
The Potential of the Cell Processor
for Scientific Computing

Sam Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, Katherine Yelick
{SWWilliams, JShalf, LOliker, SAKamil, PJRHusbands, KAYelick}@lbl.gov

Computational Research Division – Lawrence Berkeley National Laboratory

Introduction

Programming Model

Performance Modeling
Standard Cell Model
•Performance estimator written for each kernel
  to examine strategies before C with intrinsics I
  mplementation
•Overlaps communication and computation
•Handles irregular problems (like SpMV)

Cell+ Model
•Lengthen forwarding network to avoid stalling 
  double precision instructions
•Modest modification; up to 3.5x benefit
•Cell+ makes DP instructions half-pumped
  (one SIMD every other cycle)
•How much does 6 stall cycles per double-precision 
  instruction hurt performance?

Cell
•8 SIMD cores (SPEs) @ 3.2GHz
•Independent, explicitly controlled 256KB local 
  store memory (not a cache)
•Decoupled DMAs improve bus utilization
•1 SP SIMD instruction every cycle
•But science requires double precision
•1 DP SIMD instruction every 7 cycles

Experimentation
•Performance modeling coupled with benchmarks
  on actual hardware
•Compared against actual hardware:

1.13 GHz X1E MSP 
2.2 GHz Opteron
1.3 GHz Itanium2

•Explicit software controlled one-sided 
  com
munication (DMAs) for SPEs
•SPEs are programmed as if they were a 
  distributed memory machine (SPMD)
•The SPEs (and PPU) must synchronize between
  program phases
•Programmed in C with intrinsics in the critical
  sections.
•Double buffered whenever possible and 
  appropriate

Dense Matrix-Matrix Multiplication

1D & 2D Fast Fourier Transforms
Introduction
•Naïve radix 2 performance modeling
•Small explicit on-chip transpose for 1D
   (inter-local store)
•Large explicit transposes in DRAM for 2D
•Ensures long DMAs from global store and 
 butterflies within local store

Performance Estimation

Future Work
•Alternatives to explicit transposes
•Overlap of communication and computation 
  for the 1D FFT

Introduction
•Straightforward performance modeling
•Matrix stored in column major order
•DMAs pack stanzas together into Local store
•642 cache blocks are sufficiently large to 
  ensure Cell is computationally bound
•Parallelize by assigning each SPE a unique 
  cache block in the destination matrix.

Performance Estimation

Future Work
•Cannon’s Algorithm



Introduction
•Evaluate Y=AX, where A is a generic sparse
  matrix
•Potential load balancing problems based on 
  nonzero structure 
•Double precision implementation on actual
  hardware

Implementation
•Uniprocessor CSR modified so that all row 
  lengths are even (for SIMDization)
•Cache blocked source vector (for temporal 
  locality within each SPE)
•Parallelization based on a cost function of rows
  and nonzeros per block
•Nonzeros are streamed and double buffered 
  into local store
•Performance model guided actual 
  implementation

Double Precision Performance

Future Work
•Better load balancing
•Explicitly parallel storage formats
•Segmented scan to amortize branch
  misprediction and loop overhead
•BCSR to improve SIMDization

Introduction
•7 point stencil (Heat Equation, with
  unweighted neighbors) on a regular grid
•Double
• and Single precision
  implementations on actual hardware

Implementation
•Cache blocked
•Double buffered planes
•SIMDized with C intrinsics

Temporal Blocking using Time Skewing
•Time skewing performs multiple time steps per 
  memory access, and allows the machine to attain 
  near peak algorithmic performance
•One queue exists for each time step 
  ~ 3(TimeSteps + 1) planes
•Planes are read from DRAM once, shuffled from
  one queue to the next, and written to DRAM once.
•Only used on single precision version but 
  applicable to Cell+ 

Performance

Future Work
•Complex PDE solvers
•Cell+ double precision time skewed
•Non cubical domains

Stencils on Structured Grids

parallelize, and 
cache block

stream planes into queue,
perform stencil on planes, &

write planes to buffer

Sparse Matrix-Vector Multiplication

Block & double buffer nonzeros
Nonzero blocks may straddle rows.
Rows may straddle nonzero blocks.

Cache Block
Source vector is
cache blocked 
for local store

locality.

Parallelize
Attempt static 
load balanced 
parallelization.

Block Rows
Rows are blocked
to improve locality

for both vectors

http://www.cs.berkeley.edu/~samw/
http://crd.lbl.gov/~oliker/


