
A Detailed and Flexible Cycle-Accurate
Network-on-Chip Simulator

Nan Jiang
Stanford University

qtedq@cva.stanford.edu

James Balfour
Google Inc.

jbalfour@google.com

Daniel U. Becker
Stanford University

dub@cva.stanford.edu

Brian Towles
D.E. Shaw

btowles@deshaw.com

William J. Dally
NVIDIA Research/Stanford University

dally@cva.stanford.edu

George Michelogiannakis
Lawrence Berkeley National Lab

mihelog@lbl.gov

John Kim
KAIST

jjk12@kaist.edu

Abstract—Network-on-Chips (NoCs) are becoming integral
parts of modern microprocessors as the number of cores and
modules integrated on a single chip continues to increase.
Research and development of future NoC technology relies on
accurate modeling and simulations to evaluate the performance
impact and analyze the cost of novel NoC architectures. In
this work, we present BookSim, a cycle-accurate simulator
for NoCs. The simulator is designed for simulation flexibility
and accurate modeling of network components. It features a
modular design and offers a large set of configurable network
parameters in terms of topology, routing algorithm, flow control,
and router microarchitecture, including buffer management and
allocation schemes. BookSim furthermore emphasizes detailed
implementations of network components that accurately model
the behavior of actual hardware. We have validated the accuracy
of the simulator against RTL implementations of NoC routers.

I. INTRODUCTION

The interconnection network is a critical part of any modern
computer system, including large-scale multiprocessors in a
supercomputer, single-chip many-core processors, or a system-
on-a-chip (SoC) for mobile devices. As the number of com-
ponents in a system continues to increase, the interconnection
network will have a more significant impact on the overall
system performance and cost. Thus, interconnection networks
need to be properly modeled and evaluated to understand their
performance characteristics, bottlenecks, and the impact on the
overall system.

In this work, we describe the BookSim network simulator—
a detailed, cycle-accurate simulator for Network-on-Chips
(NoCs) that can also be used to model interconnection net-
works for a variety of other systems. The original simula-
tor (BookSim1) was released as part of an interconnection
network textbook by Dally and Towles [1] and was used to
generate the performance graphs in the textbook. BookSim1
was a generic network simulator that did not specifically
target the on-chip environment. As a result, it has been
widely used for research in many network contexts, including

networks found in large-scale supercomputers and many-core
processors. BookSim has been used to study many different
aspects of network design, including topology [2], [3], rout-
ing [4], flow control [5], [6], router microarchitecture [7],
quality-of-service [8], as well as new technologies such as
nanophotonics [9], [10]. BookSim can also be incorporated
into other system simulators to model the network; for exam-
ple, GPGPU-sim [11], a many-core accelerator simulator for
evaluating GPGPU workloads, leverages BookSim to model
the on-chip communication.

From a system simulation perspective, BookSim provides
the flexibility that is needed in a high-level simulator. All
major network components are parameterized to allow rapid
sweeps of the network design space. From a network design
perspective, BookSim provides detailed modeling of all key
components of a network router. The simulator is designed to
be modular and to facilitate modifications and the addition of
new network features. BookSim is also structured to reflect
actual network design—for example, communication between
neighboring routers needs to occur through a “channel,” rather
than a global variable or a data structure. This approach forces
simulator users to think about the network as a physical entity
before implementing new features in the simulator.

Despite the flexibility of the original BookSim, it did not
support some of the more advanced features and topologies
proposed in the context of on-chip networks. As a result, an
updated simulator—BookSim2—was developed that includes
many changes that better reflect the state-of-the-art in on-chip
network research. In particular, BookSim2 features more de-
tailed modeling of the router microarchitecture, models inter-
router channel delay, and provides support for additional traffic
models. To validate the accuracy of the simulator, we have
compared its simulation results to an RTL network-on-chip
router [7], [12], [13]. The comparison shows that the latency-
throughput characteristics of BookSim2 closely match those of
the RTL model. We also show how BookSim2 can be used to

gain insights about other important aspects of network design;
for example, it can be used to investigate the effect of age-
based priority on the performance of separable allocators or the
performance impact of different router pipeline optimization
techniques.

In summary, this papers makes the following contributions:
• We describe the BookSim network simulator that pro-

vides a large degree of flexibility and modeling fidelity
for the evaluation of novel network designs.

• We describe additional changes introduced in the recent
BookSim2 release, including detailed router microarchi-
tecture for on-chip network evaluation and analysis. To
the best of our knowledge, this is one of the first works
that validate the results of a network simulator against an
actual RTL implementation of a router.

• Using the detailed network simulator, we show the impact
of accurately modeling the router pipeline on network
performance. We also study the impact of age-based
arbitration and show its positive and negative effects on
the network’s saturation throughput.

The remainder of the paper is organized as follows: Sec-
tion II provides background on interconnection networks and
other network simulators. Section III describes the details
of the original BookSim1 simulator. New features added to
BookSim2 are described in Section IV. Section V presents
several case studies conducted using BookSim and validates
the accuracy of the simulator against an RTL implementation
of a network-on-chip router. We conclude the paper in Sec-
tion VI.

II. BACKGROUND

A. Interconnection Networks

Any interconnection network can be characterized by the
following basic properties: topology, routing, flow control, and
router microarchitecture [1].
Topology: Defines how the channels, routers, and endpoints

are interconnected.
Routing: Determines which path a packet takes from its

source to its destination.
Flow Control: Determines how shared resources, such as

buffers and channel bandwidth, are utilized when con-
tention occurs.

Router Microarchitecture: Defines the internal organization
of routers, including the buffers, crossbar, allocators, etc.

Each of these properties affects the performance of the net-
work.

A common metric used to measure network performance
is saturation throughput, defined as the network throughput
at which the first channel saturates [1]. Zero-load latency
is another key performance metric that represents a lower
bound on the network latency. These metrics can be estimated
analytically or obtained from the latency-throughput curves
produced by simulations, as shown in Figure 1.

Each of the network’s properties establishes a bound on
its performance: Given the network channel bandwidth, the

Injection rate (flits/cycle)

La
te

n
cy

 (
cy

cl
es

)

To
p

o
lo

gy

R
o

u
ti

n
g

Fl
o

w
 c

o
n

tr
o

l

u
ar

ch

zero-load
latency

Topology

saturation
throughput

Routing
Flow control
uarch

Fig. 1. Latency-throughput curve used to measure performance of intercon-
nection networks.

topology imposes an initial throughput and latency bound,
governed by the amount of bisection bandwidth in the network
and the network diameter. For each traffic pattern, the routing
algorithm maps the communication onto the network topology
and further limits how closely the topology bounds can be
approached in practice. The routing algorithm also offers
different trade-offs for achievable performance; e.g., non-
minimal routing can increase the zero-load latency while—if
done properly—increasing the throughput on adversarial traffic
patterns. Finally, flow control and router microarchitecture
introduce router efficiency and contention effects that can
further limit the network performance.

B. Related Work

Most full-system simulators provide a way to model net-
work traffic; however, network models used in this context
often emphasize simplicity and speed over simulation fidelity,
e.g. by not accurately modeling contention in the network and
using a fixed latency value regardless of network conditions.
While this limited fidelity is appropriate for some areas of
study, it is insufficient for network research. Various network
simulators have been developed in order to address this
problem. Garnet [14] is a detailed network simulator that was
incorporated into the GEMS (now GEM5) full-system simula-
tor [15] and is also available as a standalone network simulator.
Noxim [16] is a network-on-chip simulator implemented in
SystemC. SICOSYS [17] is a network simulator specifically
targeted at multiprocessor systems. While, many of these
previously proposed simulators share similar characteristics,
they typically provide only limited flexibility such as limited
choice of topologies or limited configurability of individual
network components. In contrast, BookSim supports a wide
variety of parameterized topologies, routing functions, traffic
loads and router components. In addition, we show how our

BookSim

Traffic-
manager

Network

Router Channel

Buffer Allocator Crossbar

Arbiter
Virtual

channel

Routing
function

Credit
tracker

Injection
process

Traffic
pattern

Single implementation

Multiple implementations available

Fig. 2. Module hierarchy of the simulator.

detailed network simulator very accurately matches the results
of RTL model of a canonical NoC router.

One important aspect of any simulator is the simulation
speed. Compared to some of the other simulators, BookSim
can be slower; for example, Garnet [14] is implemented as
an event-driven simulator and can be faster than BookSim
for low to medium network load. However, compared to a
multiprocessor system simulator or a full-system simulator,
network simulation is often several orders of magnitude faster
and is not necessarily the bottleneck.

III. BOOKSIM1

A. Simulator Overview

BookSim’s flexibility comes from its highly modular imple-
mentation. The simulator is composed of a hierarchy of mod-
ules that implements different functionalities of the network
and simulation environment. A hierarchical view of the major
simulator modules is shown in Figure 2. Each of these modules
has a well-defined interface that facilitates replacement and
customization of module implementations without affecting
other parts of the simulated system.

A functional top-level block diagram of BookSim is shown
in Figure 3. The top level modules of the simulator are the traf-
ficmanager and the network. The trafficmanager is the wrapper
around the network being evaluated and models the source and
destination endpoints. It injects packets into the network ac-
cording to the user-specified configuration, including the traffic
pattern, packet size, injection rate, etc. To properly model
network behavior beyond the point of saturation in open-loop
simulations, an infinite source queue1 is implemented at the
injection nodes to ensure that latency measurements properly
account for source queuing delay and head-of-line blocking
effects. The trafficmanager is also responsible for ejecting
packets from the destination endpoints, collecting appropriate
statistics, and terminating the simulation.

The network top level module comprises a collection
of routers and channels, with the topology defining how
these modules are interconnected. All communication between
neighboring routers occurs through explicit send and receive

1The simulator models the behavior of an infinite queue by allowing each
injection node to operate independently. Since only the head of the source
queue is injected into the network, the injection of each source is allowed to
lag behind and enable an implementation with a finite-size queue [1].

trafficmanager

dest

network

channel

router

src

Fig. 3. Top-level block diagram of the simulator.

operations across connecting channels, rather than by updating
global variables or data structures. The simulator assumes that
credit-based flow control is used for buffer management be-
tween adjacent routers and uses a separate, dedicated channel
to communicate credit information; i.e., each network channel
is accompanied by a credit channel in the opposite direction.

At the lowest level, BookSim simulates the network on the
granularity of flits and clock cycles. A packet consists of one
or more flits or flow control digits, the smallest unit of channel
and buffer allocation. The width of all channels and router
pipelines always corresponds to the width of a single flit.
During a clock cycle, a network channel can read a single
flit from its input and also write a single flit to its output.
Studies that require varying the channel width of the network
can be conducted by varying the number of flits per packet.
For example, when simulating two networks with 64-bit and
32-bit wide channels, transmission of a 512-bit packet requires
eight flits on the former network and 16 flits on the latter.

B. Router Pipeline Model

The primary router model in BookSim is the input-queued
virtual channel router. The major router components and
the canonical four-stage pipeline for packet header flits are
shown in Figure 4. This roughly corresponds to the modular
organization and program flow of the simulator. Arbitrary
delays can be assigned to each pipeline stage, and the entire
router can be configured to mimic the behavior of a single
cycle router.

SW Allocator

VC Allocator

…

R
o

u
te

C
o

m
p

u
te Input VC

Input VC

Credit
Tracker

Output VC

Credit
Tracker

Output VC

R
o

u
te

C
o

m
p

u
te Input VC

Input VC

…

(a) Component diagram

Routing/
Queuing

VC
Allocation

Switch
Allocation

Crossbar
Traversal

(b) Pipeline stages

Fig. 4. BookSim’s input-queued router model.

BookSim offers multiple configuration options to overcome
the throughput limitations that head-of-line blocking imposes
on input-queued routers. One such option allows the speed of
the router’s internal pipeline to be increased relative to the
network channels. With a router speedup of 1.5, the router’s
pipeline runs three times for every two channel/trafficmanager
cycles, directly increasing the router’s throughput relative to
the rest of the network. This is useful when the focus of the
simulation is not on the router microarchitecture, but on other
network properties (e.g., the routing algorithm). For the router
to behave correctly with speedup, additional buffering is added
at the router outputs.

The configuration of the router’s crossbar can also be
adjusted to allow for non-square crossbar configurations. With
a crossbar input speedup of two, each router input port has
access to a pair of inputs into the crossbar, with input Virtual
Channels (VCs) statically assigned to each individual input. In
conjunction with a sufficiently large number of VCs, additional
crossbar inputs can thus reduce the effect of head-of-line
blocking. For a k-port router, an input speedup of k (with k
virtual channels) effectively mimics the behavior of an output
queued router.

BookSim furthermore supports atomic VC allocation that
eliminates head-of-line blocking. In regular VC allocation,
a VC becomes available for allocation when the tail flit of
the packet currently holding the VC departs the router. With
atomic VC allocation, a VC cannot be reallocated until the
credit for the previous tail flit is received by the router. This
ensures that each VC only holds a single packet at any given
time and thereby avoids dependencies between successive
packets in the network. While regular VC allocation can
provide higher throughput with a limited number of VCs,
atomic VC allocation can provide better performance with
large numbers of VCs due to the elimination of head-of-line
blocking.

C. Simulator Configuration

The parameters used in a simulation are specified in a
configuration file; parameters that are not explicitly specified
use default values. A set of exemplary parameters is listed in
Table I. At the top level, a network in BookSim is defined by
the topology and its associated parameters. During network
initialization, basic network characteristics are automatically
derived based on the topology; this includes the network size,
number of routers and channels, the number of ports for
each router, and the connectivity of the routers and channels.
All routers are configured identically based on flow control,
routing, and microarchitecture parameters. For common net-
work topologies, route computation at each router is done
algorithmically by a routing function based on the network
connectivity. The routing computation has sufficient access
to information about the router’s buffer/credit occupancy to
facilitate the implementation of adaptive routing algorithms.

IV. BOOKSIM2

The current version of the BookSim simulator—
BookSim2—improves upon various aspects BookSim1
while incorporating new features for simulating NoCs,
which we describe in the following sections. The simulator
maintains its cycle-accurate nature, and a greater emphasis
is placed on the detailed modeling of network components
based on realistic hardware implementations. A large part of
the revision effort has focused on improving the model of
the Input-Queued (IQ) router microarchitecture, with the aim
of facilitating more accurate simulation in a NoC context.
While the basic structure of the IQ router remains the same
as shown earlier in Figure 4a, features and optimizations
have been added to reflect current trends in NoC research.
Other modifications to the simulator include increased
flexibility for traffic generation and integration with other
traffic sources.One addition to BookSim2 that significantly
affected results compared to BookSim1 is accurate modeling
of channel latencies. Channel latency affects many aspects
of network performance, including the utilization of buffers,
credit round-trip latency, as well as the propagation delay
for congestion information in adaptive routing algorithms.
Therefore, depending on the length of the channels and
the signaling assumptions, the channel latency can have a
significant impact on performance.

A. Router Microarchitecture Modeling

Many of the updates to the IQ router model were directly
inspired by the development of an Open-Source NoC Router
RTL [7], [12], [13]. While BookSim1 aimed to avoid software
constructs that would be impractical to implement in hardware,
it does so primarily at the network level, e.g. by avoiding the
use of global state shared among multiple network compo-
nents. In contrast, its fidelity at the microarchitecture level,
particularly in the router pipeline, is somewhat limited. The
router pipeline is implemented by tagging each input VC with
a pipeline state and a timestamp that indicates when the VC
is ready for the next step of execution. In each clock cycle, all

TABLE I
SOME REPRESENTATIVE PARAMETERS IN BOOKSIM SIMULATOR. THESE PARAMETERS ARE VALID IN BOTH 1.0 AND 2.0 RELEASE.

BookSim parameters Description
Topology
topology Specifies the network connectivity based on well known topologies (e.g., mesh, butterfly)
k, n Specify the network size and configuration, for the selected topology.
Routing
routing function Determines the routing algorithm for the selected topology (e.g., dimension order)
Flow Control
num vcs Number of virtual channels per physical channel
vc buf size Input buffer size of each virtual channel
wait for tail credit Enable atomic VC allocation
Router Microarchitecture
vc allocator, sw allocator The type of allocator used for switch and virtual channel allocation
credit delay, routing delay, vc alloc delay, etc. Latency parameters for the router pipeline
input speedup, output speedup, internal speedup Speedup in the crossbar and router pipeline compared to network channels.
Traffic
traffic pattern Synthetic traffic pattern used in the simulation (e.g., uniform, transpose, etc.)
injection rate Average injection rate for each node

pipeline stages are executed sequentially. Since the execution
of each pipeline stage can update the internal state of the router
directly, this can lead to unintended propagation of information
between pipeline stages in cases where multiple stages should
be executed concurrently. As an example, in the case of
speculative switch allocation, the VC and switch allocation
stage are executed independently and in parallel; however,
the simulator actually executes both of them successively and
updates the router’s internal state after each stage. As a result,
the switch allocator is aware of whether or not VC allocation
succeeded or not, even though the results of the latter would
not be available until the end of the cycle in a real router,
and therefore unrealistically avoids cases of misspeculation in
which a crossbar time slot is assigned speculatively but no VC
is secured.

In order to address these issues, the router model in Book-
Sim2 was modified to use a two-phase protocol for updating all
router state. In the evaluation phase, which loosely corresponds
to combinational logic in a hardware implementation, only
read accesses to the routers’ internal state are permitted. The
result of the evaluation phase is a set of state updates, each of
which is tagged with the time at which it takes effect. Once
the evaluation phase is completed for all pipeline stages of all
routers, the simulator enters the update phase, in which the
routers’ internal state is modified to reflect any such updates
that are due in the current cycle. This evaluate-update protocol
enforces clean clock cycle boundaries and avoids cases in
which unintentional serialization is introduced where a parallel
implementation was intended.

B. Pipeline Optimizations

Packet latency often has a direct impact on overall perfor-
mance. In network topologies with a large network diameter,
such as the mesh topology, router latency represents a sig-
nificant fraction of the overall network latency. Many NoC
research efforts have thus focused on optimizing the router
pipeline to reduce latency. While the original BookSim can

vary router latency by changing the delay associated with each
pipeline stage, this does not represent an accurate model of re-
alistic hardware implementations. Using zero-latency pipeline
stages also does not capture the performance impacts of the
various pipeline optimizations. In BookSim2, many pipeline
optimization techniques for IQ routers have been implemented
in full detail, providing the desired improvement in router
latency without degrading the accuracy of the simulation
results.

Look-ahead routing is commonly used to eliminate the
delay associated with route computation from the router’s
critical path. In networks with a well defined topology, routing
information for the current router can be precomputed at
the upstream router. Newly arrived packets are immediately
eligible for VC allocation, and look-ahead routing for the
next hop can be performed in parallel to allocation. For most
network configurations, route computation does not have side
effects on other packets in the router. As a result, we can
emulate the effect of look-ahead routing by setting the delay
of the routing stage to zero without compromising accuracy in
many scenarios. However, this approach can lead to inaccurate
results when adaptive routing is used to make routing decisions
based on the current network state: In such cases, a realistic
model must account for the fact that propagating congestion
information to the upstream router incurs delay, and that
adaptive routing decisions must therefore be made based on a
slightly outdated view of the network state.

The delay of the VC allocation pipeline stage can effectively
be hidden by employing speculative switch allocation [18].
In routers that utilize this technique, a packet requesting
VC allocation also sends a request to the switch allocator,
speculating that a VC will be granted. If both types of
allocation succeed, the packet effectively performs VC and
switch allocation in parallel, shortening the packet’s effective
pipeline traversal delay. In case VC allocation is not success-
ful, any speculatively assigned crossbar time slot goes unused.

Using speculative switch allocation is especially useful for
reducing router latency at low network loads, where very
little contention occurs in both allocators and any speculative
request is likely to succeed.

As crossbar times slots assigned to a speculative request
go unused if VC allocation fails, it is necessary to prioritize
non-speculative requests—which will always utilize assigned
crossbar time slots—during switch allocation in order to avoid
performance degradation. Prior research efforts have proposed
several methods to guarantee that non-speculative requests take
priority over speculative ones [7], [18]. BookSim2 supports
three different mechanisms: A simple method is to statically
assign higher priority to non-speculative requests and to use
BookSim’s priority-aware allocators for switch allocation.
With a winner-takes-all priority allocator, the highest-priority
request always wins, eliminating all speculative requests that
conflict with non-speculative requests. BookSim also sup-
ports the canonical implementation described in [18], which
uses separate allocators for speculative and non-speculative
requests; the resulting grants from the two allocators are
merged at the end of allocation, and any speculative grants that
conflict with non-speculative grants are discarded. Alternately,
speculative grants can be masked pessimistically based on
non-speculative requests, which are available earlier in the
clock cycle [7]; this method can be used to reduce the switch
allocator’s critical path delay without significantly degrading
speculation efficiency.

The VC allocation pipeline stage can also be removed en-
tirely by employing combined VC and switch allocation [19].
To do so, head flits participate in switch allocation, and any
winning head flits are assigned a free output VC if one is avail-
able. Similarly to speculative switch allocation, such requests
must be handled with lower priority than requests from body
and tail flits in order to avoid performance degradation due to
unused crossbar time slots. In total, BookSim2 features four
different methods of performing VC and switch allocation in
the same cycle. In combination with look-ahead routing, this
can reduce the router pipeline delay from four to two cycles.

BookSim2 retains the original simulator’s ability to con-
figure arbitrary delays for each pipeline stage. A single-cycle
router can be created by setting the switch traversal delay to
zero in combination with the optimizations described above.
However, this is not feasible to implement in hardware, as
it requires that switch allocation and switch traversal execute
sequentially in a single cycle, creating a long critical path.
Thus, for realistic simulations, BookSim2 has a minimum
router latency of 2 cycles.

C. Allocators and Prioritization

BookSim supports a wide variety of allocator implementa-
tions for both VC and switch allocation, including iSLIP [20],
lonely output, parallel iterative matching [21], maximum
matching, and wavefront allocators [22]. Each of these de-
signs represents a different trade-off between implementation
complexity and quality of allocation. For NoC simulations,
customizable separable allocators have been added to the

collection. Contemporary NoC designs commonly employ
such allocators as their principle of operation—decomposing
allocation into multiple stages of arbitration—facilitates sim-
ple hardware implementations with comparatively low delay;
however, this is achieved at the expense of reduced allocation
quality [1].

In general, separable allocators are implemented using two
stages of arbitration. A first stage of arbiters—one per input—
ensures that at most a single output is granted to each input,
while a second stage ensures that each output is granted to
at most one input. These two stages can be completed in
either order, corresponding to input- and output-first allocation.
BookSim2 allows such allocators to be implemented from
multiple different types of arbiters; available designs include
matrix arbiters, round-robin arbiters, weighted-round robin
arbiters, as well as tree arbiters constructed from any of the
aforementioned elementary arbiter types. All arbiter designs
are priority-aware and thus support the construction of priority-
aware allocators.

By default, BookSim2 also supports a variety of packet pri-
oritization schemes. Specifically, the user can either manually
specify a static priority for each traffic class, or priorities
can be dynamically assigned to packets based on various
network factors. For example, age-based priority dynamically
calculates each packet’s priority value based on the number of
cycles that have elapsed since the packet was generated [23].
When a packet is at the head of a VC, its output request
is tagged with its current priority before being sent to the
allocators. To avoid priority inversion, BookSim2 also supports
a simple priority donation scheme in the input VCs, in which
the head-of-line flit in each buffer is assigned the highest
priority of any packet currently stored that buffer.

D. Dynamic Input Buffer Management

Prior research has shown that input buffers dominate the
area and power of NoC routers [24], [25]. Efficient utilization
of the buffer resources is thus critical in minimizing the total
cost of the network for a given set of performance constraints.
Most NoC routers that employ VCs implement simple static
buffer management schemes where each VC is assigned a
fixed number of buffer slots. The amount of buffer storage
for each VC is chosen to be sufficiently large to cover the
credit round-trip latency, allowing the VC to sustain full
throughput on the physical channels without incurring credit
stalls. However, depending on the number of VCs and their
assignment, this can cause a large fraction of the available
buffer space to remain empty even under heavy load and thus
lead to significant under-utilization of a costly resource.

Dynamic buffer management schemes—commonly referred
to as buffer sharing—represent one approach for improving
buffer utilization by allowing multiple VCs to share a common
pool of buffer resources. BookSim2 adds support for such
schemes, as well as hybrid schemes where only part of the
buffer capacity is available for sharing. While a variety of
different hardware implementations have been proposed in
prior work [26], [27], the implementation differences between

them typically do not manifest in different network behavior
and are thus transparent to the simulator; as such, BookSim2
can accurately model most such implementations.

BookSim2 furthermore supports several schemes for reg-
ulating buffer sharing in an effort to avoid performance
pathologies that can result from allowing buffer space to
be shared freely [6]. With credit-based flow control, such
schemes can be implemented by restricting credit availability
at the routers’ output ports. To this end, BookSim2 adds
a modular facility for implementing sharing policies to the
credit tracking mechanism, allowing the maximum share of
credits available to each VC to be assigned either statically or
dynamically based on network conditions. Several exemplary
dynamic sharing policies are included with BookSim2; for
example, one simple policy monitors the number of active
VCs at each output and divides the credit pool evenly among
them. A more advanced sharing policy tracks the level of the
congestion for each active output VCs and allocates a larger
share of buffer space to less congested VCs with the goal of
avoiding inefficient buffer occupancy by blocked flits [6].

E. Flexible Synthetic Traffic Simulation

In the early stages of network evaluation, it is faster and
often more insightful to test designs using synthetic traffic
patterns. Synthetic traffic can systematically stress specific
parts of the network and thus help exercise particular corner
cases. BookSim1 supported a variety of well-known synthetic
traffic patterns, as well as a facility for randomly generating
permutation patterns. In BookSim2, we have expanded the
flexibility of synthetic traffic simulations by allowing arbitrary
combinations of synthetic traffic patterns. A combined traffic
pattern is created by specifying a list of individual synthetic
traffic patterns, each with separately configurable injection
rates and packet sizes. At runtime, packets are injected into
the network by randomly choosing one of the specified sub-
patterns for each packet based on the relative injection rates.
This feature allows BookSim2 to simulate an arbitrarily di-
verse set of synthetic traffic patterns and can help reveal
interactions between different patterns. The traffic composition
of the combined pattern is only visible at injection time; in
particular, routers cannot distinguish between the individual
components that make up a combined pattern.

The simulator also supports flexible configuration of traffic
classes: each class can specify its individual packet size,
injection rate, injection model, priority scheme, and traffic
pattern (including the combined traffic pattern described ear-
lier). Packets from different traffic classes are generated and
queued independently at the traffic sources. By default, packets
from different classes arbitrate for network injection in a
round-robin fashion. Traffic class IDs are carried in the packet
header, enabling different classes to be handled differently in
the routers. This enables the user to test networks that offer
differentiated services based on traffic classes.

Finally, BookSim2 also supports simulations using multiple
subnetworks: Instead of assigning packets from different traffic
classes to different ranges of VCs within a single network, this

allows traffic classes to be transported on separate physical
networks, eliminating any interaction or contention. This ap-
proach has been shown to be attractive for many NoC use cases
both in research and in the industry [28], [29]. In the simulator,
subnetworks can be declared independently with different
network parameters such as topology and buffer sizes. The
subnetworks only share the injection and ejection modules, and
they otherwise operate completely independently. By default,
the simulator assigns each packet to a subnetwork either ran-
domly or based on its traffic class; however, other specialized
subnetwork assignment schemes can be easily implemented
by modifying the injection modules.

F. Alternative Traffic Models

In addition to traditional open-loop synthetic traffic simu-
lations, the traffic manager in BookSim2 has been extended
to support closed-loop modeling with synthetic traffic, as well
as generating NoC traffic by interfacing with a full-system
simulator or by replaying traffic traces.

BookSim2 introduces support for conducting closed-loop
experiments with synthetic traffic by modeling request-reply
traffic. Closed-loop evaluations can be more representative
of system performance, as the injection rate of packets is
influenced by the network load. The injection modules use
finite queuing and limit the maximum number of outstanding
requests; when the maximum number of outstanding requests
is reached, the injection module stalls and no additional
requests are injected until one or more requests complete.
This mechanism can be used to approximate the behavior
of a processor-memory network in which processors have a
finite number of Miss Status Handling Registers (MSHRs);
once all of a processor’s MSHRs are in use, it stalls on the
next memory request until one of the outstanding requests
completes. Differences and similarities between open-loop
and closed-loop network evaluation with BookSim have been
studied earlier in [30].

In order to facilitate simulations of realistic on-chip work-
loads, BookSim2 supports both closed-loop and open-loop
full-system simulations by either interfacing with a full-system
simulator or playing back previously generated traces, respec-
tively. An earlier version of BookSim was used to model the
on-chip network for the GPGPU-sim simulator [11]. Addition-
ally, BookSim2 offers an interface that can be integrated with
the GEM5 [15] full-system simulator, replacing Garnet [14]
or the simple network model included with GEM5.

The injection module can also be programmed to inject
traffic based on traces that were generated offline by full-
system simulation or other means. At the cost of reduced fi-
delity, this allows for much higher simulation speed compared
to using full-system simulation. BookSim2 supports traces
in a simple ad-hoc format that lists each packet injection
and ejection along with its source and destination node.
Additionally, it supports pseudo-closed-loop simulation using
dependency-annotated traces; this functionality leverages the
Netrace library developed at UT Austin [31] and represents a

middle ground in terms of fidelity and performance between
traditional trace-based simulation and full-system simulation.

V. EVALUATION

In this section, we provide several demonstrative results
obtained using the BookSim2 network simulator. We first
show that results generated by BookSim2 accurately match
the behavior of RTL implementations of NoC routers (Sec-
tion V-A). We then show how the router pipeline optimizations
that were described in Section IV impact network performance
(Section V-B). Finally, we present a case study that evaluates
the impact of age-based priority on the throughput of a mesh
network using separable allocators (Section V-C).

A. Validation with RTL Router Implementation

The design of BookSim2 places significant emphasis on
hardware realistic implementation of an IQ NoC router. We
can demonstrate this by comparing the results generated from
the software simulator with RTL simulations using the same
set of network configurations. The network we simulated is
a 3×3 mesh network with a single VC and 16-flit input
buffers. Both switch and VC allocation use separable input-
first allocators with round-robin arbiters. Speculative switch
allocation is disabled. The networks are running uniform
random traffic patterns with a packet size of four flits. Network
latency and throughput statistics are collected over a period
of 100K cycles per simulation. We are limited to simulating
small NoCs due to the time and resource constraints of the
RTL simulation; however, the results are applicable to larger
network configurations as well.

Figure 5 shows the accepted throughput and in-network
latency of the two simulated networks as we varied the
injection rate. Overall, the simulations using BookSim and the
RTL exhibit nearly identical performance. The network latency
in Figure 5a measures only the delay inside the network; i.e.,
it does not include source queuing delay. The results show a
maximum difference of 5% in network latency measurements.
The latency plateau at 60% load shows when both networks
have reached saturation, when nearly all buffers in the network
have become saturated and network queuing delay becomes
constant. When networks are below saturation, by definition
the accepted throughput is equal to the injection rate as shown
by the linear region of Figure 5b. After the onset of saturation,
the accepted throughput plateaus as the network reaches its
maximum capacity. The result shows a maximum difference of
3% in the accepted throughput of the two simulated networks.
Network throughput is largely determined by the matching
efficiency of the allocators, showing that the allocator imple-
mentation in BookSim and in the RTL exhibit nearly identical
behavior.

B. Impact of Router Pipeline Optimization

The router pipeline optimizations included in BookSim2
not only reduce the router traversal latency, but can also
have an impact on the network’s saturation throughput. This
impact could not be observed in the original BookSim because

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 N
e

tw
o

rk
 L

at
e

n
cy

 (
cy

cl
e

s)

Offered Throughput (flits/cycle)

Booksim2

RTL

(a) Network Latency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

A
cc

e
p

te
d

 T
h

ro
u

gh
p

u
t

(f
lit

s/
cy

cl
e

)

Offered Throughput (flits/cycle)

Booksim2

RTL

(b) Minimum Accepted Throughput

Fig. 5. Network latency and throughput comparison of a 3×3 mesh network
using the software simulation and RTL simulation.

its router latency reduction is simulated by simply merging
pipeline stages without any change to the underlying router
logic.

Figure 6 compares the the performance of 2-cycle routers
implemented in the two versions of BookSim and a baseline
network using 3-cycle routers. For BookSim1, we set the
pipeline delay of routing computation and VC allocation to
zero. A packet arriving at a router performs routing computa-
tion, VC allocation, and switch allocation sequentially in the
same cycle before traversing the switch in the second cycle.
For BookSim2, one network uses speculative switch allocation
and the other network uses the combined allocation technique
described in the previous chapter. For the speculative network,
separate allocators are used to process speculative and non-
speculative requests. After allocation, the resulting speculative
grants are masked by non-speculative grants. All networks are
64-node meshes with two VCs, each with a 16-flit input buffer.
Network channel traversal takes a single cycle. We apply a
uniform random traffic pattern with a packet size of 4 flits.

At low network load, the latencies for the three networks
that use 2-cycle routers are identical and 20% lower than
the latency of the baseline. This is a direct result of the re-
duced router latency, which particularly affects high-diameter
network topologies like the mesh. For the speculative net-

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4

A
ve

ra
ge

 P
ac

ke
t

La
te

n
cy

 (c
yc

le
s)

Injection Rate (flits/cycle)

Booksim1

Booksim2 Spec

Booksim2 Combined

Baseline

Fig. 6. Latency-throughput of mesh networks using 2-cycle routers in
BookSim1 and BookSim2 compared to a baseline network with 3-cycle
routers. The network saturation throughput varies depending on the pipeline
optimization method used.

work, very little allocator contention exists at low loads, and
consequently speculative requests are nearly always granted.
As network load increases, the latency of the speculative
network remains consistently lower than the non-speculative
baseline and on par with the latencies of the combined and the
BookSim1 networks. This indicates that speculation remains
effective even for higher network loads. Because speculative
switch requests have a lower priority than non-speculative
requests, networks with speculative switch allocation should
never perform worse than the baseline.

In terms of throughput, the network using 2-cycle Book-
Sim1 routers has the same saturation throughput as the 3-
cycle router. This shows that these two networks are essentially
identical, with the exception of artificially lowered network
latency. When using speculative 2-cycle routers, the saturation
throughput of the network is increased by 3% compared to
baseline and BookSim1. This is because the speculative router
in essence has two switch allocators operating in parallel. If
the grants generated by the two allocators do not conflict,
then the effective matching efficiency of the two allocators
is higher than that of a single switch allocator. In contrast,
the saturation throughput of the combined allocation network
is 2% lower than the baseline. This is because packets are
never assigned a VC until they can win speculative switch
allocation. This effectively reduces the number of requests
handled by the non-speculative allocator and thus the number
of matchings generated. In addition, a speculative conflict in
combined allocation not only cancels the switch grant but also
effectively the VC grant. The opportunity cost of a speculative
conflict is greater for combined allocation than for speculative
switch allocation with separate VC allocation.

This example shows that detailed microarchitectural mod-
eling is important for the purpose of network research. For a
high level simulation, it can be sufficient to use the simple and
faster BookSim1 approach to router latency reduction. But the
detailed model offered by BookSim2 can reveal key insights
about the interactions of router components.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 VC 2 VC 4 VC 1 VC 2 VC 4 VC

Mesh CMesh

Sa
tu

ra
ti

o
n

 T
h

ro
u

gh
p

u
t

(f
lit

s/
cy

cl
e

)

Age

Baseline

Fig. 7. Effect of age-based priority on the saturation throughput of 64-node
mesh and concentrated mesh networks for different numbers of VCs with
DOR.

C. Case Study: Impact of Age-Based Priority on Network
Performance

By using round-robin arbitration, separable allocators can
provide strong local fairness between a router’s inputs. How-
ever, as multiple traffic flows from different sources share the
same router input, this is not sufficient to guarantee strong
fairness between traffic flows. As a result, adversarial traffic
patterns can lead to global unfairness and starvation. Age-
based priority [23] represents one way of achieving global
fairness in NoCs. It achieves this by prioritizing packets in
the network based on the time they were created. During each
arbitration step of the separable allocator, each arbiter issues
a grant to the request from the oldest packet.

Studies have shown that using age can resolve the global
fairness problem of a locally fair allocator [8], [32]. How-
ever, using BookSim2, we show that age-based priority also
affects a network’s saturation throughput under uniform, non-
adversarial traffic. These effects are caused by how age-based
priorities interact with the separable allocators’ matching deci-
sions. Figure 7 shows the effects of age-based priority on the
saturation throughput of 64-node mesh and Concentrated Mesh
(CMesh) networks using Dimension order routing (DOR)
under uniform random traffic. The networks all use separa-
ble input-first allocators for both switch and VC allocation.
For each configuration, age-based allocation provides a 2-
4% increase in network saturation throughput compared to
the baseline. Under uniform random traffic, the routers in
the center of a mesh network are the most heavily loaded.
With DOR, the majority of the network load in these routers
is caused by traffic traveling along each dimension. Conse-
quently, the network throughput is limited by the throughput
of the east-west and north-south through-traffic in the central
routers. The node injection traffic at these routers competes
with the critical through-traffic for output bandwidth. Age-
based allocators tend to service the older through-traffic more
quickly than the locally injected traffic, resulting in higher
saturation throughput.

Age-based allocation can also adversely affect performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1VC 2VC 4VC 1 VC 2 VC 4 VC

Flattened BFLY DOR Mesh O1Turn

Sa
tu

ra
ti

o
n

 T
h

ro
u

gh
p

u
t

(f
lit

s/
cy

cl
e

)

Age

Baseline

Fig. 8. Effect of age-based priority on the saturation throughput of 64-node
Flattened Butterfly and mesh networks.

for certain network configurations. The constraints imposed by
packet priorities can reduce the separable allocators’ matching
efficiency, and therefore lower the saturation throughput of the
network. Figure 8 shows the effect of age-based priority on the
saturation throughput of 64-node flattened butterfly and mesh
networks under uniform random traffic. In this experiment, the
mesh networks use O1TURN routing [33], where the order of
dimension traversal for DOR is selected at random for each
packet. For simulations with a single VC, both topologies
show a higher saturation throughput when using age-based
priority. This improvement is due to the prioritization of the
through-traffic as described previously. However, increasing
the number of VCs causes age-based networks to experience
performance degradation compared to the baseline network
with no priority.

Matching inefficiencies in separable allocators arise due
to the lack of coordination between arbiters within each
arbitration stage; for example, multiple arbiters in the input
stage of a separable input-first allocator can independently
pick the same output port even though other non-conflicting
requests exist. As a result, only one port will receive a grant
from the output stage, leaving the others idle. For age-based
allocators, this problem is further compounded by the fact that
any requests that were not granted because of output conflicts
will be re-issued in the next cycle with their age increased by
one, making these requests more likely to be selected again by
the input stage. This creates a positive feedback loop which
biases the input arbitration towards selecting requests that are
unlikely to succeed in output arbitration, leading to a decrease
in matching efficiency.

D. Simulator Performance

The detailed modeling provided by BookSim2 does have
some negative impact on the performance of the simulator.
Figure 9 shows the simulation run time of two different
64-node mesh network configurations under various network
loads running for 100K cycles per simulation. One configu-
ration models a network with a single VC while the second
configuration has 8 VCs with speculative allocation. For both

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6

Si
m

u
la

ti
o

n
 R

u
n

 T
im

e
 (

s)

Injection Rate (flits/cycle)

Mesh 1VC

Mesh 8VC Spec

Fig. 9. BookSim2 simulation run time. The speed of the simulator is
determined by the complexity of the network configuration and the activity
in the network.

configurations, the run time initially grows linearly with the
injection rate while the networks are not saturated. This shows
that the simulation run time is proportional to the amount
of activity occurring in the simulator. The number of VCs
in a network also has an effect on simulation run time as
with more VCs, the simulator has a higher memory footprint
and more network activity to process, both of which directly
affect simulation time. This causes the 8-VC simulation to
have a higher run time slope; at an injection rate of 0.3, the
8-VC configuration has approximately 50% higher run time
compared to the 1-VC configuration. From the run time plot,
we can also infer when the two networks reach saturation: at
that point, the simulation run time becomes constant as the
amount of network activity reaches its maximum.

VI. SUMMARY

In this work we have presented BookSim, a flexible and
detailed simulator specialized for NoCs. The simulator offers a
large degree of network customization and numerous network
component designs. The newest version of the simulator also
incorporates many state-of-the-art features and optimization
for NoCs developed in recent years. The underlying network
model of BookSim2 is highly accurate, as we demonstrate by
comparing it with an RTL implementation of a NoC router.
The latest simulator source code is available online at [34].

ACKNOWLEDGMENT

This research was supported in part by the P. Michael
Farmwald, the Prof. Michael J. Flynn, and the Robert Bosch
Stanford Graduate Fellowships. This research was furthermore
supported by the National Science Foundation under grants
CCF-0701341 and CCF-070234, as well as the Stanford
Pervasive Parallelism Laboratory. We would like to thank the
anonymous reviewers for their helpful suggestions. We would
also like to thank the users of BookSim for helping us improve
the simulator through comments, suggestions, and bug reports.

REFERENCES

[1] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA: Morgan Kaufmann, 2004.

[2] J. Kim, J. Balfour, and W. J. Dally, “Flattened Butterfly Topology for
On-Chip Networks,” in Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, 2007.

[3] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Cost-Efficient Dragonfly
Topology for Large-Scale Systems,” IEEE Micro, vol. 29, no. 1, Jan.
2009.

[4] N. Jiang, J. Kim, and W. J. Dally, “Indirect Adaptive Routing on
Large Scale Interconnection Networks,” in Proceedings of the 36th
International Symposium on Computer Architecture, 2009.

[5] G. Michelogiannakis, J. Balfour, and W. J. Dally, “Elastic-Buffer Flow
Control for On-Chip Networks,” in Proceedings of the IEEE 15th
International Symposium on High Performance Computer Architecture,
2009.

[6] D. U. Becker, N. Jiang, G. Michelogiannakis, and W. J. Dally, “Adaptive
Backpressure: Efficient Buffer Management for On-Chip Networks,” in
Proceedings of the 30th IEEE International Conference on Computer
Design, 2012.

[7] D. U. Becker and W. J. Dally, “Allocator Implementations for Network-
on-Chip Routers,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, 2009.

[8] J. W. Lee, M. C. Ng, and K. Asanovic, “Globally-Synchronized Frames
for Guaranteed Quality-of-Service in On-Chip Networks,” in Proceed-
ings of the 35th International Symposium on Computer Architecture,
2008.

[9] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary,
“Firefly: Illuminating Future Network-on-Chip with Nanophotonics,”
in Proceedings of the 36th International Symposium on Computer
Architecture, 2009.

[10] M. J. Cianchetti, J. C. Kerekes, and D. H. Albonesi, “Phastlane: a rapid
transit optical routing network,” SIGARCH Computer Architecture News,
vol. 37, no. 3, Jun. 2009.

[11] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA workloads using a detailed GPU simulator,”
in Proceedings of the IEEE Symposium on Performance Analysis of
Systems and Software, 2009.

[12] Open-Source Network-on-Chip Router Generator. [Online]. Available:
http://nocs.stanford.edu/router.html

[13] D. U. Becker, “Efficient Microarchitecture for Network-on-Chip
Routers,” Ph.D. dissertation, Stanford University, Aug. 2012.

[14] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jah, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in Proceedings of
the IEEE Symposium on Performance Analysis of Systems and Software,
2009.

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The GEM5
Simulator,” SIGARCH Computer Architecture News, vol. 39, no. 2, May
2011.

[16] NOXIM. [Online]. Available: http://noxim.sourceforge.net
[17] V. Puente, J. A. Gregorio, and R. Beivide, “SICOSYS: an integrated

framework for studying interconnection network performance in mul-

tiprocessor systems,” in Proceedings of the 10th Euromicro conference
on Parallel, distributed and network-based processing, 2002.

[18] L.-S. Peh and W. J. Dally, “A Delay Model and Speculative Archi-
tecture for Pipelined Routers,” in Proceedings of the 7th International
Symposium on High-Performance Computer Architecture, 2001.

[19] A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha, “A
4.6Tbits/s 3.6GHz single-cycle NoC router with a novel switch allocator
in 65nm CMOS,” in Proceedings of the 25th International Conference
on Computer Design, 2007.

[20] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, Apr. 1999.

[21] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High-
speed switch scheduling for local-area networks,” ACM Trans. Comput.
Syst., vol. 11, no. 4, Nov. 1993.

[22] Y. Tamir and H.-C. Chi, “Symmetric Crossbar Arbiters for VLSI
Communication Switches,” IEEE Trans. Parallel Distrib. Syst., vol. 4,
no. 1, Jan. 1993.

[23] D. Abts and D. Weisser, “Age-based packet arbitration in large-radix
k-ary n-cubes,” in Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, 2007.

[24] X. Chen and L.-S. Peh, “Leakage power modeling and optimization
in interconnection networks,” in Proceedings of the 2003 International
Symposium on Low Power Electronics and Design, 2003.

[25] T. T. Ye, G. de Micheli, and L. Benini, “Analysis of power consumption
on switch fabrics in network routers,” in Proceedings of the 39th annual
Design Automation Conference, 2002.

[26] J. Liu and J. G. Delgado-Frias, “A DAMQ shared buffer scheme for
network-on-chip,” in Proceedings of the Fifth IASTED International
Conference on Circuits, Signals and Systems, 2007.

[27] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif,
and C. R. Das, “ViChaR: A Dynamic Virtual Channel Regulator
for Network-on-Chip Routers,” in Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, 2006.

[28] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-chip
networks,” in Proceedings of the 20th annual International Conference
on Supercomputing, 2006.

[29] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-Chip
Interconnection Architecture of the Tile Processor,” IEEE Micro, vol. 27,
no. 5, 2007.

[30] H. Kim, S. Heo, J. Lee, J. Huh, and J. Kim, “On-Chip Network
Evaluation Framework,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2010.

[31] J. Hestness and S. W. Keckler, “Netrace: Dependency-Tracking Traces
for Efficient Network-on-Chip Experimentation,” The University of
Texas at Austin, Dept. of Computer Science, Tech. Rep., 2011.

[32] M. M. Lee, J. Kim, D. Abts, M. R. Marty, and J. W. Lee, “Probabilistic
Distance-Based Arbitration: Providing Equality of Service for Many-
Core CMPs,” in Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2010.

[33] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and M. Thottethodi, “Near-
Optimal Worst-Case Throughput Routing for Two-Dimensional Mesh
Networks,” SIGARCH Computer Architecture News, vol. 33, no. 2, May
2005.

[34] BookSim 2.0. [Online]. Available: http://nocs.stanford.edu/booksim.html

