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Abstract—In this paper we characterize the behavior with respect to
memory locality management of scientific computing applications running in
virtualized environments. NUMA locality on current solutions (KVM and Xen)
is enforced by pinning virtual machines to CPUs and providing NUMA aware
allocation in hypervisors. Our analysis shows that due to two-level memory
management and lack of integration with page reclamation mechanisms,
applications running on warm VMs suffer from a “leakage” of page locality.
Our results using MPI, UPC and OpenMP implementations of the NAS
Parallel Benchmarks, running on Intel and AMD NUMA systems, indicate
that applications observe an overall average performance degradation of 55%
when compared to native. Runs on “cold” VMs suffer an average performance
degradation of 27%, while subsequent runs are roughly 30% slower than
the cold runs. We quantify the impact of locality improvement techniques
designed for full virtualization environments: hypervisor level page remapping
and partitioning the NUMA domains between multiple virtual machines. Our
analysis shows that hypervisor only schemes have little or no potential for
performance improvement. When the programming model allows it, system
partitioning with proper VM and runtime support is able to re-produce native
performance: in a partitioned system with one virtual machine per socket the
average workload performance is 5% better than native.

I. INTRODUCTION

Virtualization technologies are ubiquitously deployed in
data centers and offer the benefit of resource consolida-
tion [17], performance and fault isolation, flexible migra-
tion [20] and easy creation [6] of specialized environments.
They have been extensively used to run web server, E-
commerce and data mining workloads. With the recent ad-
vent of the cloud computing paradigm, these workloads have
been supplemented with High Performance Computing (HPC)
applications: the Amazon Elastic Compute Cloud (EC2) al-
ready provides virtualized clusters targeting the automotive,
pharmaceutical, financial and life sciences domains. The US
Department of Energy is evaluating virtualization and cloud
computing technologies in the Magellan [16] project. In com-
mercial workloads, the tasks are often independent and serve
short lived requests; server tasks are started at virtual machine
boot time and are alive until shutdown. In contrast, HPC
workloads have tasks tightly coupled by data movement and
tend to persistently use a significant fraction of the system
memory; applications are often run in batch jobs with multiple
independent runs submitted simultaneously.

In a virtualized environment, a virtual machine monitor
(VMM or hypervisor) is inserted between the operating system
and the hardware and multiple OS instances can run simul-
taneously, each inside a virtual machine (VM). Virtualized
environments have to bridge a semantic gap between the
hypervisor hardware resource management and the decoupled
functionality inside the guest OS. One facet of this semantic
gap is exposed by the available NUMA support in existing
open source solutions (Xen [4], KVM [11]), as well as in
proprietary (VMware ESX [23] and hyperV) solutions.

Currently, NUMA affinity in virtualized environments is
achieved by a combination of pinning guest VMs to CPUs and
having the hypervisor memory management allocate memory
with affinity to the faulting CPUs. NUMA support in the

OSes running inside VMs is usually disabled but, once a
page is allocated by the hypervisor it will likely maintain the
proper affinity. Our survey of the KVM and Xen developers
email lists indicates that there is widespread belief that this
cooperation provides most of the NUMA support needed.
Recently, “enlightenment” [18] has been proposed as a Xen
extension to inform the guest about the underlying hardware
through hypercalls. No performance evaluation is available and
this approach is facing resistance from the community since
it breaks the virtualization tenets by enforcing a one-to-one
virtual to physical CPU mapping.

In this paper we characterize the performance of HPC
applications in virtualized NUMA environments and quantify
the performance expectations of several Xen and KVM solu-
tions designed to improve memory locality. For our evaluation
we use a workload containing implementations of the NAS
Parallel Benchmarks [3] in MPI, UPC and OpenMP.

In Section V we discuss the performance using existing
virtualization technologies on AMD and Intel NUMA and
UMA processors. In contrast with previous HPC studies [25],
[26], [8] which report little or no impact from virtualization
on UMA or NUMA architectures with four or less cores, our
results indicate a significant performance degradation (up to
82% on KVM and 4x on Xen) when VMs span sockets in 16
core NUMA architectures. With virtualization, our analysis
also indicates that programming models designed for cluster
environments such as MPI or Partitioned Global Address
Space languages provide better scalability and performance
than shared memory programming models such as OpenMP.

Our analysis in Section VI shows that applications that
start right after booting on a cold KVM exhibit as much
as 28% better performance than subsequent runs on warm
VMs. The degradation is caused by the two-level memory
management inherent in virtualized systems combined with the
lazy page reclamation policies implemented in modern OSes:
the end result is a locality leakage where pages are recycled
from remote NUMA domains. The difference in performance
between cold and warm runs provides a reasonably good
upper bound for the expectations on performance gains when
improving the NUMA support in virtualization technologies.

We then explore techniques designed to improve locality in
full virtualization environments: 1) hypervisor only approaches
(Section VII); and; 2) system partitioning (Section VIII) which
is applicable for full virtualization but it requires support from
the parallel programming models. Note that none of these
approaches require exposing the hardware topology to the
guests and cover the whole spectrum of possible solutions
were “enlightenment” or other paravirtualization approaches
deemed undesirable.

The analysis in Section VI indicates that up to 25% of the
pages used in runs on warm VMs have bad locality. Up to
90% of the page translation activities on a warm VM are
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filtered by the guest OS. Hypervisor only schemes, while the
most portable, have no performance potential: on average only
2% of the program page translation activities can be correctly
handled at this level.

In Section VIII we explore an orthogonal technique for
providing affinity: system partitioning using multiple guest
VMs. In order to achieve good performance we had to extend
the KVM/Xen support and implement shared memory bypass
in the MPI and UPC runtimes. Partitioning [21], [24], [15]
is increasingly mentioned as an approach to improve perfor-
mance on manycores: our results are the first presented for
multicore NUMA systems in an application setting and add
quantitative proof to the intuitive expectations. The results
indicate that partitioning is able to provide the best overall
performance and we observe up to 60% improvements when
compared to the performance on VMs with better NUMA
support, as captured by the performance of the cold runs.
This improvement is caused by a combination of good locality
and decreased VM contention. Best performance is always
obtained for the configurations where VMs are contained
within one socket or NUMA domain.

The main contributions of this paper are the characterization
of locality in NUMA environments and the quantification
of the performance expectations for several KVM and Xen
solutions designed to improve memory locality. We provide a
bound on the performance expectations of improving NUMA
support in virtualized environments without exposing the hard-
ware architecture. Overall, for the workloads considered the
existing implementations cause a 55% average performance
degradation on KVM when compared to native performance,
the average performance of the cold runs and better NUMA
support is within 27%, while partitioning reduces this impact
to 11%. Since there are no published results for techniques
such as “enlightenment”, our evaluation is also of direct
interest to the proponents of techniques to provide contracts
between virtual machines and hypervisors.

II. RELATED WORK

Memory translation in virtualized environments has been
extensively studied. To accelerate virtualization, Intel provides
the VT-X technology [22], while AMD adopted AMD-V [1].
Both provide hardware mechanisms for hypervisor level page
table traversal used by the current solutions: VMware [23],
Xen [4], and KVM [7].

The impact of virtualization for scientific workloads has
received its fair share of attention. Xu et al. [25] study the
performance of multiple programming paradigms on VMs.
Youssef et al [27] evaluate the impact of Xen on MPI
performance and report a low overhead of virtualization.
They [26] also evaluate the impact of virtualization on multi-
threaded linear algebra software and report low overhead on
UMA systems. These studies have been conducted on NUMA
systems with four or less cores or UMA [26] architectures.

Huang et al present several Xen extensions to improve
virtualization performance. They present Xen-IB [9] where
shared memory bypass is implemented for communication
between MPI processes on the guest OS and InfiniBand
hardware. This shared memory is not used for inter-VM
communication. They also implement [8] Inter-VM com-
munication (IVC) using MVAPICH and Xen extensions to
provide shared memory between virtual machines. They report
good performance improvements on a cluster with dual-socket
single core UMA nodes when running one VM per core.
Inter-VM communication using shared memory for the TCP/IP

stack is also discussed by Zhang et al [28] for XenSocket, and
by Kim et al[12], again at low core counts. Besides providing
an OpenMPI implementation, we evaluate performance when
completely bypassing the networking (IP) stack with shared
memory.

Lange et al [13] present the implementation of Palacios
and Kitten, a hypervisor and a lightweight OS for high
performance computing. Although they report performance
close to native for large scale systems, to our knowledge their
results are obtained using only one of the eight cores available
per node and Palacios is not yet tuned for multicore systems.

In general, most of the cited studies [25], [26], [27], [9],
[8], [13] for HPC workloads were conducted on systems with
a low core count and do not discuss NUMA effects. Most
studies report a low performance impact of virtualization: we
could replicate this behavior only on UMA systems or a single
socket in a NUMA system.

Partitioned operating system design on manycores has
received a fair share of attention recently. Barrelfish [21],
fos [24] and Tessellation [15], while describing different
implementations, advocate for partitioning, running OS ser-
vices as servers and for replacing the reliance on shared
memory with message passing. These are relatively young
projects and there is not enough experimental evidence using
complicated workloads to show their promised benefits. Our
results with partitioning are an encouragement. In particular,
Tessellation advocates for resource management and a space
time partitioning scheme using two level scheduling. Our
analysis of locality leakage is of direct interest.

As all these projects advocate a lightweight OS design, a
simplified approach to page management might alleviate the
need for better NUMA support in virtualized environments.
The systems designed specifically for HPC such as Palacios
and Kitten already restrict the virtual memory support. On the
other hand, configurations currently used in cloud computing
tend to use commodity OSes (Linux) and commercial virtu-
alization technologies (KVM,Xen) in configurations where a
virtual machine spans all the available cores.

III. MEMORY MANAGEMENT IN VIRTUAL MACHINES

Understanding application performance in multi-socket vir-
tual machines requires revisiting the memory management
mechanisms. Without loss of generality we focus our dis-
cussion on KVM, which exploits the latest AMD and Intel
virtualization technologies.

One of the most difficult problems addressed in virtualized
environments is handling memory translation. Within any OS,
paging is used to map the separate per process virtual address
spaces to the single machine physical memory space. With
virtualization, any VM presents a single address space (process
in KVM terminology) to the hypervisor and a two level
page translation scheme is required. For protection, on any
system only one trusted entity is allowed to manage physical
paging. In shadow paging schemes, the hypervisor intercepts
and handles paging whenever guests try to access the register
affecting the memory mappings. This solution involves a high
overhead to satisfy a memory fault: in the HPC realm, Lange
et al [13] show that software translation introduces additional
runtime overhead in most cases.

AMD and Intel provide hardware support for only one
level of traversal of page tables: these extensions allow near
native performance. KVM is designed only for processors
with hardware support for virtualization, while other solutions
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Fig. 1. The three page-translation stages for guest application virtual
addresses in KVM. The guest OS is responsible for the first translation phase.
The KVM device driver manages the two other phases with the assistance of
the host OS (hypervisor). Note, only stage two of the mapping is static.

(VMware and Xen) provide additional support for software
address translation.

A. The KVM Memory Management Unit
Most of the results presented in this paper are based on

QEMU/KVM [7], [11]. In KVM, the hypervisor runs inside the
Linux host kernel. Since in KVM terminology the hypervisor
is also referred to as the host, we will use interchangeably
the terms host OS and hypervisor. Creating a virtual machine
with KVM involves allocating memory zones that depend
on the simulated architecture: some regions require direct
mapping, e.g. IO or DMA, while most of the physical memory
is virtualized. The QEMU/KVM solution allocates all the
required regions and defines a one-to-one mapping between
the guest physical memory and the host virtual memory. This
mapping is transparently registered with the KVM device
driver.

Figure 1 illustrates the KVM address translation steps.
A memory reference within an application undergoes three
levels of translation: first, application virtual address to guest
physical address, performed inside the guest OS; second, guest
physical to host virtual memory, performed by the KVM
modules, if hardware acceleration is active; and finally, host
virtual address to host physical address, performed by the (host
OS) hypervisor. In KVM, the guest physical to host virtual
mapping is static, and is usually divided into a few memory
slots. The mapping on the host is dynamic, but the host OS
cannot handle it directly. When a virtual CPU, registered with
KVM, faults in a memory reference, the host OS (hypervisor)
redirects the fault to the KVM driver. In Xen, the hypervisor
runs directly on the bare metal and there are only two levels of
page translation: since the mid-level KVM mapping is static
the overall Xen translation process is similar to KVM.

Page Mapping Policy: Page translation for a first touch
reference in a guest OS process involves four stages. 1)
The process tries to reference its virtual memory, but as this
memory does not have a physical translation, it traps into the
guest OS to handle the fault. If the the virtual address is valid,
the guest OS creates a page translation entry (PTE) in the
page table. 2) When the application tries to access memory
based on the new PTE, it faults again, but this time the fault
is intercepted by the hypervisor (host OS) as the guest OS
cannot handle it. The hypervisor redirects this fault to the
KVM driver. 3) The KVM driver in turn reads the faulting
PTE and updates the guest mapping. Then, it performs the
second translation, from guest physical to host virtual, and
requests from the host OS the actual physical memory for
this particular host virtual address. 4) The KVM module then
updates the guest PTE with the correct physical memory. The
application can resume execution normally. Any subsequent

TLB refilling of this page will require only reading the page
table of the application.

Page Reclamation: The host OS may decide that some
memory pages need to be reclaimed from the running guest
OS, for instance to satisfy another VM or application. As the
host cannot directly access the guest page tables, it notifies
the KVM module about the page needed for reclamation. The
driver keeps a reverse mapping of all virtual CPUs address
mappings that are using this page, and starts invalidating the
page’ PTEs in the guest before returning the page for reclama-
tion by the hypervisor. Obviously, the hypervisor involvement
is not needed if page translations get cached in the guest OS.
Additionally, if the same host page is reused multiple times
by the guest, the host translation also remains intact.

B. Page Allocation Policy and Multi-Socket NUMA nodes
When a page is first touched, the actual physical page

is chosen by the hypervisor. As the faulting virtual CPU is
already occupying a physical CPU, the physical page can be
allocated on the NUMA node with affinity to the physical
CPU. Thus, for the first touch of a page, NUMA-awareness
is transparently provided by the hypervisor. When virtual
CPUs are bound to physical CPUs the advantage of NUMA
proximity of allocation can be maintained. KVM exposes the
hardware architecture and a virtual CPU can be explicitly
pinned to any physical CPU. In XEN, dom0 controls the
pinning and while it provides guarantees that a virtual CPU is
pinned to a physical CPU, it does not expose the identity of
the latter.

NUMA domains can be identified only at the
host/hypervisor level and they are not exposed to the
guest OS for two reasons. First, what appears to guests as
physical memory is not allocated on the machine physical
memory until it is touched for the first time inside guests.
Second, while hypervisors try to observe NUMA allocation,
no strong affinity guarantees are implemented or provided:
the hypervisor retains its right to migrate or free pages
as needed by the memory management policy to balance
between concurrent activities. Consequently maintaining a
good NUMA allocation provides only a best-effort guarantee.

For these reasons, virtualization technologies (KVM, Xen,
VMware, hyperV) advocate “node confinement on NUMA
architectures: they restrict the virtual machine to run within
one NUMA domain, a strategy effective only when the number
of virtual CPUs is less than the number of physical CPUs on
a domain. As our results show, significant performance degra-
dation occurs when this requirement is not met. Furthermore,
due to licensing restrictions we do not present any VMware
of hyperV results1. In KVM, when faults are propagated, the
hypervisor provides memory affinity with the faulting CPU. In
Xen, affinity is provided using the domain_to_node API
which determines the node associated with the first vcpu of
the domain. Thus, Xen will exhaust one NUMA domain before
moving to another, regardless of the identity of the faulting
CPU.

IV. EXPERIMENTAL SETUP

We experiment with two open source virtualization tech-
nologies: KVM and Xen 4.0 using the hardware virtualization

1VMware requires legal approval when publishing performance results.
Free licenses allow only 2 vcpus, while commercial licenses are limited to
eight vcpus. Affinity management is delegated to guests in VMware. HyperV
is restricted to 4 vcpus.
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support provided by CPU vendors: Intel VT-X and AMD-V.
For the guest OS used inside the virtual machines we

use the Linux kernel 2.6.32.8. For KVM we use the same
kernel for the host OS. The three architectures used for the
evaluation are: 1.6 GHz quad-core quad-socket UMA Intel
Xeon E7310 (Tigerton), 2 GHz quad-socket quad-core NUMA
AMD Opteron 8350 (Barcelona) and 2.4 GHz dual-socket
quad-core NUMA Intel Xeon E5530 (Nehalem EP).

As a workload we use implementations of the NAS Parallel
Benchmarks [3] in popular parallel programming paradigms:
MPI (OpenMPI 1.4.2 with gcc 4.3.2), UPC (Berkeley UPC
with gcc 4.3.2) OpenMP (gcc 4.3.2 with GOMP). We run
the problem classes B and C and overall the memory footprint
of the workload varies from tens of MBs to tens of GBs.
Asanović et al [2] examined six different promising domains
for commercial parallel applications and report that most of
them use methods encountered in the scientific domain. In
particular, all methods used in the NAS benchmarks appear in
at least one commercial domain. Thus, beside their HPC rele-
vance, these benchmarks are of interest to other communities.

All benchmarks are executed using all the cores available
(16-way and 8-way parallelism) and each experiment is re-
peated at least 30 times. Some benchmarks (MPI BT and SP)
require a square number of processors at runtime and we did
not execute them in the 8-way configuration. The performance
variation between all runs of the same experiment is low (less
than 10% in all cases) and all the results and trends presented
are statistically significant.

V. PERFORMANCE ON MULTI-SOCKET NODES

Figure 2 shows the comparison with native performance
when running on KVM with virtual machines spanning an
increasing number of sockets. When using a single socket, the
performance on virtual machines is mostly within 5% of the
native performance, regardless of the programming model used
in the benchmark implementation and the hardware utilized.
Similar trends are reported by earlier studies [26], [9], [13]
that show hardware virtualization being able to provide near
native performance.

On the UMA architecture, the performance decrease is
caused mostly by a combination of slower memory translation
and slower performance in synchronization operations, e.g.
MPI and OpenMP barrier performance decreases by roughly
20% with virtualization across four sockets. For brevity, we
omit the detailed analysis of this behavior. On the NUMA
architecture, the lack of proper support causes additional
performance degradation. For example, on the AMD, MPI runs
using four sockets are slowed down on average by roughly
40%, while single socket runs slow down by 10%. When
increasing the number of sockets used by the applications,
the performance degrades by up to 82%. The UPC results are
similar to the MPI results and omitted for brevity.

A summary of similar experiments using Xen-based virtu-
alization is shown in Figure 3. In Xen, all CPUs are exposed
as virtual CPUs in dom0—the only privileged domain that
controls all virtualization activities. Unlike KVM, explicit
control over the virtual to physical CPU mapping is not
available. We ran the set of benchmarks, both on NUMA
and UMA systems for 16-way parallelization. Unsurprisingly,
we saw high degradation with NUMA runs, while UMA runs
were at most 20% slower. Booting the hypervisor with explicit
NUMA awareness, which is the default on Xen 4.0, does not
cure the problem. Without delving into the battle of KVM
versus Xen, Xen performance is generally better than KVM on

the UMA architectures, while NUMA performance of Xen is
much worse. Noting the log2 scale of the y-axis in Figure 3, we
observe performance up to 4x slower than native. Therefore,
we emphasize the KVM evaluation in the rest of this paper.

Many performance studies indicate that using large pages
provides a performance benefit in virtualized environments.
We have repeated the experiments using large pages with
libhugetlbfs in all combinations of host and guest OS.
For our particular workload, large pages cause performance
degradation. While all the trends reported in this paper are
valid when using large pages, all the results presented are for
runs with small pages.

We have explored many configurations for virtualization in-
cluding multiple pinning strategies, different paging granular-
ities and emulated NUMA on the guest. All results lead us to
conclude that multi-socket NUMA architectures are associated
with degraded performance for the current implementations of
virtual machines. In Sections VII and VIII we discuss possible
solutions and quantify their impact.

VI. ANALYSIS OF PAGING BEHAVIOR

To monitor paging activities, we instrumented the KVM
device drivers to gather page faults and NUMA locality
statistics. We also monitor the paging activity inside the guest
OS: note that the information required to determine NUMA
locality is not available at this level. Figures 4 and 5 show
the paging activity observed at all translation levels, when
running 16-way parallel MPI jobs (NPB class B) on the AMD
NUMA system with a VM spanning the four sockets. We plot
the percentage of page faults handled at each translation level
grouped by their memory locality.

Figure 4 plots the faults observed during the MPI implemen-
tations run on a cold VM; that is, the monitored application
is the first application running on the system after booting
the VM. As shown, for a cold run most of the memory
is not mapped and a significant percentage (up to 96%) of
the application page faults reaches the KVM driver which
enforces NUMA locality. These faults are captured by the
bars labeled “Unmapped” and the pages are correctly mapped
on the NUMA node local to the faulting CPU. A smaller
percentage (19% on average) of the page mapping is serviced
by the guest OS without the need of the host involvement,
even for a cold run, as illustrated by the bars labeled “Handled
by guest”. As explained in Section VI-A, the guest OS filters
faults due to the process based implementation of MPI. For
the OpenMP case with pthreads, faults are not filtered by
the guest and all faults are observed by the hypervisor. We
could not determine the locality of these pages but we expect
them to be local, similarly to the “Unmapped” pages.

The bars labeled “Local Node” and “Remote*” capture
the percentage of faults that reaches the KVM driver for
pages already mapped. “Local Node” pages have the correct
affinity. The bars labeled “Remote Multiple” indicate faults for
pages shared by multiple processes running inside the guest
OS, while the “Remote Single” pages are not shared and
are candidates for page migration. As shown, the combined
contribution of all these pages is small.

A completely different behavior is observed after warming
the VM, as shown in Figure 5, which captures the paging
behavior for subsequent runs of the same application. The
percentage of faults handled by the guest OS is high, up to
94%, due to caching of page mappings inside the guest. The
NUMA node locality information is not available at the guest
level and, while we cannot determine the locality of these
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Fig. 2. Performance of NAS NBP3.3 benchmarks MPI and OpenMP implementations running with KVM on guest virtual machines on two machines, each
with 4 sockets, representing NUMA and UMA architectures.
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pages, based on the behavior of the cold run we expect most
of them to have the correct affinity. The percentage of page
faults reaching the KVM driver is significantly reduced and
we observe a high bias towards providing locality: for the
vast majority of faults reaching the hypervisor the memory
is already mapped with the proper (“Local Node”) locality.
On the other hand, we observe a very noticeable increase in
the percentage (up to 25% for “Remote Multiple”) of faults
that are found mapped in a remote node. Until explicitly re-
turned for remapping, these pages will be “inherited” between
applications and provide bad locality inside the guest OS.

This locality leakage is the cause for the performance
degradations observed on NUMA architectures. Looking at
the execution time, we found that MPI and UPC runs on
cold VMs are always faster than subsequent runs, as shown
in Figure 6. For example, a run of IS on a cold VM is
20% slower than the native run, while the subsequent runs
are 60% slower than the native runs. On average, warm runs
are 30% slower than cold runs. When measuring the system
time on the guest (spent inside KVM and the host OS for
handling faults) we found that cold runs have a much higher
system time than subsequent runs. Later runs exhibit less than
25% of the system time of the first run, for most cases– but
user time suffers significantly. All warm runs exhibit similar
performance: this indicates that locality is lost mostly between
the first and second execution of an application. The variation
in performance for 30 cold and warm runs is within 5% for all
benchmarks but IS which exhibits a 25% variation. Thus all
results are statistically significant and indicate that improving
the NUMA support in virtualized environments is likely to
produce performance benefits when compared to the existing
solutions.

For the OpenMP benchmarks cold runs are indistinguishable

from warm runs, the difference is explained in the next section.
The temporal distribution of page faults is determined by

the application’s memory footprint and access pattern. In this
study we evaluate NPB implementations using class B and C
settings; class C has the largest footprint of the two. Unless
explicitly stated otherwise, the results presented are for class
B problems. As shown in Section VIII, increasing the dataset
size to class C increases the negative performance impact of
virtualization.

For the class B problems, in all but two benchmarks (BT
and SP) the majority of page faults happens at problem
initialization time which is not accounted for by the NPB
performance measurement methodology. Thus, most class B
benchmarks do not fault during the measured runtime, only
in BT and SP about 10% of the faults occur during perfor-
mance measurements. This implies that the performance trends
reported for class B are solely determined by the ability of
the system to provide good locality when pages are initially
allocated. Note also the clustering of performance trends in
Figure 6: four benchmarks (MG, CG, LU, FT) provide cold run
performance better than native, while four benchmarks (BT,
SP, IS, EP) are slower than native. In the “fast” benchmarks
the percentage of page faults filtered by the guest OS during
a cold run is small with a peak observed by LU at 20% and
there are few faults during the measured runtime. In contrast,
the “slower” benchmarks either observe runtime faults (BT,
SP) or have a high percentage (≈ 40%) of faults filtered by
the guest OS in the IS and EP case.

A. Programming Model Interaction with Virtualization

Figure 7 presents the distribution of the page faults inter-
cepted by the hypervisor with respect to the NUMA nodes
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better NUMA allocation.

for a run on a cold VM. This is an indirect measure of the
load balance of the application as well as its quality of locality
optimizations.

For the MPI and UPC runs, memory is evenly distributed
across NUMA nodes for all benchmarks. For the OpenMP
runs, three out of eight implementations are not well balanced
across NUMA. Note that EP uses very little memory so
the outlier is not really illustrative of bad locality. The even
distribution of memory across NUMA nodes indicates that all
benchmark implementations are optimized for locality.

For the MPI case, the cumulative number of faults observed
by the hypervisor is well below 100% in most cases and as
low as 50%. In contrast, for OpenMP the hypervisor observes
almost 100% of the faults. This difference is caused by the
implementation of the two programming models. OpenMP
runs with pthreads and the application faults only once per
page since a mapping due to a fault is observed by all threads.
MPI runs with processes and provides a shared memory region
for efficient inter-process communication inside its runtime. In
MPI, only the first fault for a page in the shared memory region
reaches the hypervisor and the faults generated by all other
processes on the same page are served by the guest OS. The
MPI implementations also have a larger memory footprint than
the OpenMP implementations and observe a higher number
(up to three times more) of page faults for each benchmark.

The Berkeley UPC implementation allows execution using
either processes or pthreads. UPC, as well as other PGAS
languages, exports as shared a large fraction of its heap, while
MPI shares only “little” memory for communication buffers.
The UPC NPB implementations have memory evenly dis-
tributed across NUMA nodes and in terms of fault propagation
can behave in a similar manner to either MPI or OpenMP, e.g.
50% or 100% fault propagation. In UPC, native executions
with either processes or pthreads exhibit indistinguishable
performance and we observe a pronounced difference between
cold and warm runs, as shown in Figure 6. Comparing the
process (38% slowdown) and pthreads (31% slowdown)
based UPC implementations, the former shows a larger differ-
ence between the performance of cold and warm runs. This
difference is explained by the paging behavior.

The OpenMP implementations exhibit identical perfor-
mance in cold and warm runs. We attribute this behavior to
the differences in the programming models. MPI and UPC
have an inherent notion of locality and data is copied before
reference, while OpenMP encourages a pure shared memory
style programming with repeated access to possibly remote
data. Intuitively, the OpenMP implementations have a worse
NUMA locality of reference than MPI and UPC: the affinity
shuffling that occurs between cold and warm runs degrades
locality in MPI and UPC, while it does not significantly change

the OpenMP locality.

VII. HYPERVISOR EXTENSIONS FOR NUMA SUPPORT

Page locality leakage in virtualized environments is caused
by the current OS design paradigms which optimize for
fast page fault handling at the expense of the reclamation
mechanisms. Because page faults are in the critical execution
path, the Linux kernel, as well as all other kernels, has an eager
policy and a page fault causes an immediate trap to the OS for
service. Virtual to physical memory mappings are aggressively
cached within the OS. In contrast, page reclamation, swapping
or removal, are done lazily by the OS depending on the amount
of physical memory available: pages can be moved to an
inactive state, cached or recycled. An asynchronous daemon
is usually activated for reclamation whenever the number of
the available pages drops below a certain threshold. In the
exceptional case of not having enough pages to satisfy a
request, an application may be synchronously blocked until
enough pages are freed.

Hypervisor only approaches are most portable and generic
since they do not require guest OS modifications. Several
solutions are available to improve page locality: 1) pages
can be migrated to the NUMA domain that has affinity with
the faulting core and; 2) the mapping of pages inside the
hypervisor can be completely reset when memory is no longer
in use by the guest (upon application termination).

We consider first a brute force approach that forces swap-
ping of the guest VM memory after each run in order to
determine a new mapping for pages and achieve the effects
of cold runs. We implemented a daemon that triggers page
reclamation from the virtual machine, whenever an application
terminates. Reclamation of pages depends on the page activity
and it requires the page to age so that it can be swapped.
For this experiment, we ignore the time needed to get the
page to age and to swap it out and report only the effect
on the performance of the next run. Unfortunately, this simple
technique leads to a performance decrease of all runs. In KVM,
the hypervisor sees only one address space for any VM and
we are forced to swap both kernel and user guest OS pages.

We observed slowdowns compared with the cold-run perfor-
mance measured as 17%, 50%, 17%, 26%, 10%, 42%, 10%,
and 43% for SP, MG, BT, LU, EP, CG, FT, and IS, respectively.
This performance decrease is larger than runs on a warm VM.
This indicates that selective page remapping is a necessity, if
the performance is to be improved.

A more specialized approach is to use migration to adjust
the affinity of the pages whose faults have been propagated to
the hypervisor. In this case, we can check if the page is in the
right NUMA domain. To respect the first touch policy we avoid
migrating pages used by other virtual CPUs. Migrating shared
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pages on faults implements a last touch policy and causes a
hot-potato effect and further slowdown. We implemented this
mechanism in the KVM driver using mechanisms similar to
hotplug memory. As shown in Figure 5, while on average
30% of page faults are propagated to the hypervisor, only for
a small fraction of pages (≈ 1% labeled “Remote Single”)
can the locality be improved. Overall, this approach did
not improve the workload end-to-end performance. Detailed
results are omitted for brevity.

VIII. RESOURCE PARTITIONING

Node confinement eliminates NUMA problems at the ex-
pense of scalability and generality. Using a software config-
uration with a separate VM on each socket requires a pro-
gramming model able to run on distributed memory machines.
OpenMP which requires shared memory and pthreads
based implementations cannot span multiple VMs. On the
other hand, programming models specifically designed for
cluster based environments are well suited for this usage
scenario. These models include MPI, as well as the Partitioned
Global Space Address (PGAS) languages illustrated here by
UPC. All the implementations, experiments presented and
inferences made for MPI in the rest of this section have been
replicated using the Berkeley UPC implementation. Although
for brevity we do not present any UPC results, our conclusions
are valid for both implementations.

Figure 8 shows the performance of the MPI applications.
For the configurations with multiple VMs, the MPI imple-
mentation uses the virtual network interface (loopback) and
the IP stack for communication. Although we use the virtio
driver which generally achieves about 70% of the native
hardware bandwidth, the performance degradation is large (up
to 16 times) when increasing the number of VMs. Many
other [28], [12], [19], [5] research activities tried to address
communication problems in virtualized environments but we
did not find any mature and usable solution for efficient
communication between VMs using loopback.

A. Inter-VM Communication Using Shared Memory
Even when virtio performance reaches native hardware

performance, inter-VM communication using loopback is less
efficient than shared memory communication. Our shared
memory communication in KVM uses the ivshmem [10]
QEMU patch. Ivshmem exports shared memory on the host
as a PCI device on the guest. Specifically, it creates a shared
memory file on the host and memory-maps this device in the
address space of the virtual machines. A device is created for
the guest that is used to communicate information about the
shared memory segment. On the guest OS, a kernel module is
added to detect if the shared-memory device is exposed by the

system emulator. As such, the module gets information about
the address of the shared memory and tries to map it to the
guest address space. It also initiates a device that can be used
by applications, or runtime, to map the shared memory to their
address space. The original implementation of ivshmem was
based on 32 bit code and we had to extend it to 64 bit to allow
a larger accessible address space.

In contrast, Xen-based virtualization [4] allows sharing
pages between only two VMs [28], [5], [12] using the Grant-
Table and it imposes severe restrictions on the amount of
memory allowed. We have also modified Xen to provide multi-
VM sharing and increase the amount of memory shared. The
results on Xen show identical trends to the KVM results and
we will not discuss further Xen details.

In general, inter-VM shared memory support poses design
and security issues that caused the virtualization vendors and
implementors to restrict it. First, sharing memory between
VMs establishes a tight coupling and complicates VM migra-
tion. Second, the security and stability of the system is only as
good as the protection mechanisms associated with the shared
memory.

B. OpenMPI Extensions for Shared Memory Bypass
The OpenMPI implementation uses the modular component

architecture (MCA) to integrate its various runtime compo-
nents. The implementation uses several layers; at the bottom
it uses an architecture dependent layer while the topmost layer
provides the high level MPI functionality. There is also a glue
layer between these two layers. Porting to a new architecture
requires implementing a new byte transport layer (BTL). At
startup, the MPI processes select the software components
that can be used to communicate with any other process. If
a process is reachable using multiple components, selection
logic is used to decide the best component for communication.
Components register themselves and declare their relative
priority (exclusivity in the OpenMPI jargon). For instance, a
process may be able to reach another using either TCP or
shared memory BTLs, but because the shared memory BTL
has a higher priority, the process then selects it. Each process
maintains a list of BTLs that can be used for communication,
one per destination process. To add a new communication BTL
that exploits shared memory between VMs, we developed the
following components:

1) A BTL that provides all the interfaces needed for inter-
VM communication. This BTL has a lower priority than
the native shared memory BTL and higher than any
network BTL.

2) A memory pool component to handle shared memory
allocation for the new communication BTL.

3) A memory-mapping component that handles the device
responsible for shared memory.

4) A component that uses the special shared memory
between the VMs for MPI collective operations: barrier,
broadcast, etc.

We also implemented the logic to determine inter-VM
reachability using shared memory: all VMs sharing a node are
assigned a unique node identifier. Finally, the logic to choose
different BTLs was modified to make sure that shared memory
communication can coexist with other BTLs without conflicts.

Figure 9 shows the communication layers used in distributed
memory systems. The communication between processes in a
node uses shared memory and a networking layer is used for
processes outside the node. Depending on message size and
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type, data may be queued without the need to block sender, or
blocking may be needed to synchronize with the receiver. Two
message queues are provided: a shared queue with a fixed size
and an “eager” queue with size proportional to the number of
senders. Because receiver queues are shared between senders,
accessing them requires holding a lock to serialize the queue
updates.

Our extension implemented between VMs sharing a node
adds a new layer of communication, as shown in Figure 10.
Two of the layers shown in the figure use shared memory;
one within the VM and the other within a node. A third
path is used to communicate across nodes. The effect of this
additional layer is to create more localized communication
queues within the VM and other queues for communication
between VMs. These communication queues are protected by
separate locks, thus less conflicts are expected in the new
environment. Using the OMB [14] benchmarks to measure
the bandwidth and latency for 16 MPI tasks split into 8 pairs
on the AMD system, we measure three orders of magnitude
improvement over IP for small messages, with the smallest
difference of 66x associated with large messages.

OpenMPI does not currently support the ability to switch be-
tween BTLs at runtime. Without hot switching of components,
there are restrictions on migrating VMs while applications are
running. For instance, an application will need to switch from
the inter-VM shared memory BTL to the TCP BTL if one
of the participant VM migrates to a remote node. Adding
hot-swapping capability to the OpenMPI runtime component
architecture will provide a full solution for virtualized envi-
ronments when socket partitioning is desired.

C. MPI Performance in a Partitioned Virtual Environment
Figure 11 presents the performance on the quad-socket,

quad-core AMD NUMA system when partitioning the cores
between virtual machines. Three VM configurations are node
confined, while in the others (1 and 2) VMs span four and
two NUMA nodes respectively. As shown, the performance
varies with the VM configuration and the best performance
is always attained by the configuration with one VM per
socket. Node confinement with one or two VMs per domain

always produces better performance than a single wide VM.
In five cases, the best performance with partitioning matches
or exceeds the native performance.

Configurations with more than two VMs per domain provide
lower performance than the default of one VM per system. Our
conjecture is that having multiple VMs per socket unneces-
sarily stresses the memory subsystem by having multiple OS
images serving few processes, which leads to less effective
caching and less allocated time slots. Kernel SamePage Merg-
ing (KSM) is a recent Linux kernel feature which combines
identical memory pages from multiple processes into one
copy-on-write memory region. Note that these experiments
were run with KSM enabled.

Virtualization introduces two-level locking on data struc-
tures used to manage shared resources, such as memory.
In addition to enforcing NUMA affinity, partitioning also
reduces lock contention in the system and ultimately provides
better memory management scalability. Figure 13 shows the
impact of partitioning on page fault latency measured with
lmbench. We have extended lmbench to take into account
the various types of memory used in the implementations of
parallel programming languages: 1) regular memory obtained
using malloc; 2) device based mmap memory used for the
KVM inter-VM communication; and 3) anonymous mmap
memory traditionally used for shared memory inter-process
communication in MPI or within one VM. As illustrated,
partitioning reduces page fault latency. Note the high latency
for faults on device mmaped memory necessary for inter-VM
communication: in the MPI case this is used only for bounce
buffers, while in the PGAS (UPC) case a significant fraction of
the heap memory is obtained using this mechanism. The faults
on inter-VM shared memory occur during the application
initialization phase, which is not used when reporting NPB
performance. Thus, the performance of UPC implementations
behaves identically to the MPI performance. When measuring
application initialization time, we observe about 50% increase
for cold runs compared with warm runs.

Figure 12 shows the same experiment (class B) conducted
on two-socket quad-core AMD Opteron and Intel Nehalem
systems. In this case, all applications noticeably benefit from
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Fig. 13. Page fault latency in µs for different VM configurations.
partitioning: using one VM per socket matches at least native
performance and even improves the performance by up to
15% in five out of six benchmarks. Without partitioning the
performance degrades by up 70% on the AMD system. Com-
paring the results in Figure 12 with the results in Figure 11,
notice that the performance improvement for the two-socket
experiments is larger than for the four-socket ones. One would
expect the impact of lack of NUMA support to grow with the
number of sockets/domains, but in this case this is mitigated
by better caching behavior. Better cache behavior reduces the
frequency of visiting the memory subsystem asking for lines,
thus reducing the impact of bad NUMA locality.

Figure 14 shows the behavior of classes B and C and
it illustrates the effect of increasing the dataset size. More
runtime page faults increase the page locality leakage during
the application execution. Increasing the dataset size has also
the side effect of reducing the effectiveness of the cache to
mask the NUMA allocation problem. Applications with a
larger footprint (class C) observe a higher average degradation
on a single VM, 54% compared with 39% for class B. For
the partitioned 2 system the degradation increases from 3%
for class B to 10% for class C. The results also suggest that
without partitioning, relying on runs on cold VMs as a cure
becomes less optimal, as the first run slowdown compared to
native increases from 9% for class B to 27% for class C.

A detailed analysis of page faults shows that in the par-
titioned case the correct locality is preserved, except for the
inter-VM shared memory regions used inside MPI for com-
munication. The remote NUMA accesses for communication
are unavoidable in a parallel application and are an intrinsic
characteristic of such applications: data has to move between
cooperating tasks. In the MPI case, the communication buffers
are used pairwise by tasks. Although MPI applications are
usually optimized to minimize communication, a particular
concern is when the communication buffers do not have
affinity with any of the endpoints. Since our implementation
of inter-VM shared memory is persistent and it has a sticky
mapping between runs, this situation can be easily avoided
by extending the MPI communication buffer allocation with
awareness of the inter-VM shared memory layout.

With partitioning, both cold and warm VMs are able to
provide the same level of performance, as shown in Figure 14.
Furthermore, any run on a partitioned system matches or
exceeds (in two cases) the performance of runs on a single
cold VM spanning all the cores.

For lack of space, we do not include detailed results for
partitioning on UMA systems. For our quad-socket quad-
core system, performance compared to native is slower by an
average of 2.2%, while performance with one VM spanning
all 16 cores is on average within 6% of native. We attribute the
better behavior with partitioning to less contention on shared
data structures. When running in a cluster environment using

2 IS performance is caused by un-tuned collective operations in the
partitioned system.
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Fig. 14. Performance of class B vs. class C for NPB MPI 3.3 for the base
system (1 VM per 4 sockets) compared with partitioned system with shared
memory bypassing (1 VM per socket). Architecture is based on AMD Opteron
E8350.

a two node system (32 cores) and the network, partitioning is
also able to lower the average performance impact from 63%
with one machine per node to 12%.

IX. TO PARAVIRTUALIZE OR NOT?

Our experimental evaluation for the MPI workload on KVM
shows that cold runs observe a 27% average performance
degradation on an quad-core quad-socket AMD NUMA sys-
tem. The analysis presented in Section VI indicates that in
these runs NUMA affinity is provided. Runs on warm VMs
observe an average performance degradation of 54% caused
by locality leakage and hypervisor only approaches have little
potential for improving this behavior.

Paravirtualization is required to improve the performance
of warm runs. The biggest drawback of paravirtualization is
that it requires modifications in any guest OS, e.g. Linux
and Windows. Furthermore, based on our understanding of
the Linux kernel code, these modifications will require a
significant if not complete re-implementation of the memory
management code. As shown in Figure 5, for runs on a warm
VM, most of the page faults are filtered by the guest OS
and are not observed at the hypervisor level. Inside the guest
OS, we can determine when a page is no longer needed, e.g.
at application termination. As the actual NUMA nodes are
available only at the host, the guest needs to communicate
this page (or page group) for checks and possible reclamation.
Currently, it is not possible to synchronously communicate
these pages, as no traps are supported for page freeing and
pages might not get reclaimed immediately inside the host in
the KVM case.

We perform a simple experiment to disable caching of the
page mappings inside the guest OS and cause the propagation
of faults to the hypervisor. Page mappings are kept inside
kernel memory which in Linux is managed by the slab
allocator. The slab allocator provides per-core page caches,
as well as a global page cache. Linux is configurable and
provides the option of disabling the per-core caches and using
only the global cache: this is referred to as the slub allocator.
When using the slub allocator a higher percentage of faults is
propagated but the overall result is that performance is lower
than in any of the slab runs.
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This indicates that a more specialized approach to provide
selective page unmapping is required. This could be imple-
mented using a hypervisor daemon coordinating with the guest
kernel but we consider such an approach way beyond the scope
of this paper. Beyond the challenges posed by the software
architecture of the current Linux memory management code,
an asynchronous daemon approach faces the “semantic gap”
challenges (lack of information about the guest activities): it
cannot tell if a page is used by an application if the application
is not scheduled on any guest virtual CPU; if a page is in use,
it cannot determine its desired locality or whether it is shared.
This also has the potential of significantly slowing down the
system for the common case of pages that have the “right”
NUMA affinity. A solution based on “enlightenment”, while
still breaking the virtualization abstractions is more tractable
due to better contained software changes to Linux.

Furthermore, we expect a selective unmapping approach to
provide a level of performance situated between the perfor-
mance of runs on warm VMs and the performance of runs on
cold VMs. We consider the performance of cold runs as a good
indicator of performance expectations for a paravirtualized
selective unmapping approach.

X. CONCLUSIONS

In this paper we evaluate the impact of virtualization on the
performance of parallel scientific applications on multi-socket
multicore systems. As a workload we use implementations
of the NAS Parallel Benchmarks in MPI, UPC and OpenMP.
Our results on UMA systems confirm previous results and
we find an average slowdown of 6% compared to native for
our workload. The NUMA support in current virtualization
solutions is incomplete and this translates into an average
performance degradation of 47% for the whole NPB workload
(B and C), when compared to native. This impact is much
higher than that previously reported: the difference is attributed
to the higher node core count currently available.

We further evaluate techniques to improve locality in full
virtualization environments: page migration and system parti-
tioning. We also provide a thorough discussion of the inter-
action between the implementations of programming models
and virtualized environments. Our results indicate that were
NUMA support improved in current implementations, the
average slowdown compared to native is still at 27%. Using
partitioning, the average performance on the NUMA system is
within 3% and 11% of native for class B and C respectively,
while on the UMA system is within 2.2% of native.

For the NPB workload, our analysis of paging behavior
indicates that improving the NUMA support only at hypervisor
level is unlikely to mitigate most of the performance impact
of virtualization. A more complete solution requires both
hypervisor and guest OS modifications and breaks the central
tenet of virtualization: hiding the system resource management
from guests. Thus, this approach is likely to face resistance
from commercial implementors whose target applications are
not HPC centric.

When the programming model allows, e.g. MPI or Parti-
tioned Global Address Space languages or hybrid approaches
(MPI+OpenMP, PGAS+OpenMP), partitioning is worth con-
sidering as an orthogonal approach to improve performance.
Besides cloud computing environments, we believe that we
provide compelling evidence in favor of adding shared mem-
ory support for inter-VM communication in solutions specifi-
cally designed for high performance computing.
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