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Background 
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Arithmetic Intensity 

  True Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes 

  Some HPC kernels have an arithmetic intensity that scales with problem 
size (increased temporal locality), but remains constant on others 

  Arithmetic intensity is ultimately limited by compulsory traffic 
  Arithmetic intensity is diminished by conflict or capacity misses. 

A r i t h m e t i c  I n t e n s i t y 

O( N ) 
O( log(N) ) 

O( 1 ) 

SpMV, BLAS1,2 

Stencils (PDEs) 

Lattice Methods 

FFTs 
Dense Linear Algebra 

(BLAS3) 
Particle Methods 
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Kernel Arithmetic Intensity 
and Architecture 
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  For a given architecture, one may calculate its flop:byte ratio. 
  For a 2.3GHz Quad Core Opteron (like in the XT4),  

  1 SIMD add + 1 SIMD multiply per cycle per core 
  12.8GB/s of DRAM bandwidth 
  = 36.8 / 12.8 ~ 2.9 flops per byte 

  When a kernel’s arithmetic intensity is substantially 
 less than the architecture’s flop:byte ratio, transferring 
 data will take longer than computing on it  
  memory-bound 

  When a kernel’s arithmetic intensity is substantially greater than the 
architecture’s flop:byte ratio, computation will take longer than data 
transfers  
  compute-bound 
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LBMHD 
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LBMHD 

  Plasma turbulence simulation via Lattice Boltzmann Method 
  Two distributions: 

  momentum distribution (27 scalar components) 
  magnetic distribution (15 vector components) 

  Three macroscopic quantities: 
  Density 
  Momentum (vector) 
  Magnetic Field (vector) 

momentum distribution 
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LBMHD 

  Code Structure 
  time evolution through a series of collision( ) and stream( ) functions 

  When parallelized, stream( ) should constitute 10% of the runtime. 
  collision( )’s Arithmetic Intensity: 

  Must read 73 doubles, and update 79 doubles per lattice update (1216 bytes) 
  Requires about 1300 floating point operations per lattice update 
  Just over 1.0 flops/byte (ideal architecture) 
  Suggests LBMHD is memory-bound on the XT4. 

  Structure-of-arrays layout (component’s are separated) ensures that cache 
capacity requirements are independent of problem size 

  However, TLB capacity requirement increases to >150 entries 

  periodic boundary conditions 



LAWRENCE BERKELEY NATIONAL LABORATORY 

F U T U R E   T E C H N O L O G I E S   G R O U P 

9 

Previous Work: 
Auto-tuning LBMHD 
on Multicore SMPs 

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, 
"Lattice Boltzmann Simulation Optimization on Leading Multicore Platforms", 
International Parallel & Distributed Processing Symposium (IPDPS), 2008.  

Best Paper, Application Track 
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LBMHD Performance 
(reference implementation) 

  Generally, scalability looks 
good 

  Scalability is good 
  but is performance good? 

*collision() only  

Naïve+NUMA 
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Lattice-Aware Padding 

  For a given lattice update, the requisite velocities can be mapped to 
a relatively narrow range of cache sets (lines). 

  As one streams through the grid, one cannot fully exploit the 
capacity of the cache as conflict misses evict entire lines. 

  In an structure-of-arrays format, pad each component such that 
when referenced with the relevant offsets (±x,±y,±z) they are 
uniformly distributed throughout the sets of the cache 

  Maximizes cache utilization and minimizes conflict misses. 

11 
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LBMHD Performance 
(lattice-aware array padding) 

12 

  LBMHD touches >150 
arrays. 

  Most caches have limited 
associativity 

  Conflict misses are likely 
  Apply heuristic to pad 

arrays 

+Padding 

Naïve+NUMA 
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(a)

(d)

(c)

Vectorization 

  Two phases with a lattice method’s collision() operator: 
  reconstruction of macroscopic variables 
  updating discretized velocities 

  Normally this is done one point at a time. 
  Change to do a vector’s worth at a time (loop interchange + tuning) 

13 
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LBMHD Performance 
(architecture specific optimizations) 

  Add unrolling and reordering of 
inner loop 

  Additionally, it exploits SIMD 
where the compiler doesn’t 

  Include a SPE/Local Store 
optimized version 

*collision() only  

+Explicit SIMDization 

+SW Prefetching 

+Unrolling 

+Vectorization 

+Padding 

Naïve+NUMA 

+small pages 
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LBMHD Performance 
(architecture specific optimizations) 

  Add unrolling and reordering of 
inner loop 

  Additionally, it exploits SIMD 
where the compiler doesn’t 

  Include a SPE/Local Store 
optimized version 

*collision() only  

+Explicit SIMDization 

+SW Prefetching 

+Unrolling 

+Vectorization 

+Padding 

Naïve+NUMA 

+small pages 

1.6x 4x 

3x 130x 
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Limitations 

  Ignored MPP (distributed) world 
  Kept problem size fixed and cubical 
  When run with only 1 process per SMP, maximizing threads per 

process always looked best 

16 
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Hybrid MPI+Pthreads 
Implementations 
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Flat MPI 

  In the flat MPI world, there is one 
process per core, and only one thread 
per process 

  All communication is through MPI 
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Hybrid MPI 

  As multicore processors already provide cache 
coherency for free, we can exploit it to reduce 
MPI overhead and traffic. 

  We use pthreads for threading 
 (other possibilities exist) 

  For correctness, we are required to include a 
intra-process (thread) barrier between function 
calls for correctness.   
 (we wrote our own) 

  We can choose any balance between processes/
node and threads/process 
 (we explored powers of 2) 

  We did not assume a thread-safe MPI 
implementation.  As such, only thread 0 
performs MPI calls 
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Distributed, Hybrid  
Auto-tuning 
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The Distributed 
Auto-tuning Problem 

  We believe that even for relatively large problems, only auto-tuning 
the local computation (e.g. IPDPS’08) will deliver sub-optimal MPI 
performance. 

  We have a combinatoric explosion in the search space coupled with 
a large problem size (number of nodes) 

21 

benchmark 
for all code unrollings/reorderings 

for all vector lengths 
for all prefetching 

for all coding styles (reference, vectorized, vectorized+SIMDized) 
for all data structures 

for all thread grids 

for all aspect ratios 
at each concurrency: 

for all process/thread balances 
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Our Approach 

  We employ a resource-efficient 3-stage greedy algorithm that 
successively prunes the search space: 
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Stage 1 
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  In stage 1, we prune the code generation space. 
  We ran this as a 1283 problem with 4 threads. 
  As VL, unrolling, and  

 reordering may be problem 
 dependent, we only prune: 
  padding 
  coding style 
  prefetch distance 

  We observe that vectorization 
 with SIMDization, and a 
 prefetch distance of 1 cache 
 line worked best 
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Stage 2 

  Suppose we wish to explore this color-coded 
optimization space. 

  In the serial world (or fully threaded nodes),  
 the tuning is easily run 

  However, in the MPI or hybrid world a problem 
arises as processes are not guaranteed to be 
synchronized. 

  As such, one process may execute some 
optimizations faster than others simply due to 
fortuitous scheduling with another processes’ trials 

  Solution: add an MPI_barrier() around each trial 
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Stage 2 (continued) 

  We create a database of optimal VL/unrolling/DLP parameters for 
each thread/process balance, thread grid, and aspect ratio 
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Stage 3 

  Given the data base from Stage 2,  
  we run few large problem using the best known parameters/thread 

grid for different thread/process balances. 

  We select the parameters based on minimizing 
  overall local time 
  collision( ) time 
  local stream( ) time 

26 
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Results 
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XT4 Results 
(5123 problem on 512 cores) 

  Finally, we present the best data 
for progressively more aggressive 
auto-tuning efforts/ 

  Note each of the last 3 bars may 
have unique MPI decompositions 
as well as VL/unroll/DLP 

  Observe that for this large problem, 
auto-tuning flat MPI delivered 
significant boosts (2.5x) 

  However, expanding auto-tuning to 
include the domain decomposition 
and balance between threads and 
processes provided an extra 17% 

  2 processes with 2 threads was 
best 
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XT4 Results 
(5123 problem on 512 cores) 

  When examining the execution 
time breakdown, we see how 
the auto-tuner consistently 
favored faster collision() times. 

  In the hybrid world we see a 
trade off between MPI time and 
stream() time 

  As threads/process increase, 
we get less bandwidth, but less 
traffic. 
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Execution Time Breakdown
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Summary 
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Conclusions 

  Multicore cognizant auto-tuning dramatically improves even flat MPI 
performance. 

  Tuning the domain decomposition and hybrid implementations 
yielded almost an additional 20% performance boost.  

  Although hybrid MPI promises improved performance through 
reduced communication, it is critical all components be thread-
parallelized. 

  Future work will move to other architectures (like the XT5), examine 
a range of problem sizes, and attempt to thread-parallelize the MPI. 
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