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The Challenge: 
Productive Implementation 

of an Auto-tuner  
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Conventional Optimization 

  Take one kernel/application 
  Perform some analysis of it 
  Research the literature for appropriate optimizations 
  Implement a couple of them by hand optimizing for one target machine. 
  Iterate a couple of times. 

  Result:  
 improve performance for one kernel on one computer. 
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Conventional Auto-tuning 

  Automate the code generation and tuning process. 
  Perform some analysis of the kernel 
  Research the literature for appropriate optimizations 
  implement a code generator and search benchmark 
  explore optimization space 
  report best implementation/parameters 

  Result: 
 significantly improve performance for one kernel on any computer. 
 i.e. provides performance portability 

  Downside: 
  autotuner creation time is substantial 
  must reinvent the wheel for every kernel 
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Generalized Frameworks 
for Auto-tuning 

  Integrate some of the code transformation features of a compiler 
with the domain-specific optimization knowledge of an auto-tuner 
  parse high-level source 
  apply transformations allowed by the domain, but not necessarily safe 

based on language semantics alone 
  generate code + auto-tuning benchmark 
  explore optimization space 
  report best implementation/parameters 

  Result: 
 significantly improve performance for any kernel on any computer 
for a domain or motif. 
 i.e. performance portability without sacrificing productivity 
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Outline 

1.  Stencils 
2.  Machines 
3.  Framework 
4.  Results 
5.  Conclusions 

6 



LAWRENCE BERKELEY NATIONAL LABORATORY 

F U T U R E   T E C H N O L O G I E S   G R O U P 

7 

Benchmark Stencils 
•  Laplacian 
•  Divergence 
•  Gradient 
•  Bilateral Filtering 
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What’s a stencil ? 

  Nearest neighbor computations on structured grids (1D…ND array) 

  stencils from PDEs are often a weighted linear combination 
 of neighboring values 

  cases where weights vary in space/time 
  stencil can also result in a table lookup 
  stencils can be nonlinear operators 

  caveat: We only examine implementations like Jacobi’s Method 
 (i.e. separate read and write arrays) 
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Laplacian Differential Operator 

  7-point stencil on scalar grid, produces a scalar grid 

  Substantial reuse (+high working set size) 
  Memory-intensive kernel 
  Elimination of capacity misses may improve performance by 66% 
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Divergence Differential Operator 

  6-point stencil on a vector grid, produces a scalar grid 

  Low reuse per component. 
  Only z-component demands a large working set 
  Memory-intensive kernel 
  Elimination of capacity misses may improve performance by 40% 
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Gradient Differential Operator 

  6-point stencil on a scalar grid, produces a vector grid 

  High reuse (like laplacian) 
  High working set size 
  three write streams (+ write allocation streams) = 7 total streams 
  Memory-intensive kernel 
  Elimination of capacity misses may improve performance by 30% 
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3D Bilateral Filtering 

  Extracted from a medical imaging application (MRI 
processing) 

  Normal Gaussian stencils smooth images,  
 but destroy sharp edges. 

  This kernel performs anistropic filtering thus preserving 
edges. 

  We may scale the size of the stencil (radius=3,5) 
  73-pt or 113-pt stencils. 
  apply to dataset of 192 x 256x256 slices 
  originally 8-bit grayscale voxels, but processed as 32-bit floats 
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3D Bilateral Filtering 
(pseudo code) 

  Each point in the stencil mandates a voxel-dependent indirection,  
 and each stencil also requires one divide. 

  for all points (xyz) in x,y,z{ 

    voxelSum  = 0 

    weightSum = 0 

    srcVoxel = src[xyz] 

    for all neighbors (ijk) within radius of xyz{ 

      neighborVoxel  = src[ijk]    

      neighborWeight = table2[ijk]*table1[neighborVoxel-srcVoxel] 

      voxelSum +=neighborWeight*neighborVoxel 

      weightSum+=neighborWeight 

    } 

    dstVoxel = voxelSum/weightSum 

  } 

  Large radii results in extremely compute-intensive kernels with large 
working sets 
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Benchmark Machines 
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Multicore SMPs 

  Experiments only explored parallelism within an SMP 
  We use a Sun X2200 M2 as a proxy for the XT5 (e.g. Jaguar) 
  We use a Nehalem machine as a proxy for possible future Cray 

machines. 
  Barcelona/Nehalem are NUMA 

15 

6 x 1066MHz 
DDR3 DIMMs 

25.6 GB/s 

3x64b controllers 

Q
u

ic
k
P

a
th

 

M
T

 C
o

re
 

M
T

 C
o

re
 

M
T

 C
o

re
 

M
T

 C
o

re
 

2
5

6
K

 

2
5

6
K

 

2
5

6
K

 

2
5

6
K

 

8MB shared 
L3 

6 x 1066MHz 
DDR3 DIMMs 

25.6 GB/s 

3x64b controllers 

Q
u

ic
k
P

a
th

 

M
T

 C
o

re
 

M
T

 C
o

re
 

M
T

 C
o

re
 

M
T

 C
o

re
 

2
5

6
K

 

2
5

6
K

 

2
5

6
K

 

2
5

6
K

 

8MB shared 
L3 

1
6

G
B

/s
 

(e
a
c
h
 d

ir
e

c
ti
o
n
) 

800MHz DDR2 DIMMs 

12.8 GB/s 

2x64b controllers 

H
y
p

e
rT

ra
n

s
p

o
rt

 

O
p

te
ro

n
 

O
p

te
ro

n
 

O
p

te
ro

n
 

O
p

te
ro

n
 

5
1

2
K

 

5
1

2
K

 

5
1

2
K

 

5
1

2
K

 

2MB victim 

SRI / xbar 

667MHz DDR2 DIMMs 

10.66GB/s 

2x64b controllers 

H
y
p

e
rT

ra
n

s
p

o
rt

 

O
p

te
ro

n
 

O
p

te
ro

n
 

O
p

te
ro

n
 

O
p

te
ro

n
 

5
1

2
K

 

5
1

2
K

 

5
1

2
K

 

5
1

2
K

 

2MB victim 

SRI / xbar 

667MHz DDR2 DIMMs 

10.66GB/s 

2x64b controllers 

H
y
p

e
rT

ra
n

s
p

o
rt

 

O
p

te
ro

n
 

O
p

te
ro

n
 

O
p

te
ro

n
 

O
p

te
ro

n
 

5
1

2
K

 

5
1

2
K

 

5
1

2
K

 

5
1

2
K

 

2MB victim 

SRI / xbar 

4
G

B
/s

 
(e

a
c
h
 d

ir
e

c
ti
o
n
) 

AMD Budapest (XT4) AMD Barcelona (X2200 M2) Intel Nehalem (X5550) 



LAWRENCE BERKELEY NATIONAL LABORATORY 

F U T U R E   T E C H N O L O G I E S   G R O U P 

16 

Generalized Framework for 
Auto-tuning Stencils 

Copy and Paste auto-tuning 
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Overview 

Given a F95 implementation of an application: 

1.  Programmer annotates target stencil loop nests 
2.  Auto-tuning System: 

  converts FORTRAN implementation into internal representation (AST) 
  builds a test harness 
  Strategy Engine iterates on: 

•  apply optimization to internal representation 
•  backend generation of optimized C code 
•  compile C code 
•  benchmark C code  

  using best implementation, automatically produces a library for that 
kernel/machine combination 

3.  Programmer then updates application to call optimized library 
routine 
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Strategy Engine: 
Auto-parallelization 

  The strategy engines can auto-parallelize cache blocks among 
hardware thread contexts. 

  We use a single-program, multiple-data (SPMD) model implemented 
with POSIX Threads (Pthreads). 

  All threads are created at the beginning of the application.  

  We also produce an initialization routine that exploits the first touch 
policy to ensure proper NUMA-aware allocation. 
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Strategy Engine: 
Auto-tuning Optimizations 

  Strategy Engine explores a number of auto-tuning optimizations: 
  loop unrolling/register blocking 
  cache blocking 
  constant propagation / common subexpression elimination 

  Future Work: 
  cache bypass (e.g. movntpd) 
  software prefetching 
  SIMD intrinsics 
  data structure transformations 
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Experimental Results 

NOTE: threads are ordered to exploit: 
  multiple threads within a core (Nehalem only), 
  then multicore,  
  then multiple sockets (Barcelona/Nehalem) 
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Laplacian Performance 

  On the memory-bound architecture (Barcelona), auto-parallelization 
doesn’t make a difference. 

  Auto-tuning enables scalability. 
  Barcelona is bandwidth-proportionally faster than the XT4. 
  Nehalem is ~2.5x faster than Barcelona, and 4x faster than the XT4 
  Auto-parallelization plus tuning significantly outperforms OpenMP. 
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Divergence Performance 

  No changes to the framework were required (just drop in F95 code) 
  As there was less reuse in the Divergence than in Laplacian, there are 

fewer capacity misses. 
  So auto-tuning has less to improve upon  
  Nehalem is ~2.5x faster than Barcelona 
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Gradient Performance 

  No changes to the framework were required (just drop in F95 code) 
  Gradient has moderate reuse, but a large number of output streams. 
  Performance gains from auto-tuning are moderate (25-35%) 
  Parallelization is only valuable in conjunction with auto-tuning 
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3D Bilateral Filter Performance 
(radius=3) 

  No changes to the framework were required (just drop in F95 code) 
  Essentially a 7x7x7 (343-pt) stencil 
  Performance is much more closely tied to GHz  

 instead of GB/s. 
  Auto-parallelization yielded near perfect parallel efficiency 

 wrt cores on Barcelona/Nehalem (Nehalem has HyperThreading) 
  Auto-tuning significantly outperformed OpenMP (75% on Nehalem) 
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3D Bilateral Filter Performance 
(radius=5) 

  basically the same story as radius=3 

  XT4/Nehalem delivered approximately same 
performance as they did with radius=3 

  Barcelona delivered somewhat better performance. 
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Summary 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

Summary: 
Framework for auto-tuning stencils 

  Dramatic step forward in auto-tuning technology 

  Although the framework required substantial up front work, 
 it provides performance portability across the breadth of 
architectures AND stencil kernels. 

  Delivers very good performance, and well in excess of OpenMP. 

  Future work will examine relevant optimizations 
  e.g. cache bypass would significantly improve gradient performance. 
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Summary: 
Machine Comparison 
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Bilateral Filter

  Barcelona delivers bandwidth-proportionally better performance on the 
memory-intensive differential operators. 

  Surprisingly, Barcelona delivers ~2.5x better performance on the compute 
intensive bilateral filter. 

  Nehalem clearly sustains dramatically better performance than either 
Opteron. 

  Despite having a 15% faster clock, nehalem realizes a much better bilateral 
filter performance. 
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