
Collective Memory Transfers for Multi-Core Chips

George Michelogiannakis, Alexander Williams,

Samuel Williams, John Shalf

Computer Architecture Laboratory

Lawrence Berkeley National Laboratory

International Conference on Supercomputing (ICS) 2014

 Future technologies will allow more parallelism on chip

 Computational throughput expected to increase faster than

memory bandwidth

 Pin and power limitations for memory

 Many applications are limited by memory bandwidth

 We propose a mechanism to coordinate memory accesses

between numerous processors such that the memory is

presented with in-order requests

 Increases DRAM performance and power efficiency

In a Nutshell

Today’s Menu

 Today’s and future challenges

 The problem

 Collective memory transfers

 Evaluation

 Related work, future directions and conclusion

Chip Multiprocessor Scaling

Intel 80-core

NVIDIA Fermi:

512 cores

By 2020 we may witness 2048-core chip multiprocessors

AMD Fusion:

four full CPUs

and 408 graphics

cores

How to stop interconnects from hindering the future of computing. OIC 2013

Shekhar Borkar, 2014

Data Movement and Memory Dominate

1

10

100

1000

10000

P
ic

o
J

o
u

le
s

p
e

r
o

p
e

ra
ti

o
n

now

2018

2.5x

Exascale computing technology challenges. VECPAR 2010

Now: 45nm technology

2018: 11nm technology

9.5x

2.3x

Memory Bandwidth a Constraint

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 0.2 0.5 1 2

M
e

m
o

ry
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 i

n
 M

e
g

a
w

a
tt

s
 (

M
W

)

Bytes/FLOP ratio (# bytes per peak FLOP)

Stacked JEDEC 30pj/bit 2018 ($20M)

Advanced 7pj/bit Memory ($100M)

Enhanced 4pj/bit Advanced Memory

($150M cumulative)

Feasible Power Envelope (20MW)

Memory that

exceeds 20MW
is not practical

design point.

Application performance and

breadth pushes us to higher
BW

Power pushes us to lower

bandwidth

Memory Technology

Investment enables
improvement in bandwidth

(and hence improves
application breadth)

Wide variety of

applications

are memory

bandwidth bound

Exascale computing technology challenges. VECPAR 2010

Therefore…

 Parallelism will increase

 Compute capacity increases faster than memory bandwidth

 10% memory bandwidth increase per year [1]

 Compute capacity increase driven by Moore’s law

 Data movement and memory access power already a limiting

factor

 Projected to worsen with future technologies

 Numerous applications are memory bandwidth bound

 Will become worse in the future

[1] Scaling the bandwidth wall: challenges in and avenues for CMP scaling. ISCA 2009

Today’s Menu

 Today’s and future challenges

 The problem

 Collective memory transfers

 Evaluation

 Related work, future directions and conclusion

Computation on Large Data

3D space

Slice into 2D planes

2D plane for center of stencil

still too large for single

processor

Full 3D Generalization

Divide array into tiles

One tile per processor

Sized for L1 cache

while (data_remaining)
{

load_next_tile(); // DMA load
operate_on_tile(); // Local computation
write_resulting_tile(); // DMA write

}

Data-Parallelism Covers a Broad Range
of Applications

 From HPC to embedded computing

 Data-parallel applications a major driver for multi-cores

Convergence of recognition, mining, and synthesis workloads and its implications. Proc. IEEE 2008

The Problem: Unpredictable and
Random Order Memory Access Pattern

MEM

Req Req Req

Req Req Req

Req Req Req

One request per tile line

Different tile lines have different

memory address ranges

0 N-1
N 2N-1

One request

Row-major mapping

This is a DRAM Array

Kick down

Kick up

V0

Random Order Access Patterns Hurt
DRAM Performance and Power

Tile line 1 Tile line 2 Tile line 3

Tile line 4 Tile line 5 Tile line 6

Tile line 7 Tile line 8 Tile line 9

Reading tile 1 requires row activation and copying

Tile line 1 Tile line 2 Tile line 3Tile line 1 Tile line 2 Tile line 3

In order requests:

3 activations

Worst case:

9 activations

Impact

 DRAMSim2 [2] with simple in-order and out-of-order traces

 A single request accesses one 64-Byte word

 FRFCFS memory scheduler

 16MB DDR3 Micron memory module

 DRAM throughput drops 25% for loads and 41% for stores

 Median latency increases 23% for loads and 64% for stores

 Power increases by 2.2x for loads and 50% for stores

[2] DRAMSim2: A cycle accurate memory system simulator. IEEE CAL 2011

Today’s Menu

 Today’s and future challenges

 The problem

 Collective memory transfers

 Evaluation

 Related work, future directions and conclusion

MEM

+ CMS

ReqReq

Reads are

presented

sequentially to

memory

0 N-1
N 2N-1

51234

Collective Memory Transfers

The CMS engine takes control of the collective transfer

Requests replaced with

one collective request

on behalf of all processors

Hierarchical Tiled Arrays to Transfer
Data Layout Information

 Array = hta(name,
 {[1,3,5], // Tile boundaries before

 // rows 1 (start),3 and 5
 [1,3,5]},// Likewise for columns

 [3,3]); // Map to a 3x3 processor array

1 2 3 4 5 6

1

2

3

4

5

6

“The hierarchically tiled arrays programming approach”. LCR 2004

Hierarchical Tiled Arrays to Transfer
Data Layout Information

“The hierarchically tiled arrays programming approach”. LCR 2004

Array = hta(name, {[1,3,5],[1,3,5]}, [3,3],

F(x) = x); // Mapping function or matrix

Loading a HTA with a CMS read

HTA_instance = CMS_read (HTA_instance);

Loading the same HTA with DMA operations for each line of data

 Array[row1] = DMA (Starting_address_row1,
Ending_address_row1);
.
.

 Array[rowN] = DMA (Starting_address_rowN,
Ending_address_rowN);

Irregular Data Array Mappings

 If data array is not tiled, transferring the layout information over the

on-chip network is too expensive

 Instead, the CMS engine learns the mapping by observing each

processor’s requests in the first iteration of the application’s loop

Today’s Menu

 Today’s and future challenges

 The problem

 Collective memory transfers

 Evaluation

 Related work, future directions and conclusion

 Up to 55% application execution time reduction due to memory b/w

 27% geometric mean

200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

Elements per dimension of the 2D data array

C
M

S
 %

 i
m

p
ro

v
e
m

e
n

t
o

v
e
r

F
R

F
C

F
S

Application execution time

55% max improvement, 13% min improvement

Fluidanimate

Sobel

Laplacian

Streamcluster

SpMV

GeoMean
8x8 mesh (64 CPUs)

Four memory controllers

Micron 16MB 1600MHz

modules with a

64-bit data path

Xeon Phi processors

Execution Time Impact

 31% improvement for dense grid applications. 55% for sparse

 Sparse grid applications have lower computation times therefore

they exert more pressure to the memory

8x8 mesh (64 CPUs)

Four memory controllers

Micron 16MB 1600MHz

modules with a

64-bit data path

Xeon Phi processors

Execution Time Impact

Relieving Network Congestion

500 1000 1500 2000
0

20

40

60

80

100

120

140

160

Elements per dimension of the 2D data array

A
v
e

ra
g

e
 b

a
c
k
g
ro

u
n

d
 p

a
c
k
e

t
la

te
n

c
y
 (

c
lo

c
k
 c

y
c
le

s
) 10% UR background traffic, 8x8 mesh, DOR

FRFCFS saturates the network
Average latencies: thousands to million cycles

CMS read dense

CMS write dense

CMS read sparse

CMS write sparse

CMS Engine Implementation

ASIC Synthesis DMA CMS

Combinational area (μm2) 743 16231

Non-combinational area (μm2) 419 61313

Minimum cycle time (ns) 0.6 0.75

To offset the cycle time increase, we can add a pipeline stage

(insignificant effect compared to the duration of a transaction)

CMS significantly simplifies the memory controller because

shorter FIFO-only transaction queues are adequate

Today’s Menu

 Today’s and future challenges

 The problem

 Collective memory transfers

 Evaluation

 Related work, future directions and conclusion

Related Work

 A plethora of memory controller schedulers

 However, the majority are passive policies that do not control the

order requests arrive to the memory controller

 Can only choose from within the transaction queue

 LLCs can partially re-order writes to memory (if write-back)

 Write-through caches preferable in data-parallel computations [3]

 CMS focuses on fetching new data and writing old data

 Prefetching focuses on latency, not bandwidth

 Mispredictions are possible

 Lacks application knowledge

 Past work uses injection control [4] or routers to partially re-order

requests [5]

[4] Entry control in network-on-chip for memory power reduction. ISLPED 2008

[3] Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. SC 2008

[5] Complexity effective memory access scheduling for many-core accelerator architectures. MICRO 2009

Ongoing and Future Work

 What is the best interface to CMS from the software?

 A library with an API similar to DMA function calls (the one shown)?

 Left to the compiler to recognize collective transfers?

 How would this work with hardware-managed cache coherency?

 Prefetchers may need to recognize and initiate collective transfers

 Collective prefetching?

 How to modify MESI to support force-feeding data to L1s

Conclusions

 Memory bandwidth will be an increasing limiting factor in

application performance

 We propose a software-hardware collective memory transfer

mechanism to present the DRAM with in-order accesses

 Cores access the DRAM as a group instead of individually

 Up to 55% application execution time decrease

 27% geometric mean

Questions?

