
LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

1

Resource-Efficient, Hierarchical Auto-tuning
of a Hybrid Lattice Boltzmann Computation

on the Cray XT4

Samuel Williams, Jonathan Carter,
Leonid Oliker, John Shalf, Katherine Yelick

 Lawrence Berkeley National Laboratory (LBNL)
 National Energy Research Scientific Computing Center (NERSC)

SWWilliams@lbl.gov

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Outline

1.  Background
2.  LBMHD
3.  Previous work: Auto-tuning LMBHD on Multicore SMPs
4.  Hybrid MPI-Pthreads implementations
5.  Distributed, Hybrid LBMHD Auto-tuning
6.  Results
7.  Summary

2

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

3

Background

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 4

Arithmetic Intensity

  True Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes

  Some HPC kernels have an arithmetic intensity that scales with problem
size (increased temporal locality), but remains constant on others

  Arithmetic intensity is ultimately limited by compulsory traffic
  Arithmetic intensity is diminished by conflict or capacity misses.

A r i t h m e t i c I n t e n s i t y

O(N)
O(log(N))

O(1)

SpMV, BLAS1,2

Stencils (PDEs)

Lattice Methods

FFTs
Dense Linear Algebra

(BLAS3)
Particle Methods

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Kernel Arithmetic Intensity
and Architecture

5

800MHz DDR2 DIMMs

12.8 GB/s

2x64b controllers

H
y
p

e
rT

ra
n

s
p

o
rt

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

5
1

2
K

5
1

2
K

5
1

2
K

5
1

2
K

2MB victim

SRI / xbar

  For a given architecture, one may calculate its flop:byte ratio.
  For a 2.3GHz Quad Core Opteron (like in the XT4),

  1 SIMD add + 1 SIMD multiply per cycle per core
  12.8GB/s of DRAM bandwidth
  = 36.8 / 12.8 ~ 2.9 flops per byte

  When a kernel’s arithmetic intensity is substantially
 less than the architecture’s flop:byte ratio, transferring
 data will take longer than computing on it
 memory-bound

  When a kernel’s arithmetic intensity is substantially greater than the
architecture’s flop:byte ratio, computation will take longer than data
transfers
 compute-bound

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

6

LBMHD

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 7

LBMHD

  Plasma turbulence simulation via Lattice Boltzmann Method
  Two distributions:

  momentum distribution (27 scalar components)
  magnetic distribution (15 vector components)

  Three macroscopic quantities:
  Density
  Momentum (vector)
  Magnetic Field (vector)

momentum distribution

14

4

13

16

5

8

9

21

12

+Y

2

25

1

3

24

23

22

26

0

18

6

17

19

7

10

11

20

15
+Z

+X

magnetic distribution

14

13

16

21

12

25

24

23

22

26

18

17

19

20

15

+Y

+Z

+X

macroscopic variables

+Y

+Z

+X

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 8

LBMHD

  Code Structure
  time evolution through a series of collision() and stream() functions

  When parallelized, stream() should constitute 10% of the runtime.
  collision()’s Arithmetic Intensity:

  Must read 73 doubles, and update 79 doubles per lattice update (1216 bytes)
  Requires about 1300 floating point operations per lattice update
  Just over 1.0 flops/byte (ideal architecture)
  Suggests LBMHD is memory-bound on the XT4.

  Structure-of-arrays layout (component’s are separated) ensures that cache
capacity requirements are independent of problem size

  However, TLB capacity requirement increases to >150 entries

  periodic boundary conditions

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

9

Previous Work:
Auto-tuning LBMHD
on Multicore SMPs

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick,
"Lattice Boltzmann Simulation Optimization on Leading Multicore Platforms",
International Parallel & Distributed Processing Symposium (IPDPS), 2008.

Best Paper, Application Track

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 10

LBMHD Performance
(reference implementation)

  Generally, scalability looks
good

  Scalability is good
  but is performance good?

*collision() only

Naïve+NUMA

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Lattice-Aware Padding

  For a given lattice update, the requisite velocities can be mapped to
a relatively narrow range of cache sets (lines).

  As one streams through the grid, one cannot fully exploit the
capacity of the cache as conflict misses evict entire lines.

  In an structure-of-arrays format, pad each component such that
when referenced with the relevant offsets (±x,±y,±z) they are
uniformly distributed throughout the sets of the cache

  Maximizes cache utilization and minimizes conflict misses.

11

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

LBMHD Performance
(lattice-aware array padding)

12

  LBMHD touches >150
arrays.

  Most caches have limited
associativity

  Conflict misses are likely
  Apply heuristic to pad

arrays

+Padding

Naïve+NUMA

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY
(b)

(a)

(d)

(c)

Vectorization

  Two phases with a lattice method’s collision() operator:
  reconstruction of macroscopic variables
  updating discretized velocities

  Normally this is done one point at a time.
  Change to do a vector’s worth at a time (loop interchange + tuning)

13

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 14

LBMHD Performance
(architecture specific optimizations)

  Add unrolling and reordering of
inner loop

  Additionally, it exploits SIMD
where the compiler doesn’t

  Include a SPE/Local Store
optimized version

*collision() only

+Explicit SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA

+small pages

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 15

LBMHD Performance
(architecture specific optimizations)

  Add unrolling and reordering of
inner loop

  Additionally, it exploits SIMD
where the compiler doesn’t

  Include a SPE/Local Store
optimized version

*collision() only

+Explicit SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA

+small pages

1.6x 4x

3x 130x

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Limitations

  Ignored MPP (distributed) world
  Kept problem size fixed and cubical
  When run with only 1 process per SMP, maximizing threads per

process always looked best

16

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

17

Hybrid MPI+Pthreads
Implementations

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

collision()

pack()

unpack()

MPI()

pack()

pack()

MPI()

MPI()

unpack()

unpack()

process 0 process 1 process 2 process 3
(core 0) (core 1) (core 2) (core 3)

Flat MPI

  In the flat MPI world, there is one
process per core, and only one thread
per process

  All communication is through MPI

18

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Hybrid MPI

  As multicore processors already provide cache
coherency for free, we can exploit it to reduce
MPI overhead and traffic.

  We use pthreads for threading
 (other possibilities exist)

  For correctness, we are required to include a
intra-process (thread) barrier between function
calls for correctness.
 (we wrote our own)

  We can choose any balance between processes/
node and threads/process
 (we explored powers of 2)

  We did not assume a thread-safe MPI
implementation. As such, only thread 0
performs MPI calls

19

collision() collision() collision() collision()

pack() pack() pack() pack()

unpack() unpack() unpack() unpack()

MPI()

pack() pack() pack() pack()

pack() pack() pack() pack()

MPI()

MPI()

unpack() unpack() unpack() unpack()

unpack() unpack() unpack() unpack()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

process 0
thread 0 thread 1 thread 2 thread 3
(core 0) (core 1) (core 2) (core 3)

collision() collision() collision() collision()

pack() pack() pack() pack()

unpack() unpack() unpack() unpack()

MPI()

pack() pack() pack() pack()

pack() pack() pack() pack()

MPI()

MPI()

unpack() unpack() unpack() unpack()

unpack() unpack() unpack() unpack()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

MPI()

MPI()

MPI()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

process 0 process 1
thread 0 thread 1 thread 0 thread 1
(core 0) (core 1) (core 2) (core 3)

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

20

Distributed, Hybrid
Auto-tuning

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

The Distributed
Auto-tuning Problem

  We believe that even for relatively large problems, only auto-tuning
the local computation (e.g. IPDPS’08) will deliver sub-optimal MPI
performance.

  We have a combinatoric explosion in the search space coupled with
a large problem size (number of nodes)

21

benchmark
for all code unrollings/reorderings

for all vector lengths
for all prefetching

for all coding styles (reference, vectorized, vectorized+SIMDized)
for all data structures

for all thread grids

for all aspect ratios
at each concurrency:

for all process/thread balances

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Our Approach

  We employ a resource-efficient 3-stage greedy algorithm that
successively prunes the search space:

22

benchmark
for all code unrollings/reorderings

for all vector lengths
for all prefetching

for all coding styles (reference, vectorized, vectorized+SIMDized)
for all data structures

for all thread grids

for all aspect ratios
at limited concurrency (single node):

for all process/thread balances

benchmark

at full concurrency:
for all process/thread balances

benchmark

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Stage 1

23

XT4 (Franklin)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

re
fe

re
n
c
e

v
e
c
to

ri
z
e
d

v
e
c
t+

S
S
E

re
fe

re
n
c
e

v
e
c
to

ri
z
e
d

v
e
c
t+

S
S
E

no padding lattice-aware padding

G
F
L
O

P
s
/

c
o

r
e

+Tuned Prefetch
+Tuned Unrolling/DLP

+Tuned VL
baseline parameters

  In stage 1, we prune the code generation space.
  We ran this as a 1283 problem with 4 threads.
  As VL, unrolling, and

 reordering may be problem
 dependent, we only prune:
  padding
  coding style
  prefetch distance

  We observe that vectorization
 with SIMDization, and a
 prefetch distance of 1 cache
 line worked best

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Stage 2

  Suppose we wish to explore this color-coded
optimization space.

  In the serial world (or fully threaded nodes),
 the tuning is easily run

  However, in the MPI or hybrid world a problem
arises as processes are not guaranteed to be
synchronized.

  As such, one process may execute some
optimizations faster than others simply due to
fortuitous scheduling with another processes’ trials

  Solution: add an MPI_barrier() around each trial

24
tim

e

process0 process1
.
.
.
.

process0 process1
.
.
.
.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Stage 2 (continued)

  We create a database of optimal VL/unrolling/DLP parameters for
each thread/process balance, thread grid, and aspect ratio

25

Exploration of Thread Topology

and Process Aspect Ratio

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Different Aspect Ratios

(64^3/core)

G
F
lo

p
s
/

c
o

r
e

1 thread per process

2 threads per process

4 threads per process

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Stage 3

  Given the data base from Stage 2,
  we run few large problem using the best known parameters/thread

grid for different thread/process balances.

  We select the parameters based on minimizing
  overall local time
  collision() time
  local stream() time

26

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

27

Results

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

XT4 Results
(5123 problem on 512 cores)

  Finally, we present the best data
for progressively more aggressive
auto-tuning efforts/

  Note each of the last 3 bars may
have unique MPI decompositions
as well as VL/unroll/DLP

  Observe that for this large problem,
auto-tuning flat MPI delivered
significant boosts (2.5x)

  However, expanding auto-tuning to
include the domain decomposition
and balance between threads and
processes provided an extra 17%

  2 processes with 2 threads was
best

28

XT4 (Franklin) Performance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
fe

re
n
c
e

L
a
tt

ic
e

P
a
d
d
in

g

S
in

g
le

-T
h
re

a
d

O
p
ti
m

iz
a
ti
o
n
s

A
s
p
e
c
t

R
a
ti
o

T
u
n
in

g

H
y
b
ri
d
 T

u
n
in

g

Flat MPI (1 thread per process) 2-4

threads

T
F
L
O

P
s
 (

w
it

h
 5

1
2

 c
o

r
e
s
)

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

XT4 Results
(5123 problem on 512 cores)

  When examining the execution
time breakdown, we see how
the auto-tuner consistently
favored faster collision() times.

  In the hybrid world we see a
trade off between MPI time and
stream() time

  As threads/process increase,
we get less bandwidth, but less
traffic.

29

Execution Time Breakdown

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
fe

re
n
c
e

L
a
tt

ic
e

P
a
d
d
in

g

S
in

g
le

-T
h
re

a
d

O
p
ti
m

iz
a
ti
o
n
s

A
s
p
e
c
t

R
a
ti
o

T
u
n
in

g

2
 t

h
re

a
d
s

4
 t

h
re

a
d
s

Flat MPI (1 thread per process) Hybrid

s
e
c
o

n
d

s
 p

e
r
 i
te

r
a
ti

o
n

per iteration time in MPI()

per iteration time in stream()

per iteration time in collision()

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

30

Summary

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Conclusions

  Multicore cognizant auto-tuning dramatically improves even flat MPI
performance.

  Tuning the domain decomposition and hybrid implementations
yielded almost an additional 20% performance boost.

  Although hybrid MPI promises improved performance through
reduced communication, it is critical all components be thread-
parallelized.

  Future work will move to other architectures (like the XT5), examine
a range of problem sizes, and attempt to thread-parallelize the MPI.

31

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 32

Acknowledgements

  Research supported by DOE Office of Science under contract
number DE-AC02-05CH11231

  All XT4 simulations were performed on the XT4 (Franklin) at the
National Energy Research Scientific Computing Center (NERSC)

  George Vahala and his research group provided the original
(FORTRAN) version of the LBMHD code.

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

33

Questions?

