRB), which predominates real-word applications and re-
quires data-flow analysis and other support for control flow.
Overall we demonstrate that our compiler infrastructure can
successively optimize both of these relaxation techniques and
deliver high performance across our evaluated platforms.

A. miniGMG Benchmark

Our work builds on the compact multigrid solver bench-
mark of Williams et al. [30], called miniGMG. As shown in
Figure 2(left), the miniGMG benchmark creates a global 3D
domain, and partitions it into subdomains of sizes similar to
those found in real-world AMR multigrid applications. The list
of subdomains is then partitioned amongst MPI processes. All
subdomains must exchange ghost zones after each computation
phase, via an MPI call. However, when on the same node, the
code is optimized to perform a buffer copy.

To provide direct comparisons to [30], we use the same
double-precision, finite volume discretization of the variable-
coefficient operator a~αI − b∇~β∇, with the same periodic
boundary conditions, and replicate the 2563 problem (per
compute node) on all platforms. Developers often wish to
maintain flexibility and thus create smooth operators by com-
posing multiple simpler operators, as captured in the excerpt
of the baseline miniGMG benchmark shown in Figure 3.
In this code, the Helmholtz operator requires calculation of

/* Laplacian(phi) = b div beta grad phi */

for (k=0;j<N;k++)
for (j=0;j<N;j++)

for (i=0;i<N;i++)
/* statement S0 */
temp[k][j][i] =b*h2inv*(
beta i[k][j][i+1]*(phi[k][j][i+1] -phi[k][j][i])
-beta i[k][j][i] *(phi[k][j][i] -phi[k][j][i-1])
+beta j[k][j+1][i]*(phi[k][j+1][i]-phi[k][j][i])
-beta j[k][j][i] *(phi[k][j][i] -phi[k][j-1][i])
+beta k[k+1][j][i]*(phi[k+1][j][i]-phi[k][j][i])
-beta k[k][j][i] *(phi[k][j][i] -phi[k-1][j][i]));

/* Helmholtz(phi) = (a alpha I - laplacian)*phi */

for (k=0;j<N;k++)
for (j=0;j<N;j++)

for (i=0;i<N;i++)
/* statement S1 */
temp[k][j][i] = a * alpha[k][j][i] *phi[k][j][i]-temp[k][j][i];

/* GSRB relaxation: phi = phi - lambda(helmholtz-rhs) */

for (k=0;j<N;k++)
for (j=0;j<N;j++)

for(i=0;i<N;i++){
if((i+j+k+color)%2==0)
/* color is 0 for Red pass, 1 for black */
/* statement S2 */
phi[k][j][i] = phi[k][j][i]-lambda[k][j][i]*(temp[k][j][i]-rhs[k][j][i]);

}

(a) Smooth operator with Gauss-Seidel Red-Black.

/* Go down the v-cycle.... */

for(level=0; level<NumLevel; level++){
d=ghostZoneDepth[level];

for (smooth=0; smooth<NumSmooths; smooth+=d){
/* communication phase...the boxes exhange boundaries with neighbors */
exchange boundary phi();
exchange boundary rhs();
/* Apply smooth on each box in parallel */
pragma omp parallel for private (box) num threads(y)
for (box=0; box<NumBoxInSubdomain; box++){

color=smooth;
gsrb smooth function(Domain→SubDomain[box],phi,rhs,color);

}
}
compute residual();
/* Restrict to form the coarse and smaller grid */
/* We go down the v-cycle, ie. from a 64 ∧ 3 grid to a 32 ∧ 3 grid */
compute restriction();

}/* down....*/

/* bottom solve.... */
d=ghostZoneDepth[bottom level];
for (smooth=0; smooth<NumBottomSmooths; smooth+=d){

exchange boundary phi();
exchange boundary rhs();
/* Apply smooth on each box in parallel */
pragma omp parallel for private (box) num threads(y)
for (box=0; box<NumBoxInSubdomain; box++){

color=smooth;
gsrb smooth function(Domain→SubDomain[box],phi,rhs,color);

}
}/* bottom solve */

/* back up the v-cycle..... */

(b) Pseudo-code for a single iteration of the V-cycle.

Fig. 3. Baseline smooth code using Gauss-Seidel Red-Black and outer V-cycle code that includes domain decomposition.

the Laplacian. Thus, the smooth operator in the input code
calculates the Laplacian, Helmholtz and either a Gauss-Seidel
or Jacobi relaxation in sequence. The Laplacian operator is a
seven point, variable-coefficient stencil derived from a finite-
volume calculation, while the Helmholtz and relaxation codes
nominally scale and add vectors (grids) together. In the code,
these become nested loops over the box list, and the spatial
dimensions update either every or every other element.

III. OPTIMIZATIONS FOR SMOOTH

Starting with the baseline miniGMG code of Figure 3(a),
we now describe how our compiler transforms the code to
realize both vertical and horizontal communication-avoiding
optimizations. The compiler first fuses the multiple smooth
operators together. In the case of GSRB relaxation, the control
flow guarding the update to phi may prevent fusion in some
compilers. Incorporating data-flow analysis allows us to fuse
the loops safely by contracting the iteration space of the first
two statements (see next section). Fusion is itself a vertical
communication-avoiding optimization, since the results com-
puted by one operator will remain in cache when used as input
by the next operator; an additional communication-avoiding
optimization is to replace the array temp with a scalar and
not write it back to memory on completion. The compiler
generates the code in Figure 4(a), with placeholders for the
statements corresponding to Figure 3(a).

In the pseudo-code that invokes smooth in Figure 3(b),

for each subdomain, the smooth operation is called on all
the boxes in parallel. After the smooth operator, the boxes go
through a communication phase, where they exchange bound-
ary data with their neighbors. An important communication-
avoiding optimization is to create ghost zones, which replicate
some of the input data across processes and threads. Through
the use of ghost zones, the computation can perform several
sweeps of the grid per communication step, trading off in-
creased computation for lower communication costs. For the
seven-point second-order stencil we consider for our study,
an N -deep ghost zone allows N sweeps of the grid between
communication. For higher order stencils, the ghost zone depth
required increases with order.

We have added a domain-specific compiler transformation
to automatically generate a loop over the depth of ghost zones,
and modify the iteration space of the operator accordingly to
perform the redundant computation. Each sweep of the grid
consumes a layer of the ghost zone, and this gives rise to
a hyper-trapezoidal iteration space of computation, where the
volume shrinks in all dimensions on every smooth to perform
computation only on valid data. The GSRB smooth has a red
and a black pass, where the points updated depend on their
coordinate and the value of color. As shown in Figure 3(b),
for a grid with a one-deep ghost zone, the value of color
is updated every time smooth is called. Adding ghost zones
requires that the code track the value of color and modify the
if-condition accordingly. The compiler merges the if-condition
into the loop bounds of the innermost loop to generate the

for (k=0;j<N;k++)
for (j=0;j<N;j++)
for (i=0;i<N;i++){
if((i+j+k+color)%2==0){
S0(k,j,i); /* Laplacian */
S1(k,j,i); /* Helhmoltz */
S2(k,j,i); /* GSRB */

}
}

(a) Fused operators.

/* d = ghost zone depth */
if (1 <= d && 3<=2*d+N && 3<=2*d+N)
for (k =-d+1; k<=N+d-2; k++)
for (t = 0; t<=min(min(min(d-1,(2*d +N-3)/2),

(d+k-1)/2),(2*d+N-3)/2); t+=1)
#pragma openmp parallel for private (j,i) num_threads(x)

for (j = -d+t+1; j<=d+N-t-2; j++)
for (i =-d+t+1+(-k-color-j-(-d + t + 1)) % 2;

i<=d-t+N-2; i+=2) {
S0(t,k-t,j,i); /* Laplacian */
S1(t,k-t,j,i); /* Helhmoltz */
S2(t,k-t,j,i); /* GSRB */

}

(c) Wavefront and threading.

/* d = ghost zone depth */
for (t=0;j<d;t++)
for (k=t-(d-1);j<N+(d-1)-t;k++)
for (j=t-(d-1);j<N+(d-1)-t;j++)
for (i=t-(d-1);i<N+(d-1)-t;i++){
if((i+j+k+color+t)%2==0){
S0(t,k,j,i); /* Laplacian */
S1(t,k,j,i); /* Helhmoltz */
S2(t,k,j,i); /* GSRB */

}
}

(b) After adding ghost zones.

for(k = -3; k <= 66; k++)
for(t = 0; t <= min(3,intFloor(t+3,2)); t++) {
#pragma openmp parallel for private (j,i) num_threads(x)
for(j = t-3; j <= -t+66; j++)
for(i= t-3+intMod(-k-color-j-(t-3),2); i<=-t+66; i+=2) {
S0(t,k-t,j,i); /* Laplacian */
S1(t,k-t,j,i); /* Helhmoltz */
S2(t,k-t,j,i); /* GSRB */

}
}

(d) Final code specialized for box size 643 and 4-deep ghost zone.

Fig. 4. Steps of optimization process.

transformed code in Figure 4(b).

Adding ghost zones increases DRAM traffic from multiple
sweeps over the grid; this vertical communication can be
reduced by a streaming strategy called wavefront [34]. A
number of planes (up to the number of ghost zones) can be held
in memory at once, as shown in Figure 2, and the number of
sweeps of the grid reduced by the depth (the number of planes).
Keeping multiple planes in memory increases the working
set, which may exceed on-chip memory. We generate multi-
threaded code via OpenMP to share planes across threads and
reduce the working set per thread. Larger grids have a bigger
working set than the smaller grids down the V-cycle, which
suggests that the system should assign more threads per box
for the larger grids, and fewer threads for the smaller grids —
ultimately the thread distribution is optimized via autotuning.
The threaded wavefront code is in Figure 4(c), which assigns
x OpenMP threads per box (intra-box parallelism). Outer-loop
parallelism in the harness code of Figure 3(b) assigns y threads
to each box (inter-box parallelism).

The autotuning phase tunes the ghost zone depth at each
level (ghostZoneDepth[level] in Figure 3(b)) and the number of
threads x and y controlling intra- and inter-box parallelism, re-
spectively. During the tuning process, constant values for these
are bound during code generation, resulting in very efficient
context-specific specialized code such as in Figure 4(d).

IV. COMPILER IMPLEMENTATION

We now describe the compiler implementation that gener-
ates the desired code from the previous section. This compiler
is domain specific, in that it employs optimizations that are
designed for multigrid applications. The input to the compiler
is the code excerpt shown in Figure 3. We performed the

implementation using CHiLL, which is a polyhedral transfor-
mation and code generation framework [6]. The remainder of
this section describes the abstractions used in CHiLL, how
these abstractions are used to represent the transformations
described in the previous section, the algorithm that performs
these transformations, and how autotuning is employed to
optimize the code for different architectures.

A. Abstractions in CHiLL

CHiLL is polyhedral transformation and code generation
framework designed specifically for autotuning. A polyhedral
model represents each statement’s execution in the loop nest
as a lattice point in the space constrained by loop bounds,
known as the iteration space. Then a loop transformation can
be simply viewed as mapping from one iteration space to
another, and various transformations can be composed. CHiLL
manipulates iteration spaces derived from the original program,
using a data dependence graph as an abstraction to reason
about the safety of the transformations under consideration [1].

In a polyhedral model, optimized code is generated from
the rewritten iteration spaces by scanning the polyhedra rep-
resenting the iteration spaces of an optimized loop nest from
the first dimension to the last. The quality of the generated
code directly impacts performance. Therefore, at the heart of
CHiLL is a code generator called CodeGen+ that has advanced
the state of the art in polyhedral scanning in the presence
of conditionals [5], as arise in the GSRB code. CodeGen+
seamlessly combines iteration spaces and guards through a
specialized polyhedral AST, as detailed elsewhere [5].

The input to CHiLL is a source code written in C or
Fortran, and optionally, a transformation recipe describing
the set of transformations to be composed to optimize the
provided source [14]. This recipe can be written by an expert

programmer, or derived automatically by a compiler decision
algorithm [16].

B. Communication-Avoiding Transformations

As we describe each of the communication-avoiding trans-
formations for GMG, we show how the previously-described
abstractions are manipulated by CHiLL.

Operator fusion: The input code in Figure 3 consists of three
statements S0, S1, and S2, that correspond to the three smooth
operators Laplacian, Helmholtz and GSRB, respectively. Once
parsed by CHiLL, the iteration spaces corresponding to these
operators are as follows:

S0 := { [k,j,i] : 0 ≤ k<N && 0 ≤ j < N && 0 ≤ i <N};
S1 := { [k,j,i] : 0 ≤ k < N && 0 ≤ j < N && 0 ≤ i<N};
S2 := { [k,j,i] : 0 ≤ k < N && 0 ≤ j < N && 0 ≤ i<N &&

k + j + i + 2α + color = 0};

Note that S2 has an additional term in its iteration space
related to checking the color for the current element. Operator
fusion falls out implicitly from the iteration space alignment
algorithm, which attempts to carve out a unified iteration space
for the imperfect loop nest of the original code [6]. With
smooth operators such as Jacobi, iteration space alignment
is performed by default in CHiLL. In GSRB, the difficult
challenge is to rule out any fusion-preventing dependences
when the iteration spaces are not a perfect match.

By default, CHiLL reports a fusion-preventing dependence
between S2 and S0 related to the reads and writes of phi.
However, we make the observation that the iteration spaces
for the Laplacian and Helmholtz operators (statements S0
and S1) may compute values of temp that are never used
by the GSRB of S2. Array data-flow analysis can be used
to analyze the iteration spaces and access expressions and
derive a conservative approximation of the elements of temp
defined in S0 and S1 and used in S2 [11]. Our compiler
determines that the array region read by S2 is a proper subset
of the regions defined by S0 and S1. Since temp is a local
variable redefined on every sweep and it is not live after
the smooth operator is completed, it is safe to contract the
iteration spaces of S0 and S1 to match that of S2. After the
compiler contracts the iteration space, the fusion-preventing
dependences are eliminated and CHiLL is able to safely fuse
the loops. The iteration space contraction used here is an
example of a domain-specific optimization that was proven
safe by the compiler, but is more likely to be profitable for
GMG operators where Red-Black conditional execution is
common.

In the fused code, the compiler recognizes that array temp
is a local variable, and does not need to be rewritten back to
memory. Because there are no dependences on temp crossing
iteration boundaries, scalar replacement is then employed to
make this a scalar that is overwritten on each iteration of the
loop.

Introducing ghost zones: Once fused, the iteration spaces
from the previous section end up with a combined iteration
space that matches that of statement S2. We observe that
introducing ghost zones as in the previous section is really just

introducing a new loop t and changing the bounds for each of
the loops in the fused loop nest to compute ghost regions and
generate a hyper-trapezoidal iteration space.

Due to the presence of the if-condition in the GSRB
smooth, the iteration space is a hyper-trapezoid with holes.
The iteration space IS has two distinct components, arising
from the loop nest and also the relation (k+j+i+2α+color=0)
which represents the if-condition; the iteration space is the
conjunction of these terms. We added a new domain-specific
transformation add_ghost_zones, which maps the old
iteration space with the new loop t using the following
mapping:

IS : iteration space of the input loop nest
IS′ : iteration space in the modified loop nest

map := { [k,j,i] → [t,k′,j′,i′] :
0 ≤ t<d && k-d+1+t ≤ k′ < k+d-t &&
j-d+1+t ≤ j′ < j+d-t && i-d+1+t ≤ i′ < i+d-t}

IS′ := map (IS);
The variable color gets updated with every sweep of the
grid, so its value will also be affected by the additional loop.
For this purpose, we apply another mapping to color:

map′ := { [color] → [color+t] }
This will cause the value of color to be updated every-
where it appears, including within the statements. Although
in our current implementation this relation is provided to
the implementation, it could be derived automatically through
analysis or domain knowledge. This gives a new relation
(k+j+i+2α+color+t=0) for the if-condition. The conjunct of the
new loop-nest iteration space and the new term gives us the
final modified iteration space.

Wavefront and Multithreading: The compiler next gen-
erates a wavefront computation [34] using a loop skew and
permute, skewing the outermost loop which sweeps the grid,
loop k in Figure 4(b), against the smooth iteration loop added
in the last optimization. Skewing is used to break a dependence
that would otherwise prevent permute, using an integer factor
in each dimension that depends on the dependence distance in
the stencil operation: [1,1] for GSRB and [2,1] for Jacobi.
The k and t loops are then permuted, and the j loop is
marked for OpenMP parallelization. These are standard loop
transformations available in CHiLL.

Autotuning Opportunities: We employ autotuning for two
sets of parameters:

• Ghost zone and wavefront depth: The ghost zone depth
governs both amount of redundant computation performed,
and frequency of MPI communication. In the current code
generation strategy, the ghost zone depth and number of planes
in the wavefront are identical. As memory bandwidth is a key
limitation only for larger box sizes, the optimal value for ghost
zone depth varies for different box sizes in the V-cycle.

• Multithreading: Multithreading is nested at two levels.
As shown in Figure 3, the miniGMG already uses a set of
OpenMP threads for each box. The final generated code also
introduces multiple threads per box, one for each of the planes
in the wavefront. Since the box size varies across V-cycles in

a GMG computation, the optimal number of threads per box
also varies during the computation.

Putting it together: As the goal of this work is to develop
domain-specific optimization techniques for GMG, the com-
piler algorithm can be specialized for MG implementations
that involve composing a set of operators together. The code
for the smooth operators that included either GSRB or Jacobi
was generated by instantiating a template transformation recipe
that is then applied to the input code to generate the optimized
code. The recipe that is generated for the smooth that includes
GSRB is the following:

original()
add_ghosts([S0],L1,d) #ghost depth is d
skew ([S0], L2, [1,1]) #skew L2 by 1, L1 by 1
permute ([L2,L1,L3,L4]) #new loop order
map_to_openmp_region (L2) #parallelize across boxes

The commands in this recipe refer to applying a transfor-
mation to a statement at a particular loop level. Once fused,
the same transformations are applied to the set of statements
S0, S1 and S2 when applied to S0. The only differences for
the recipe for the smooth including Jacobi is that there are
two statements to which the transformations are applied corre-
sponding to odd/even iterations, and the dependence distance
for skewing is different.

During code generation, the value for ghost zone depth and
box size are bound to constants. Through an external python
script, autotuning varies d from 1 to 2*n where n ranges from
1 to 2, and the thread values x and y (x∗y = 6 for Hopper and
8 for Edison) for the fused and wavefront variants.This search
space of 24 points per level can be explored in a few hours, but
with additional optimizations, sophisticated search algorithms
are needed to increase the efficiency of the search (e.g., [26]).
The resulting application will select the best implementation
among precompiled choices.

Generalizing to other GMG Applications: This general
approach would apply to other GMG implementations that use
a similar composition of operators. When other operators are
optimized by the compiler, the approach must be generalized
for their associated stencils, deriving the appropriate ghost
zone depth based on the dependence distances arising from
the stencil shape.

V. EXPERIMENTAL RESULTS

In this section we present an overview of our experimental
platforms and a detailed analysis of our performance results.

A. Evaluated Platforms

We evaluate the benefits of our compiler technology on
two commodity processor architectures similar to those used
by Williams et al. in [30]. Their details are summarized in
Table I and explained below. Our code was compiled with icc
version 13.0.1 with flags -O3 -fno-alias -fno-fnalias (Hopper:-
msse3, Edison:-xSSSE3).

Edison: is a Cray XC30 MPP at NERSC. Each node contains
two 8-core Xeon Sandy Bridge chips. Each chip has four
DDR3-1600 memory controllers.Each superscalar out-of-order
core implements the 4-way AVX SIMD instruction set and

Intel AMD
Core Architecture SNBe Opteron

Clock (GHz) 2.60 2.1
Double-precision GFlop/s 20.80 8.4

Data Cache (KB) 32+256 64+512
Memory Parallelism HW-prefetch HW-prefetch

Intel AMD
Chip Architecture Xeon E5-2670 Opteron 6172

Cores 8 6
Last-level Cache 20 MB 5 MB

Double-precision GFlop/s 166.4 50.4
STREAM Bandwidth 38 GB/s 12 GB/s

Memory Capacity 32 GB 8 GB
Cray XC30 Cray XE6

System (Edison) (Hopper)
CPUs/Node 2 4

TABLE I. Overview of Evaluated Platforms.

includes both a 32KB L1 and a 256B L2 cache. The cores
on a chip are connected by a ring to a 20MB L3 cache. The
relatively large last-level cache makes capturing locality easier
for 643 boxes.

Hopper: is a Cray XE6 MPP at NERSC. Each node is in
effect four 6-core Opteron chips each with two DDR3-1333
memory controllers.There are thus four (non-uniform memory
access) NUMA nodes per compute nodes. Each superscalar
out-of-order core implements the 2-way SSE3 SIMD instruc-
tion set and includes both a 64KB L1 and a 512KB L2
cache, while each socket includes a 6MB L3 cache with 1MB
reserved for the probe filter. The relatively small last-level
cache makes capturing locality difficult on fine grid operations.

B. GSRB Demonstration and Analysis

To provide a base case, we first ran the 2563 problem
using a GSRB relaxation (from Figure 3) with one process
per NUMA node on Edison and Hopper. Figure 5 presents
tuned performance for both the smooth operation (top) and
the overall multigrid solve (bottom). Performance (speedup)
has been normalized to the baseline implementation on either
Hopper or Edison. Moreover, we separate the time spent in
each level of the V-cycle and analyze them individually.

By fusing the operators in smooth, the compiler yields
dramatic speedups in smooth time on the finer grids. However,
the benefit degrades as one descends through the V-cycle. This
effect is caused by the fact that in the baseline implementation,
the working set of each triply-nested loop within smooth
exceeds cache capacity for the fine grids. As a result, to
construct the Helmholtz, the Laplacian must be refetched from
DRAM. Eventually this working set becomes small enough
that it fits in the last-level cache at which point the disparity
between on chip-bandwidth and compute capability limits the
performance benefit.

Even more impressive, our compiler may now insert addi-
tional ghosts zones and generate a wavefront-based update for
the smooth operation. Once again, on the finer (large) grids,
the performance benefit arises from trading DRAM accesses
for cache accesses. We generally see a roughly 66% increase in
smooth performance on the finer grids except for Edison where
the benefit is roughly 40% for the finest level. The benefit is

0.0x	

0.5x	

1.0x	

1.5x	

2.0x	

2.5x	

3.0x	

level	
 0	
 level	
 1	
 	
 level	
 2	
 level	
 3	
 	
 level	
 4	

	
 (64^3)	
 (32^3)	
 	
 (16^3)	
 (8^3)	
 	
 (4^3)	

sm
oo

th
	
 S
pp

ed
up

	

Hopper,	
 GSRB	
 smooth	

base	
 case	

fused	
 code	

wavefront	

(a)

0.0x	

0.5x	

1.0x	

1.5x	

2.0x	

2.5x	

3.0x	

3.5x	

4.0x	

4.5x	

level	
 0	
 level	
 1	
 	
 level	
 2	
 level	
 3	
 	
 level	
 4	

	
 (64^3)	
 (32^3)	
 	
 (16^3)	
 (8^3)	
 	
 (4^3)	

sm
oo

th
	
 S
pe

ed
up

	

Edison,	
 GSRB	
 smooth	

base	
 case	

fused	
 code	

wavefront	

(b)

0.0x	

0.5x	

1.0x	

1.5x	

2.0x	

2.5x	

level	
 0	
 level	
 1	
 level	
 2	
 level	
 3	
 level	
 4	

(64^3)	
 (32^3)	
 (16^3)	
 (8^3)	
 (4^3)	

So
lv
er
	
 S
pe

ed
up

	

Hopper,	
 GSRB	
 smooth	

base	
 case	

fused:	
 ghosts=1	

wavefront:	
 ghosts=2	

wavefront:	
 ghosts=4	

(c)

0.0x	

0.5x	

1.0x	

1.5x	

2.0x	

2.5x	

3.0x	

3.5x	

4.0x	

level	
 0	
 level	
 1	
 level	
 2	
 level	
 3	
 level	
 4	

(64^3)	
 (32^3)	
 (16^3)	
 (8^3)	
 (4^3)	

So
lv
er
	
 S
pe

ed
up

	

Edison,	
 GSRB	
 smooth	

base	
 case	

fused:	
 ghosts=1	

wavefront:	
 ghosts=2	

wavefront:	
 ghosts=4	

(d)

Fig. 5. Speedups relative to the baseline code with fusion and tuned communication-avoiding and threading as a function of level in the V-cycle for the 2563

problem for smooth time (a,b) and overall multigrid solve time (c,d).

likely smaller on Edison as its massive 20 MB cache is nearly
capable of capturing the locality required on the finest grids.

The local computation (smooth) for the wavefront per-
forms poorly on the coarsest grids as the size of those grids
has ballooned from approximately 12KB per box to nearly
100KB. The increase in data movement impedes performance.
Figures 5(c) and (d) show the overall time required for the
multigrid solve. Although smooth may be slower on the coarse
grids, the reduction in inter-box communication can actually
accelerate the multigrid operations. We see this benefit applies
to all levels of the V-cycle. However, where as on the coarsest
grids, the benefit of reduced inter-box communication compen-
sates for reduced smooth performance, the additional cost of
communication actually impedes smooth performance on the
fine grids. This presents an interesting tuning space for our
compiler infrastructure, which was addressed via autotuning.

To understand the salient characteristics of performance,
let us examine tuning along one axis at a time. First, Figure 6
presents smooth performance as a function of fusion, wave-
front, and ghost-zone depth. We restrict our presentation to the
two finest grids which nominally dominate the run time. On
Hopper with its relatively small caches, increasing ghost zone
depth (increasing the grid size) does not improve performance

when using only the fused version. However, the wavefront
technique does reduce the cache working set and allows for a
significant speedup. Conversely, on Edison and its large caches,
increasing ghost zone depth allows for more on-chip locality
and thus improved performance. Our compiler framework does
not unroll the inner-loop, nor does it generate explicitly SIMD-
ized code as yet. Thus the benefit of increasing the ghost zone
depth to 4, which increases computation, is currently limited
by the code generation capabilities of the back-end compiler.

Similarly, Figure 7 shows how performance varies as
a function of threading. The compiler generates a nested
OpenMP region to deal with inter- and intra-box parallelism.
Thus on our evaluated platforms using today’s technology, it
generally seems to be best to maximize inter-box parallelism
within the wavefront.

C. Jacobi Demonstration

To this point we have focused on GSRB as a relaxation
scheme as it is typical of real applications. However, for
completeness, we also demonstrate that CHiLL can optimize
Jacobi relaxations in an analogous way. Figure 8 presents
progressively optimized smooth performance using the Jacobi
relaxation normalized to the base case for each level in the

0.0x	

0.5x	

1.0x	

1.5x	

2.0x	

2.5x	

3.0x	

3.5x	

ghosts=2	
 ghosts=4	
 ghosts=2	
 ghosts=4	

level	
 0	
 (64^3	
 boxes)	
 level	
 1	
 (32^3	
 boxes)	

Sp
pe

du
p	

Hopper,	
 GSRB	
 smooth	

wavefront	

fused	
 code	

base	
 case	

0.0x	

0.5x	

1.0x	

1.5x	

2.0x	

2.5x	

3.0x	

3.5x	

4.0x	

4.5x	

ghosts=2	
 ghosts=4	
 ghosts=2	
 ghosts=4	

level	
 0	
 (64^3	
 boxes)	
 level	
 1	
 (32^3	
 boxes)	

Sp
ee
du

p	

Edison,	
 GSRB	
 smooth	

wavefront	

fused	
 code	

base	

Fig. 6. Speedup for smooth as a function of optimization and ghost-zone depth (with tuned threading) for levels 0 and 1 of the V-cycle for the 2563 solve.

0.01	

0.1	

1	

10	

level	
 0	
 level	
 1	
 level	
 2	
 level	
 3	
 level	
 4	

(64^3)	
 (32^3)	
 (16^3)	
 (8^3)	
 (4^3)	

	
 s
m
oo

th
	
 T
im

e	

(s
ec
on

ds
)	

Hopper,	
 GSRB	
 smooth	

<box=1,	
 threads/box=6>	

<box=2,	
 threads/box=3>	

<box=3,	
 threads/box=2>	

<box=6,	
 threads/box=1>	

0.01	

0.1	

1	

10	

level	
 0	
 level	
 1	
 level	
 2	
 level	
 3	
 level	
 4	

(64^3)	
 (32^3)	
 (16^3)	
 (8^3)	
 (4^3)	

sm
oo

th
	
 T
im

e	

(s
ec
on

ds
)	

Edison,	
 GSRB	
 smoother	

<box=1,	
 thrds/box=8>	

<box=2,	
 thrds/box=4>	

<box=4,	
 thrds/box=2>	

<box=8,	
 thrds/box=1>	

Fig. 7. Total time spent in smooth as a function of nested parallelism for the V-cycle with the optimized wavefront variant of GSRB smooth with ghost zone=4
for the 2563 problem.

0.0x	

0.5x	

1.0x	

1.5x	

2.0x	

2.5x	

level	
 0	
 level	
 1	
 level	
 2	
 level	
 3	
 level	
 4	

(64^3)	
 (32^3)	
 (16^3)	
 (8^3)	
 (4^3)	

Sp
pe

du
p	

Hopper,	
 Jacobi	
 smooth	

base	
 case	

tuned	
 fuse	

tuned	
 wavefront	

0.0x	

0.5x	

1.0x	

1.5x	

2.0x	

2.5x	

3.0x	

level	
 0	
 level	
 1	
 level	
 2	
 level	
 3	
 level	
 4	

(64^3)	
 (32^3)	
 (16^3)	
 (8^3)	
 (4^3)	

Sp
pe

du
p	

Edison,	
 Jacobi	
 smooth	

base	
 case	

tuned	
 fuse	

tuned	
 wavefront	

Fig. 8. Smooth speedup relative to the baseline code with tuned fusion and tuned communication-avoiding as a function of level in the V-cycle for the 2563

problem with Jacobi.

0.0x	

0.5x	

1.0x	

1.5x	

2.0x	

2.5x	

3.0x	

3.5x	

4.0x	

4.5x	

5.0x	

Hopper	
 Edison	
 Hopper	
 Edison	

MGSolve	
 smooth()	
 on	
 64^3	

Sp
ee
du

p	

Hand-­‐OpCmized	

CHiLL	

Base	
 Case	

Fig. 9. Overall speedup for both the multigrid solver and the smooth operation
on the finest grid compared to baseline and hand-optimized code.

V-cycle. Our Jacobi implementation alternates writes between
the correction and a temporary array. CHiLL can restructure
this computation to fuse the three operations (Laplacian,
Helmholtz, Jacobi) and eliminate superfluous data movement.
Nevertheless, without a cache bypass operation, this will
nominally incur additional data movement over GSRB.

D. Overall Speedup

Figure 9 summarizes the overall speedup CHiLL attains
over the baseline optimized by the icc compiler, and compares
with the hand-tuned code of Williams et al. [30]. As the focus
of this paper was the time-dominating smooth operation, we
see the biggest gains there: speedups of 2.9× and 4.1× over the
baseline, and within 82% and 94% of hand-tuned performance
on Hopper and Edison, respectively. As smooth is only one
component in a multigrid solver, the benefits are amortized
in the full GMG application. Nevertheless, our framework
attains nearly a 2.5× increase in overall solver performance
on Edison.

VI. RELATED WORK

In the past, operations on large structured grids could easily
be bound by capacity misses in cache, leading to a variety
of studies on blocking and tiling optimizations [9], [10], [17],
[21], [22], [29], [31]. However, a number of factors have made
such approaches progressively obsolete on modern platforms.
On-chip caches have grown by orders of magnitude and are
increasingly able to capture sufficient locality for the fixed box
sizes associated with typical MG methods. The rapid increase
in on-chip parallelism has also quickly out-stripped available
DRAM bandwidth resulting in bandwidth-bound performance.

Thus, in recent years, numerous efforts have focused on
increasing temporal locality by fusing multiple stencil sweeps
through techniques like cache oblivious, time skewing, wave-
front or overlapped tiling [8], [12], [13], [19], [20], [23], [28],
[32], [35], [36], [38]. Many of these efforts examined 2D or
constant-coefficient problems — features rarely seen in real-
world applications.

Chan et al. explored how, using an autotuned approach, one
could restructure the MG V-cycle to improve time-to-solution

in the context of a 2D, constant-coefficient Laplacian [4]. This
approach is orthogonal to our implemented optimizations and
their technique could be incorporated in future work.

Studies have explored the performance of algebraic multi-
grid on GPUs [2], [3], while Sturmer et al. examined geometric
multigrid [24]. Closely related work from Treibig implements a
2D GSRB on SIMD architectures by separating and reordering
the red and black elements [27], additionally a 3D multigrid
on an IA-64 (Itanium) is implemented via temporal blocking.

The most closely related work are domain-specific com-
pilers for parallel code generation from a stylized stencil
specification [7], [25], [37] or from a code excerpt [15].
Pochoir uses a cache oblivious strategy, which limits the
control over the code generation [25]. The other compilers
introduce parallelism and ghost regions through tiling and
expanding both the data set and the tile size, rather than starting
with already parallel code [15], [37]. These tiling approaches
do not produce the hyper-trapezoidal loop nests of this paper,
but rather compute and then ignore some incorrect results.
None of these approaches appear capable of supporting the
optimization of a collection of operators, particularly if GSRB
is included.

Our work expands on all of these efforts by providing a
unique set of optimization strategies for multi- and manycore
architectures.

VII. CONCLUSION

In this paper, we have described autotuning compiler tech-
nology to automate communication-avoiding optimizations for
the smooth operator in a geometric multigrid computation. Our
results show that the optimizations lead to speedups as high
as 4×, and that different optimization strategies are needed
at different levels of the V-cycle. Gains also vary for the
two smooth operators GSRB and Jacobi, and for the two
different architectures, thus pointing to the value of autotuning
in finding the best set of optimizations for a given execution
context. As compared with related domain-specific compiler
research, our work is distinguished by focusing on the needs
of scalable GMG applications, starting with a parallel code and
considering the composition of smooth operators including the
complex Gauss-Seidel Red-Black operator. As compared with
manually-tuned codes, the automatically-generated code cap-
tures the communication-avoiding optimizations, while attain-
ing nearly equivalent performance. Future work on miniGMG
will focus on further performance enhancements by generating
architecture-specific code for the increasingly wide SIMD units
such as AVX, and the addition of prefetching. Our long term
goal is to develop an optimization framework that generalizes
to a variety of GMG operators used in important scientific
simulations. Of particular interest are higher order stencils and
different boundary conditions.

ACKNOWLEDGMENTS

Authors from Lawrence Berkeley National Laboratory
were supported by the DOE Office of Advanced Scientific
Computing Research under contract number DE-AC02-05CH-
11231. Utah researchers were partially supported by DOE
award DE-SC0008682 and National Science Foundation award
CCF-1018881. This research used resources of the National

Energy Research Scientific Computing Center, which is sup-
ported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kauffman, 2002.

[2] N. Bell, S. Dalton, and L. Olson. Exposing fine-grained parallelism
in algebraic multigrid methods. NVIDIA Technical Report NVR-2011-
002, NVIDIA Corporation, June 2011.

[3] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix solvers
on the gpu: conjugate gradients and multigrid. ACM Trans. Graph.,
22(3):917–924, July 2003.

[4] C. Chan, J. Ansel, Y. L. Wong, S. Amarasinghe, and A. Edelman.
Autotuning multigrid with petabricks. In Proc. of the Conference on
High Performance Computing Networking, Storage and Analysis, SC
’09, Nov. 2009.

[5] C. Chen. Polyhedra scanning revisited. In Proc. of the 33rd ACM
SIGPLAN conference on Programming Language Design and Imple-
mentation, PLDI ’12, 2012.

[6] C. Chen, J. Chame, and M. Hall. CHiLL: A framework for composing
high-level loop transformations. Technical Report 08-897, University
of Southern California, June 2008.

[7] M. Christen, O. Schenk, and H. Burkhart. Patus: A code generation
and autotuning framework for parallel iterative stencil computations
on modern microarchitectures. In Parallel Distributed Processing
Symposium (IPDPS), 2011 IEEE International, pages 676–687, 2011.

[8] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick.
Optimization and performance modeling of stencil computations on
modern microprocessors. SIAM Review, 51(1):129–159, 2009.

[9] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick. Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures. In Proc.
2008 ACM/IEEE Conf. on Supercomputing (SC 2008), 2008.

[10] C. C. Douglas, J. Hu, M. Kowarschik, U. Rde, and C. Weiss. Cache
optimization for structured and unstructured grid multigrid. Elect. Trans.
Numer. Anal, 10:21–40, 2000.

[11] P. Feautrier. Dataflow analysis of array and scalar references. Interna-
tional Journal of Parallel Programming, 20, 1991.

[12] M. Frigo and V. Strumpen. Evaluation of cache-based superscalar and
cacheless vector architectures for scientific computations. In Proc. of
the 19th ACM International Conference on Supercomputing (ICS05),
Boston, MA, 2005.

[13] P. Ghysels, P. Kosiewicz, and W. Vanroose. Improving the arithmetic
intensity of multigrid with the help of polynomial smoothers. Numerical
Linear Algebra with Applications, 19(2):253–267, 2012.

[14] M. W. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, and M. M. Khan.
Loop transformation recipes for code generation and auto-tuning. In
Proc. of the 22nd International Workshop on Languages and Compilers
for Parallel Computing, Oct 2009.

[15] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance
code generation for stencil computations on gpu architectures. In Proc.
of the 26th ACM international conference on Supercomputing, ICS ’12.
ACM, 2012.

[16] M. Khan, P. Basu, G. Rudy, M. Hall, C. Chen, and J. Chame. A script-
based autotuning compiler system to generate high-performance cuda
code. ACM Trans. Archit. Code Optim., 9(4):31:1–31:25, Jan. 2013.

[17] M. Kowarschik and C. Wei. Dimepack - a cache-optimized multigrid
library. In Proc. of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2001),
volume I, pages 425–430. CSREA, CSREA Press, 2001.

[18] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan. Effective automatic parallelization of
stencil computations. In Proc. of the 2007 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’07, New
York, NY, USA, 2007. ACM.

[19] J. McCalpin and D. Wonnacott. Time skewing: A value-based approach
to optimizing for memory locality. Technical Report DCS-TR-379,
Department of Computer Science, Rugers University, 1999.

[20] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-D
blocking optimization for stencil computations on modern CPUs and
GPUs. In Proc. of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’10. IEEE Computer Society, 2010.

[21] G. Rivera and C. Tseng. Tiling optimizations for 3D scientific computa-
tions. In Proc. of SC’00, Dallas, TX, November 2000. Supercomputing
2000.

[22] S. Sellappa and S. Chatterjee. Cache-efficient multigrid algorithms.
International Journal of High Performance Computing Applications,
18(1):115–133, 2004.

[23] Y. Song and Z. Li. New tiling techniques to improve cache temporal lo-
cality. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation, Atlanta, GA, 1999.

[24] M. Sturmer, H. Kostler, and U. Rude. How to optimize geometric
multigrid methods on GPUS. In Proc. of the 15th Copper Mountain
Conference on Multigrid Methods, Copper Mountain, CO, March, 2011.

[25] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson. The pochoir stencil compiler. In Proc. of the 23rd ACM
symposium on Parallelism in algorithms and architectures, SPAA ’11,
pages 117–128, New York, NY, USA, 2011. ACM.

[26] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. A scal-
able auto-tuning framework for compiler optimization. In International
Parallel and Distributed Processing Symposium, Apr. 2009.

[27] J. Treibig. Efficiency improvements of iterative numerical algorithms
on modern architectures. PhD thesis, University Erlangen, 2008.

[28] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske. Effi-
cient temporal blocking for stencil computations by multicore-aware
wavefront parallelization. In International Computer Software and
Applications Conference, pages 579–586, 2009.

[29] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Lattice
Boltzmann simulation optimization on leading multicore platforms. In
Interational Conference on Parallel and Distributed Computing Systems
(IPDPS), Miami, Florida, 2008.

[30] S. Williams, D. D. Kalamkar, A. Singh, A. M. Deshpande,
B. Van Straalen, M. Smelyanskiy, A. Almgren, P. Dubey, J. Shalf, and
L. Oliker. Optimization of geometric multigrid for emerging multi- and
manycore processors. In Proc. of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12.
IEEE Computer Society Press, 2012.

[31] S. Williams, L. Oliker, J. Carter, and J. Shalf. Extracting ultra-scale
lattice boltzmann performance via hierarchical and distributed auto-
tuning. In Proc. of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, 2011.

[32] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick.
The potential of the Cell processor for scientific computing. In Proc.
of the 3rd Conference on Computing Frontiers, 2006.

[33] S. Williams, A. Watterman, and D. Patterson. Roofline: An insightful
visual performance model for floating-point programs and multicore
architectures. Communications of the ACM, April 2009.

[34] M. Wolfe. Loop skewing: the wavefront method revisited. Int. J.
Parallel Program., 15(4):279–293, Oct. 1986.

[35] D. Wonnacott. Using time skewing to eliminate idle time due to
memory bandwidth and network limitations. In Interational Conference
on Parallel and Distributed Computing Systems, 2000.

[36] T. Zeiser, G. Wellein, A. Nitsure, K. Iglberger, U. Rude, and G. Hager.
Introducing a parallel cache oblivious blocking approach for the lattice
Boltzmann method. Progress in Computational Fluid Dynamics, 8,
2008.

[37] Y. Zhang and F. Mueller. Auto-generation and auto-tuning of 3d stencil
codes on gpu clusters. In Proc. of the Tenth International Symposium
on Code Generation and Optimization, CGO ’12, Mar. 2012.

[38] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni, and
D. Padua. Hierarchical overlapped tiling. In Proc. of the Tenth
International Symposium on Code Generation and Optimization, CGO
’12, Mar. 2012.

