
Tuning Sparse Matrix Vector
Multiplication for multi-core

processors

Sam Williams
samw@cs.berkeley.edu

Other Contributors

• Rich Vuduc
• Lenny Oliker
• John Shalf
• Kathy Yelick
• Jim Demmel

Outline

• Introduction
• Machines / Matrices
• Initial performance
• Tuning
• Optimized Performance

Introduction

• Evaluate y=Ax, where x & y are dense
vectors, and A is a sparse matrix.

• Sparse implies most elements are zero,
and thus do not need to be stored.

• Storing just the nonzeros requires their
value and meta data containing their
coordinate.

Multi-core trends

• It will be far easier to scale peak gflop/s (via
multi-core) than peak GB/s (more pins/higher
frequency)

• With sufficient number of cores, any low
computational intensity kernel should be
memory bound.

• Thus, the problems with the smallest footprint
should run the fastest.

• Thus, tuning via heuristics, instead of search
becomes more tractable

Which multi-core processors?

Intel Xeon(Clovertown)

• pseudo quad-core /
socket

• 4-issue, out of order,
super-scalar

• Fully pumped SSE
• 2.33GHz
• 21GB/s, 74.6 GFlop/s

4MB
Shared L2

Xeon

FSB

Fully Buffered DRAM

10.6GB/s

Xeon

Blackford

10.6GB/s

10.6 GB/s(write)

4MB
Shared L2

Xeon Xeon

4MB
Shared L2

Xeon

FSB

Xeon

4MB
Shared L2

Xeon Xeon

21.3 GB/s(read)

AMD Opteron

• Dual core / socket
• 3-issue, out of order,

super-scalar
• Half pumped SSE
• 2.2GHz
• 21GB/s, 17.6 GFlop/s
• Strong NUMA issues

1MB
victim

Opteron

1MB
victim

Opteron

Memory Controller / HT

1MB
victim

Opteron

1MB
victim

Opteron

Memory Controller / HT

DDR2 DRAM DDR2 DRAM

10.6GB/s 10.6GB/s

8GB/s

IBM Cell Blade

• Eight SPEs / socket
• Dual-issue, in-order,

VLIW like
• SIMD only ISA
• Disjoint Local Store

address space + DMA
• Weak DP FPU
• 51.2GB/s, 29.2GFlop/s,
• Strong NUMA issues

XDR DRAM

25.6GB/s

EIB (R
ing N

etw
ork)

<<20GB/s
each

direction

SPE256K

PPE512K L2

MFC

BIF

XDR

SPE256KMFC

SPE256KMFC

SPE256KMFC

SPE256KMFC

SPE256KMFC

SPE256KMFC

SPE256KMFC

XDR DRAM

25.6GB/s

EIB (R
ing N

etw
ork)

SPE 256K

PPE 512K L2

MFC

BIF

XDR

SPE 256K MFC

SPE 256K MFC

SPE 256K MFC

SPE 256K MFC

SPE 256K MFC

SPE 256K MFC

SPE 256K MFC

Sun Niagara

• Eight core
• Each core is 4 way

multithreaded
• Single-issue in-order
• Shared, very slow FPU
• 1.0GHz
• 25.6GB/s, 0.1GFlop/s,

(8GIPS)

C
ro

ss
ba

r S
w

itc
h

25
.6

 G
B/

s

D
D

R
2

D
R

AM

3M
B

Sh
ar

ed
 L

2
(1

2
w

ay
)

8K D$MT UltraSparc

FPU

8K D$MT UltraSparc

8K D$MT UltraSparc

8K D$MT UltraSparc

8K D$MT UltraSparc

8K D$MT UltraSparc

8K D$MT UltraSparc

8K D$MT UltraSparc

64
 G

B/
s

(fi
ll)

32
 G

B/
s

(w
rit

et
hr

u)

64b integers on Niagara?
• To provide an interesting benchmark, Niagara was

run using 64b integer arithmetic.
• This makes the peak “Gflop/s” in the ballpark of the

other architectures.
• Downside: integer multiplies are not pipelined, and

require 10 cycles. Increased register pressure
• Perhaps a rough approximation to Niagara2

performance and scalability

• Cell’s double precision isn’t poor enough to
necessitate this work around.

Niagara2
• 1.0 -> 1.4GHz
• Pipeline redesign
• 2 thread groups/core (2x the ALUs, 2x the threads)
• FPU per core
• FBDIMM (42.6GB/s read, 21.3 write)

• Sun’s Claims:
– Increasing threads per core from 4 to 8 to deliver up to 64

simultaneous threads in a single Niagara 2 processor, resulting in
at least 2x throughput of the current UltraSPARC T1 processor-- all
within the same power and thermal envelope

– The integration of one Floating Point Unit per core, rather than one
per processor, to deliver 10X higher throughput on applications with
high floating point content such as scientific, technical, simulation,
and modeling programs

Which matrices?
Name Dense

2K

Protein FEM /
Spheres

FEM /
Cantilever

Wind
Tunnel

FEM /
Harbor QCD FEM /

Ship Economics Epidemiology FEM /
Accelerator Circuit webbase LP

4.0M
(2K)

36K

4.3M
(119)

83K

6.0M
(72)

62K

4.0M
(65)

218K

11.6M
(53)

47K

2.37M
(50)

49K

1.90M
(39)

141K

3.98M
(28)

207K

1.27M
(6)

526K

2.1M
(4)

121K

2.62M
(22)

171K

959K
(6)

1M

3.1M
(3)

4K

11.3M
(2825)

D
en

se
 m

at
rix

 in
sp

ar
se

 fo
rm

at

P
ro

te
in

 d
at

a
ba

nk
 1

H
Y

S

FE
M

 c
on

ce
nt

ric
sp

he
re

s

FE
M

 c
an

til
ev

er

P
re

ss
ur

iz
ed

w
in

d
tu

nn
el

3D
 C

FD
 o

f
C

ha
rle

st
on

 h
ar

bo
r

Q
ua

rk
 p

ro
pa

ga
to

rs
(Q

C
D

/L
G

T)

FE
M

 S
hi

p
se

ct
io

n/
de

ta
il

M
ac

ro
ec

on
om

ic
m

od
el

2D
 M

ar
ko

v
m

od
el

of
 e

pi
de

m
ic

A
cc

el
er

at
or

 c
av

ity
de

si
gn

M
ot

or
ol

a
ci

rc
ui

t
si

m
ul

at
io

n

W
eb

 c
on

ne
ct

iv
ity

m
at

rix

R
ai

lw
ay

s
se

t c
ov

er
C

on
st

ra
in

t m
at

rix

2K 36K 83K 62K 218K 47K 49K 141K 207K 526K 121K 171K 1M 1.1M

Rows

Columns

Nonzeros
(per row)

D
es

cr
ip

tio
n

Spyplot

Un-tuned Serial & Parallel
Performance

Intel Clovertown

• 8 way parallelism typically delivered
only 66% improvement

AMD Opteron

• 4 way parallelism typically delivered
only 40% improvement in performance

Sun Niagara

• 32 way parallelism typically delivered
23x performance improvement

Tuning

OSKI & PETSc

• OSKI is a serial auto-tuning library for sparse
matrix operations

• Much of the OSKI tuning space is included
here.

• For parallelism, it can be included in the
PETSc parallel library using a shared memory
version of MPICH

• We include these 2 points as a baseline for
the x86 machines.

Exploit NUMA
• Partition the matrix into disjoint sub-matrices (thread

blocks)
• Use NUMA facilities to pin both thread block and

process

• x86 Linux sched_setaffinity()
(libnuma ran slow)

• Niagara Solaris processor_bind()
• Cell libnuma - numa_set_membind()

- numa_bind()

• The mapping of linux/solaris processor ID to
physical core/thread ID was unique to each
machine

• Important if you want to share cache
or accurately benchmark single socket/core

• Opteron
• Clovertown
• Niagara

Processor ID to Physical ID

Core
(bit 0)

Socket
(bit 1)

Socket
(bit 0)

Thread within a core
(bits 2:0)

Core within a socket
(bits 5:3)

Core in socket
(bits 2:1)

Socket
(bit 6)

Fast Barriers
• Pthread barrier wasn’t available on x86 machines
• Emulate it with mutexes & broadcasts (sun’s

example)
• Acceptable performance with low number of threads

• Pthread barrier on Solaris doesn’t scale well &
emulation is even slower

• Implement lock free barrier (thread 0 sets others free)
• Similar version on Cell (PPE sets SPEs free)

Cell Local Store Blocking
• Heuristic Approach
• Applied individually to each thread block
• Allocate ~half the local store to caching 128byte lines

of the source vector and the other half for the
destination

• Thus partitions a thread block into multiple blocked
rows

• Each is in turn blocked by marking the unique cache
lines touched expressed in stanzas

• Create a DMA list, and compress the column indices
to be cache block relative.

• Limited by maximum stanza size and max number of
stanzas

Cache Blocking

• Local Store blocking can be extended to
caches, but you don’t get an explicit list
or compressed indices

• Different than standard cache blocking
for SPMV (lines spanned vs touched)

• Beneficial on some matrices

TLB Blocking

• Heuristic Approach
• Extend cache lines to pages
• Let each cache block only touch

TLBSize pages ~ 31 on opteron
• Unnecessary on Cell or Niagara

Register Blocking and Format
Selection

• Heuristic Approach
• Applied individually to each cache block
• re-block the entire cache block into 8x8
• Examine all 8x8 tiles and compute how many smaller

power of 2 tiles they would break down into.
• e.g. how many 1x1, 2x1, 4x4, 2x8, etc…
• Combine with BCOO and BCSR to select the format

x r x c that minimizes the cache block size

• Cell only used 2x1 and larger BCOO

Index Size Selection

• It is possible (always for Cell) that only
16b are required to store the column
indices of a cache block

• The high bits are encoded in the
coordinates of the block or the DMA list

Architecture Specific Kernels

• All optimizations to this point have been
common (perhaps bounded by
configurations) to all architectures.

• The kernels which process the resultant
sub-matrices can be individually
optimized for each architecture

SIMDization

• Cell and x86 support explicit SIMD via
intrinsics

• Cell showed a significant speedup
• Opteron was no faster
• Clovertown was no faster (if the correct

compiler options were used)

Loop Optimizations

• Few optimizations since the end of one
row is the beginning of the next.

• Few tweaks to loop variables
• Possible to software pipeline the kernel
• Possible to implement a branchless

version (Cell BCOO worked)

Software Prefetching / DMA
• On Cell, all data is loaded via DMA
• It is double buffered only for nonzeros

• On the x86 machines, a hardare prefetcher is
supposed to cover the unit-stride streaming access

• We found that explicit NTA prefetches deliver a
performance boost

• Niagara(any version) cannot satisfy Little’s law with
only multi-threading

• Prefetches would be useful if performance weren’t
limited by other problems

Code Generation

• Write a Perl script to generate all kernel variants.
• For generic C, x86/Niagara used the same generator
• Separate generator for SSE
• Separate generator for Cell’s SIMD

• Produce a configuration file for each architecture that
limits the optimizations that can be made in the data
structure, and their requisite kernels

Tuned Performance

Benefit of Tuning:
 +5% single thread
 +80% 8 threads

Benefit of Tuning:
 +60% single thread
 +200% 4 threads

Benefit of Tuning:
 +5% single thread
 +4% 32 threads

IBM Cell Blade

• Simpler & less efficient implementation
– Only BCOO (branchless)
– 2x1 and greater register blocking (no 1 x anything)

• Performance tracks the DMA flop:byte ratio

Relative Performance

• Cell is bandwidth bound
• Niagara is clearly not
• Noticeable Clovertown cache effect for Harbor, QCD, & Econ

Comments

• complex cores (superscalar, out of order,
hardware stream prefetch, giant caches, …)
saw the largest benefit from tuning.

• First generation Niagara saw relatively little
benefit

• Single thread performance was as good or
better performance than OSKI

• Parallel Performance was significantly better
than PETSc+OSKI

• Benchmark took 20mins, comparable
exhaustive search required 20hrs

Questions?

