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ABSTRACT: We apply auto-tuning to a hybrid MPI-pthreads lattice Boltzmann computation running on the Cray
XT4 at National Energy Research Scientific Computing Center (NERSC). Previous work showed that multicore-
specific auto-tuning can improve the performance of lattice Boltzmann magnetohydrodynamics (LBMHD) by a factor
of 4x when running on dual- and quad-core Opteron dual-socket SMPs. We extend these studies to the distributed
memory arena via a hybrid MPI/pthreads implementation. In addition to conventional auto-tuning at the local SMP
node, we tune at the message-passing level to determine the optimal aspect ratio as well as the correct balance
between MPI tasks and threads per MPI task. Our study presents a detailed performance analysis when moving along
an isocurve of constant hardware usage: fixed total memory, total cores, and total nodes. Overall, our work points to
approaches for improving intra- and inter-node efficiency on large-scale multicore systems for demanding scientific

applications.
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1 Introduction

Today’s massively parallel processing machines are
all built from shared-memory multicore processors.
However, two major challenges arise in optimizing ap-
plication performance on them: optimizing node-local
computation, and optimizing communication between
nodes. In this paper, we apply the well-established auto-
tuning technique as a first step in optimizing single-
node performance. However, rather than accepting for
fact that either a cubical domain decomposition is op-
timal or that the auto-tuned implementation for a cubi-
cal subdomain is optimal for a non-cubical subdomain,
we explore the performance benefits of co-tuning both
the domain decomposition and the local computation in
a resource- and time-efficient manner. Finally, perhaps
one of the most controversial topics in programming to-
day is examined — that of hybrid MPI. Rather than as-
signing one core to each MPI process, one uses multiple
cores per MPI process via threading.

In this paper we quantify the application-level per-
formance benefits of auto-tuning local computation, do-
main decomposition, and the division of computational
resources among MPI processes. To that end, as an
application, we selected Lattice Boltzmann Magneto-

hydrodynamics (LBMHD) — a structured grid based
algorithm that simulates homogeneous isotropic turbu-
lence in magnetohydrodynamics. Results show that for
moderate sized problems on the Cray XT4, although the
bulk of the performance gains come from single-thread
optimization, an additional 17% performance boost is
achieved through tuning the domain decomposition and
balance between threads per process and processes per
node.

The rest of the paper is organized as follows. Sec-
tion 2 discusses background and previous auto-tuning
efforts of our target application: LBMHD. Section 3 out-
lines the architecture, programming model, tools, and
methodology used throughout the rest of the paper. Sec-
tions 4 and 5 introduce our approach to hybrid, dis-
tributed auto-tuning, present the XT4 performance re-
sults, and provide performance analysis. Finally, Sec-
tion 6 provides some high-level insights resulting from
this work, as well as some possible future directions.

2 LBMHD

In this section, we commence with a discussion of
the history and computational physics of lattice Boltz-
mann methods. We will then proceed to the computa-



tional characteristics and previous auto-tuning efforts.
By no means is this discussion extremely detailed or
comprehensive. It is included to provide the fundamen-
tal knowledge and context.

2.1 Background

Lattice Boltzmann methods (LBM) have emerged
from the field of statistical mechanics as an alternative
to other numerical simulation techniques in the areas of
fluid dynamics, complex fluid flows, interface dynamics,
and quantum fluids [10]. The basic idea is to develop a
simplified kinetic model that incorporates the essential
physics and reproduces correct macroscopic averaged
properties. In the field of computational fluid dynamics
LBM have grown in popularity due to their flexibility
in handling irregular boundary conditions and straight-
forward inclusion of mesoscale effects such as porous
media, or multiphase and reactive flows. More recently
LBM have been successfully applied to the field of mag-
netohydrodynamics [4,7].

The LBM equations break down into two separate
terms, each operating on a set of distribution functions;
a linear free-streaming operator and a local non-linear
collision operator. Implicit in the method is a discretiza-
tion of velocities and space onto a lattice, where a set of
mesoscopic quantities (density, momenta, etc.) and dis-
tribution functions are associated with each lattice site.
The most common current form of LBM makes use of
a Bhatnagar-Gross-Krook [1] (BGK) inspired collision
operator — a simplified form of the exact operator that
casts the effects of collisions as a relaxation to an equi-
librium distribution function on a single timescale. For
the fluid dynamics case, in discretized form, we write:

fa(X 4 coAt,t + At) = fo(x,t)—
/7 (fa(x,t) = f39(x,1)) (1)

where f,(x,t) denotes the fraction of particles at time
step t moving with velocity c,, and 7 the relaxation time
which is related to the fluid viscosity. f€? is the local
equilibrium distribution function, constructed from the
macroscopic variables, the form of which is chosen to
impose conservation of mass and momentum, and im-
pose isotropy. The velocities c, arise from the basic
structure of the lattice and are chosen in concert with
the form of the collision operator and equilibrium dis-
tribution function. A typical discretization in 3D is the
D3Q27 model [15] which uses 27 distinct velocities (in-
cluding zero velocity) is shown in Figure 1.
Conceptually, a LBM simulation proceeds by a se-
quence of collision() and stream() steps, reflecting the
structure of the master equation. The collision() step in-
volves data local only to that spatial point; the meso-
scopic variables at each point are calculated from the
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Figure 1. Data structures for LBMHD. For
each point in space, in addition to the
macroscopic quantities of density, mo-
mentum, and magnetic field, two lattice
distributions are maintained.

distribution functions and from them the equilibrium
distribution formed through a complex algebraic expres-
sion originally derived from appropriate conservation
laws. Finally the distribution functions are updated ac-
cording to Equation 1. This is followed by the stream()
step that evolves the distribution functions along the ap-
propriate lattice vectors. In practice, most implemen-
tations follow Wellein and co-workers [12] who incor-
porated the data movement of the stream() step directly
into the collision() step. In this formulation, either the
newly calculated particle distribution function can be
scattered to the correct neighbor as soon as it is cal-
culated, or equivalently, data can be gathered from ad-
jacent cells to calculate the updated value for the cur-
rent cell. Using this method, data movement is reduced
and the collision step looks much more like a stencil
kernel—in that data are accessed from multiple nearby
cells. In a parallel distributed memory version of LB, a
stream step is still required to refresh the ghost cells or
enforce boundary conditions on the outer lattice faces.

LBMHD [6] was developed to study homogeneous
isotropic turbulence in magnetohydrodynamics (MHD),
the interaction of an electrically conducting fluid with a
magnetic field, for a simple system of periodic bound-
ary conditions. MHD turbulence plays an important
role in many branches of physics [2]: from astrophys-
ical phenomena to plasma instabilities in magnetic fu-
sion devices. The kernel of LBMHD is similar to that of
the fluid flow LBM except that the regular distribution



functions are augmented by magnetic field distribution
functions, and the macroscopic quantities augmented by
the magnetic field. In the case of these functions, the
number of phase space velocities needed to recover in-
formation on the magnetic field is reduced from 27 to
15. The differing components for particle and magnetic
field are shown in Figure 1. Figure 2 is reproduced
from one of the largest 3-dimensional LBMHD simula-
tions conducted to date [3], aiming to understand better
the turbulent decay mechanisms starting from a Taylor-
Green vortex — a problem of relevance to astrophysical
dynamos. Here we show the development of turbulent
structures in the z-direction as the initially linear vortic-
ity tubes deform.

The original Fortran implementation of the code was
parallelized using MPI, partitioning the whole lattice
onto a 3-dimensional processor grid. This achieved high
sustained performance on vector architectures, but a rel-
atively low percentage of peak performance on super-
scalar platforms [8]. The application was rewritten, for
our previous study [14], around two lattice data struc-
tures, representing the state of the system, the vari-
ous distribution functions and macroscopic quantities, at
time ¢ and at time ¢ + 1. At each time step one lattice
is updated from the values contained in the other. The
algorithm alternates between these each data structures
as time is advanced. The lattice data structure is a col-
lection of arrays of pointers to double precision arrays
that contain a grid of values.

In the original MPI version of the LBMHD code, the
stream() function updates the ghost-zones surrounding
the lattice domain held by each task. Rather than ex-
plicitly exchanging ghost-zone data with the 26 near-
est neighboring subdomains, we use the shift algorithm,
which performs the exchange in three steps involving
only six neighbors. The shift algorithm makes use of
the fact that after the first exchange between processors
along one cartesian coordinate, the ghost cells along the
border of the other two directions can be partially popu-
lated. The exchange in the next coordinate direction in-
cludes this data, further populating the ghost cells, and
so on. Palmer and Nieplocha provide a recent sum-
mary [9] of the shift algorithm and compare the trade-
offs with explicitly exchanging data with all neighbors
using different parallel programming models.

2.2 Performance Characteristics

LBMHD’s collision() operator performs about 1300
floating-point operations per lattice update. In doing so,
it must read 73 values (momentum velocities, magnetic
field velocities, and macroscopic density) and write 79
values (new momentum velocities, magnetic field ve-
locities, as well as the new macroscopic density, mo-
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Figure 2. Vorticity tubes deforming near
the onset of turbulence in LBMHD simu-
lation (a) after 20K iterations, and (b) after
40K iterations.

mentum, and magnetic field). On a write-allocate ar-
chitecture, the writes generate twice the memory traffic
as reads. As such, LBMHD’s unoptimized arithmetic
intensity (FLOP:DRAM byte ratio) is about 0.70. For
an architecture like the Opteron, with a FLOP:DRAM
byte ratio of about 3, it is clear LBMHD will be heavily
memory bound. However, initial experiments showed
this was not the bottleneck. Although the structure-of-
arrays format made LBMHD cache and vector friendly,
it is a very TLB unfriendly code — touching 150 arrays
on an architecture with a 16 entry L1 TLB will generate
a great number of TLB capacity misses.

2.3 Previous Auto-tuning Efforts

Auto-tuning, or automated tuning, is premised on the
belief that if one could enumerate the potentially use-
ful optimizations, and devise an automated method of
generating and benchmarking them, one could find the



best performing implementation for all architectures [5,
11, 13]. We previously implemented an LBMHD auto-
tuner focused exclusively on single-node performance
that delivered excellent speedups across a wide range
of dual-socket multicore SMPs [14]. Although the XT5
would be well represented by the Opteron 2356 in that
study, the XT4 used in this study is a somewhat dif-
ferent architecture. Most notably, there are only four
cores, and they share a uniform memory access inter-
face to main memory. In our previous study, we imple-
mented an auto-tuner that in addition to applying small
optimizations to a C reference implementation, also pro-
duced both vectorized and vectorized using SIMD in-
trinsics variants. We are very judicious in differentiating
the terms vectorization and SIMDization. Vectorization
is a code transformation that creates a vector (array) of
temporaries in memory, and performs one (or a few) op-
eration (not one statement) at a time per element. The
subtle benefit is one is essentially blocking for the TLB
as one limits the number of terms in the original state-
ment evaluated at a time. SIMDization is a code gen-
eration technique that maps data-parallel operations to
SIMD instructions through the use of software intrin-
sics. The benefit of vectorization (TLB blocking) is that
it allows one to trade larger cache working sets for im-
proved TLB locality. The auto-tuner would then search
for the optimal “vector length” — essentially the work-
ing set it would attempt to keep in cache, and the num-
ber of consecutive elements it would access per TLB
page. All experiments were performed on cubical do-
mains with varying degrees of thread-level concurrency.
As only one process was run, it should come as no sur-
prise that maximizing the number of threads per process
was ideal. Although vectorization provided a substantial
performance boost, the auto-tuner’s use of SSE, notably
cache bypass instructions like movntpd which cuts mem-
ory traffic by 33% through the elimination of write allo-
cation cache line fills provided an even greater increase.
On this memory-bound kernel, by using this optimiza-
tion, the auto-tuner improved arithmetic intensity, and
thus performance, by 50%.

The rest of this paper examines the applicability
of that auto-tuner to the distributed implementation of
LBMHD and postulates that single-thread auto-tuning is
insufficient and auto-tuning should be extended to both
the domain decomposition and the balance of threading
and multiple processes per compute node.

3 Experimental Setup

In this section we discuss the hardware, programming
model, compilers, and experimental methodology used
throughout this work.

3.1 XT4 (Franklin)

In this work, we use the Cray XT4 (named Franklin)
at the National Energy Scientific Computing (NERSC)
Center. Each compute node comprises one 2.3GHz
quad-core Opteron (Budapest) processor, a SeaStar2
router, and 8GB of DDR2-800 memory. This pro-
vides the node with a peak performance, DRAM band-
width, and per-link network bandwidth of 36.8GFlop/s,
12.8GB/s, and 6.4GB/s respectively. The XT4 is com-
posed of 9,532 distributed memory compute nodes ar-
ranged in a 3D torus.

Each Opteron processor includes four cores, with pri-
vate 64K L1 and 512K L2 caches, and a shared 2MB
L3 cache. Each core is a superscalar out-of-order pro-
cessor capable of decoding three x86 instructions and
executing 6 micro-ops per cycle. The Opteron’s high
per-core peak floating-point performance arises from
three major factors: 4-cycle pipelining, 2-way double-
precision SIMD, and parallel adder and multiplier func-
tional units. Codes lacking balance between multiplies
and adds, like LBMHD, will make poor use of the mul-
tiplier datapath.

As LBMHD’s optimized FLOP:DRAM Byte ratio
is only about 1.0, peak performance is ultimately lim-
ited by the 9.7GBs/s sustainable bandwidth to about 9.5
GFlop/s per socket or 2.4 GFlop/s per core — ignoring
time spent in stream(). Thus, if one already achieves
peak bandwidth, the only potential optimization is to
minimize memory traffic. This includes avoiding cache
capacity and conflict misses as well as eliminating write
allocations (cache bypass).

3.2 Hybrid MPI

In a flat MPI implementation of an application, one
MPI process is assigned to each core of the multicore
SMP nodes of a massively-parallel computer. Although
one can trivially port applications from one generation
of multicore chips to the next, achieving good perfor-
mance can be elusive. To that end, one can embrace an
alternate approach — a hybrid implementation. By hy-
brid, we mean two different programming models are in-
cluded in the application. There are many advantages of
using a hybrid implementation on computers built from
multicore SMPs. For example, one can significantly re-
duce the number of system calls (from one per core to
one per node). Second, one can eliminate superfluous
memory copies that can be handled through the existing
cache-coherency mechanisms. Third, many applications
use identical read-only structures on each process. Us-
ing a hybrid implementation requires fewer copies per
node (a dramatic reduction in memory capacity require-
ments), and can improve cacheability as all threads re-
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Figure 3. Key loop in a hybrid LBMHD im-
plementation running with two processes
each of two threads. Boxes represent
function calls, arrows the flow of data, and
barrier() is a intra-process (thread) barrier.

fer to the same memory locations. Finally, some ap-
plications scale poorly with an increasing number of
MPI processes — an unfortunate match with the current
landscape of stalled cpu clock frequencies and an expo-
nentially increasing number of cores over time. Fixing
the number of MPI processes, and scaling the number
of cores can potentially eliminate impediments to poor
scalability.

For global parallelism and communication, we re-
quire a message passing or PGAS language; we elected
to evolve the existing MPI implementation of LBMHD.
For local communication and parallelism, we use a
shared memory, single-program, multiple-data (SPMD)
model based on POSIX threads (pthreads) as the cache-
coherent capability of the Opteron quad-core processors
obviates the needs for message passing or PGAS lan-
guages, and we perceive pthreads as providing increased

(closer to metal) control of hardware resources.

The modifications of the existing flat-MPI implemen-
tation of LBMHD to a hybrid MPI-Pthreads implemen-
tations were minor. First, as thread creation can be
expensive, we avoid the fork-join model by creating
threads at the beginning of the application and then us-
ing barriers and predication to fan out work — essen-
tially a threaded version of SPMD. The key time loop
in LBMHD iterates on two functions: collision(), which
performs local computation, and stream(), which, in a
three-phase communication scheme [9], packs the sur-
faces of the local grid, performs MPI communication,
and unpacks to the grid for communication in the Z,
Y, and X dimensions. Initial experimentation showed
the need to parallelize stream() over threads to avoid the
problems of Amdahl’s Law. In addition, we decided
to split stream into six functions (pack/unpack x 3 di-
mensions) and 3 blocks of MPI calls. The XT4 sup-
ports a high performance MPI library which can pro-
vide, in MPI terminology, MPI_THREAD_FUNNELED
or MPI_THREAD_SERIALIZED support. in these two
models, only the main thread will make MPI calls, or
any threads may make an MPI calls but the application
writer must guarantee that only one thread does so at a
time are the respective requirements of application writ-
ers. The capability to have any thread make an MPI call
at any time is currently supported via a lower perform-
ing library. Because of this, in our implementation only
thread 0 within each process performs MPI communi-
cation. When coupled with parallelized collision() and
stream(), it is clear the hybrid implementation requires
many barriers to ensure correct behavior — locally bulk
synchronous.

Consider the program flow shown in Figure 3. We
see the execution of one time step using a hybrid im-
plementation running with two MPI processes each of
two threads. Clearly, we see four major phases: colli-
sion(), MPI communication in Z, MPI communication
in Y, and MPI communication in X. Communication
of values produced by one thread’s execution of col-
lision() can be passed to the other thread in the same
process through the cache-coherency mechanisms or via
thread 0’s MPI call to communicate with the threads of
the other process. Depending on problem dimensions,
processor architecture, network performance, and local
optimization, the time spent in each phase can vary dra-
matically.

3.3 Compilers and Tools

In this work, we only used the gcc compiler as it
faired better with the intrinsic-laden SSE code. We at-
tempted to use the affinity routines to pin threads, but the
performance benefit was negligible. Perhaps in the fu-
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Figure 4. Stages in the greedy hybrid distributed auto-tuning approach.

ture, on NUMA architectures like the XTS5, affinity will
become critical.

3.4 Problem Size

In all our experiments, we mandate a per-core mem-
ory foot print of 256K (64%) grid points. This is about
300MB per core. In addition, although we may change
the balance between processes per node and threads per
process, we always use four cores per node. Thus, de-
pending on the hybrid implementation, the MPI process
memory footprint ranges from 300MB-1.2GB, but the
minimum per node memory footprint is always about
1.2GB. For the large-scale runs, we only explored con-
currencies with 128 nodes (512 cores). In the future, we
will experiment with both larger and smaller per-core
problem sizes as well as different numbers of cores.

3.5 Calculating Performance

LBMHD performs about 1300 floating-point oper-
ations, including one divide, per lattice update. For
the distributed runs in this work, we calculate average
performance, counting the floating-point divide as one
FLOP, by taking the total number of floating-point op-
erations and dividing by the overall execution time as
measured on process zero. However, local-only tuning,
as discussed below, only measured the best (instead of
average) performance for any of the 10 iterations.

4 Hybrid Auto-Tuning

In this section, we discuss our time- and resource-
efficient approach to auto-tuning distributed applica-
tions. To that end, we employ a greedy 3-stage auto-
tuning algorithm that attempts to discover the optimal
solutions to the local-optimization problem before inte-
grating with a distributed tuner or ultimately, a large-
scale run.

4.1 The Case Against Scaling Con-
ventional Auto-tuning up to Dis-
tributed Applications

Our previous LBMHD auto-tuning efforts focused
exclusively on single-node, threaded performance [14].
To that end, we had one problem size and always
used as many threads as there was hardware support
for. Despite our efforts, the combinatoric optimization-
parameter space still was significant. First, in terms
of data-structure, even if we restrict ourselves to only
the structure-of-arrays form, we may still explore ar-
ray padding. For threading, we overlay a 2D thread
grid on top of the domain and only explore threading
in powers of two in the Y and Z dimensions. This con-
cept requires the search of an additional dimension of
size 1 4 log(threads), where “threads” is the number
of hardware thread contexts per node. Note, the thread
grid concept does not change data structures, only loop
bounds. When it comes to code generation, our auto-
tuner produced three basic flavors: reference, vector-
ized, and explicitly (via intrinsics) SIMDized vectorized
implementations. For the vectorized variants, we must
attempt to discover the vector length (VL) that delivers
optimal performance. VL is essentially a parameter that
allows us to trade decreased TLB pressure for increased
cache pressure — clearly each architecture will have a
unique balance between these. To prune the exploration
of vector length, we only examined vector lengths in
multiples of a cache line up to 128 elements, then a tele-
scoping power-of-two exploration to 1K (19 possibili-
ties). In addition, we explored only power of two un-
rollings and reorderings by up to a cache line of both the
reference and vectorized variants (another dimension of
10 values). Finally, we explored only three prefetch dis-
tances for the vectorized forms. All-in-all, after pruning,
this results in about 5500 different implementations that
we must search through to find the best. As each trial
required 4-10 seconds, we need more than 6 CPU hours
to explore the entire space.

When one moves to a distributed implementation of
LBMHD, several new optimization dimensions appear.
First, in a hybrid implementation, one must determine
the appropriate balance between threads and processes.
Luckily, this only increases the search space by roughly
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Figure 5. Performance (in isolation) as a
function of coding style. Note, we employ
a 4x1 thread grid on 128° domain.

log(threads)/2. Even when coupled with the mapping
of threads within a process, in the context of applying
Moore’s law to multicore, collectively these terms en-
sure the search space does not suffer a combinatoric ex-
plosion. The more challenging component is the prob-
lem decomposition among processes. Alternately, one
can recast this as the search for the optimal per-process
aspect ratio (assuming fixed volume). Combined, these
dimensions increase the search space by perhaps a factor
of 100x. Obviously naively implementing a distributed
auto-tuner running across N nodes to search for the opti-
mal implementation for a N-process application is not a
cost effective approach as one requires perhaps 1000 x N
CPU hours for tuning alone.

4.2 Efficient Distributed Application
Auto-tuning

We propose a three-stage approach to tuning dis-
tributed, weakly-scaled applications. The aggregate
overhead for auto-tuning is independent of the number
of processes, but will scale with both the thread-level
parallelism afforded by multicore processors as well as
with per-node memory capacity. The latter is true be-
cause large memory capacities produce many more per-
process aspect ratios that we must benchmark. Figure 4
shows the three stages in our greedy distributed auto-
tuner.

4.2.1 Stage 1: Local Tuning

Our first stage attempts to prune the code optimization
space to the variants that consistently deliver superior
performance. To that end, we only explore a 1282 prob-
lem size and one thread-level concurrency: a 4 x 1 thread
grid (4 threads in the Z dimension).

Figure 5 presents the performance results (as mea-
sured in GFLOPs/core) for the three basic coding styles
both with and without lattice-aware padding (an algo-
rithm not a search) as different optimization parame-
ters are tuned for. Note, this exploration is exhaustive,
not greedy. That is, we exhaustively searched all com-
binations, but for clarity, we present the data to show
the benefits for increasingly complex auto-tuners. That
is, one could implement a subset of the capability of
our auto-tuner, but will suffer a commensurate loss in
performance. Clearly, the combination of lattice-aware
padding, vectorization, and SSE delivers superior per-
formance. The SSE benefit came from two components:
the use of cache-bypass instructions like movntpd, and
code quality superior to that produced by gcc. As it
turned out, prefetching by a cache line was also best.
One shouldn’t be disheartened by the low fraction of
peak flop/s (25%) as LBMHD is memory-bound. As
such, the optimized implementation achieves an aver-
age, useful bandwidth in excess of 8GB/s on a ma-
chine with a sustained DRAM bandwidth of 9.7GB/s.
In successive tuning stages, we only run the vectorized
SSE code variant with lattice-aware padding and 64 byte
prefetching, but will explore other optimization dimen-
sions and will research the vector length, unrolling and
reordering.

4.2.2 Stage 2: Threads/Aspect Ratio

In the second stage, we create a database of optimal
vector lengths, unrollings, and reorderings indexed by
the number of MPI processes per node, the thread grid
topology (Figure 6), and the per-process aspect ratio
(Figure 7). In this stage we mandate 256K grid points
per core, and use the results from stage 1 as a start-
ing point. We also prune the search space by enforcing
a minimum dimension of 32 and maximum dimension
of 512. Nevertheless, more than 100 configurations are
possible.

Recall the stream() operation packs and unpacks the
six surfaces of the domain. Although this is extremely
efficient for some surfaces (XY) as all accesses are unit
stride, it can be extremely inefficient for others (YZ) be-
cause the memory access pattern could be stride-128.
Tuning across different aspect ratios captures this po-
tential performance variation, but does not include the
effect of the change in surface area, and hence message
size, on MPI time.
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As LBMHD is a data-parallel SPMD application,
any hybrid tuning must be performed cognizant that the
threads of all MPI processes on the same node will be
executing the same code at roughly the same program
counter. Thus, tuning for any subset of the production
number of threads per node is totally inappropriate as
this would favor memory-inefficient code variants that
will under perform when the node is fully utilized. To
that end, we evolved the existing single-node threaded
auto-tuner into a distributed hybrid auto-tuner. The crit-
ical addition was an MPI_barrier() before the timing tri-
als for each optimization configuration. This ensures all
threads across all processes remain synchronized as they
traverse the optimization space.

Figure 8 shows the performance variation across
different aspect ratios, and thread grid topologies for
the three possible processxthread combinations on the
XT4. Observe, there is nearly a 30% variation in perfor-
mance as aspect ratio changes. Typically, aspect ratios
that favor large X (unit stride) dimensions (small Y Z
planes) deliver the best performance. In the absence of
MPI send’s and recv’s (using the sum of collision() and
stream() time) the 4 threads per process hybrid imple-
mentation consistently delivers better performance than

the versions with 1 or 2 threads per processes.

4.2.3 Stage 3: Run Full Problem

The final stage of the auto-tuner performs some
moderately-sized distributed runs. One should be mind-
ful that in our hybrid implementation, only thread 0 per-
forms MPI communication. As such, as we increase the
per-process thread-level parallelism, we reduce the vol-
ume of communication by exchanging costly messages
for free cache-coherency, but simultaneously reduce the
potential MPI bandwidth. Thus, we take the best per-
forming aspect ratios from stage two for the three dif-
ferent thread-process balances based not only on best
overall performance, but also based on the aspect ratios
that yielded the fastest collision() or stream() times. We
can then run these 9 configurations at moderate concur-
rencies using the best known parameters. Note, given
the aspect ratio, and overall problem size and MPI con-
currency, the MPI cartesian decomposition is uniquely
specified.

Table 1 presents a subset of configurations used
for this moderate-concurrency benchmarks. Recall the
problem size and core-concurrency is fixed at 512 and
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512 respectively. Thus, a small number of processes (p)
in a dimension of the process grid denotes a large di-
mension in the processes’ domain (512/p).

5 Results

Figure 9 shows the performance of the progressively
auto-tuned and optimized implementations of LBMHD
running on the 512 cores of the XT4. The reference im-
plementation uses the reference code style without ex-
plicit unrolling or reordering using a 1x1 thread grid
and a 8x8x8 processor grid (64> per process). We
observe that even lattice-aware array padding can im-
prove application performance by about 15% — an im-

Processes Process Thread Tuning:
X Threads  Grid Grid || VL unroll DLP
Reference 512x1  8x8x8 1x1 |[NJA 1 1
Single-thread|| 515 1 g g8 1x1 [512 2 2
optimization
Aspectratio | 515 | 6y 16x2 1x1 256 8 4
tuning
Hybrid 256x2 16x8x2 2x1 ||256 4 4
tuning 128x4 8x8x2 4x1 |[256 4 4

Table 1. Example of best parameters for a
variety of configurations for best overall
(sans MPI) performance.
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Figure 9. Performance on the XT4

(Franklin) with incrementally more com-
plex auto-tuning. All cases use 512 cores
to simulate a 5123 problem.

pressive yet disturbing outcome for such a conceptually-
simple optimization. Single-thread optimizations origi-
nally presented in [14] can improve the flat MPI applica-
tion performance by more than a factor of two. The final
flat MPI bar shows the best result of using the aspect ra-
tio that promised either the fastest local overall time or
the fastest local stream() time. The former delivered 1%
better performance than the latter. Overall, tuning the
aspect ratio for even this relatively large per-core prob-
lem size yielded 12% better performance. The final bar
marks the performance gain one can achieve by also tun-
ing the number of threads per process. For each of these
two possibilities (2 or 4) we benched the three locally
optimal configurations to find the best global implemen-
tation. We observe two interesting results. First, the con-
figuration yielding the fastest local overall and stream()
performance were identical and yielded the best over-
all performance. Second, using two processes of two
threads produced about 2% better overall performance
when compared with one process of four threads. This
is indicative that one may need some thread-level par-
allelism across MPI calls. Overall, the hybrid imple-
mentation improved performance by 4% over the tuned
flat MPI implementation, and 3 x faster than the original
reference implementation. In the future, as we explore
smaller per-core problem sizes, we may see a substan-
tially different balance between threads and processes.
Figure 10 breaks down the execution time for the
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fastest iteration as a function of optimization. Note, al-
though our timing methodology easily calculated the to-
tal time in stream() and MPI, it prevented an accurate
and consistent means of determining the exact split be-
tween time in stream() and time in MPI. We observe that
single-thread optimizations dramatically improved colli-
sion() time, and selection of the appropriate domain de-
composition slightly further improved collision() time.
Yet, time in stream() changed little. As one would ex-
pect, for a fixed volume, the minimal surface area is
achieved with a cubical domain. However, the band-
width to access certain surfaces may be suboptimal. As
we change the aspect ratio, we invariably increase the
surface area. This can be marginally offset by improved
bandwidth. As we move to a hybrid implementation
with increasing thread concurrency, we see a progres-
sively reduced time in stream() — 0.30, 0.23, and 0.17
seconds, but see progressively more time in MPI —
0.005, 0.008, 0.017 seconds. As such, as there is little
performance variation in the communication-less colli-
sion() function as a function of threads, we see an best
performance when stream() + MPI time is minimized.

6 Conclusions

In this work we examined the propositions that flat
MPI implementations deliver superior performance, and
that only exploiting local auto-tuning is sufficient to
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achieve globally-optimal performance. The data shows
that neither of these assumptions hold. Although single-
thread optimizations, albeit cognizant of concurrent MPI
processes on the same multicore chip, do provide the
bulk of the potential performance advantages for mod-
erately large problems, an additional 17% performance
enhancement can be had through tuning both the MPI
process domain decomposition and the balance between
threads and processes on multicore architectures. More-
over, we achieve these performance gains using only a
few CPU hours of auto-tuning time. This overhead is
negligible when one considers that LBMHD may be run
on thousands of processors for tens of thousands of time
steps.

Our distributed auto-tuning methodology deftly en-
sured that threads and processes would remain synchro-
nized as they traversed the optimization space — at each
point replicating the SPMD behavior one would expect
in a tuned parallel application. We assumed that the time
required for MPI would be small, and for this problem
size that was true. However, in retrospect, we believe
that an additional stage should be inserted between the
existing stages 2 and 3. This stage would benchmark the
MPI time for communicating a variety of buffer sizes for
differing numbers of “active” threads per node across a
few different concurrency classes (e.g. 128 nodes, 1K
nodes, etc...) The MPI communication time garnered
in this stage could be added with the overall local time
(collision()+stream()) to determine a better configura-
tion for large runs.

In the future, we do not expect the memory capacity
per SMP to grow as quickly as the number of cores in
its multicore chip. As such, the relative memory capac-
ity per core will decrease. To that end, future work will
inevitably study the performance impacts of smaller per-
core problem sizes and means to alleviate them includ-
ing hybrid implementations, alternate data structures,
and multiple time steps per communication phase.
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