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*Explored broadest set of CMP systems in HPC literature P

Examined two diverse scientific algorithms: SPMV and LBMHD

*Developed performance portable auto-tuners ) )

*Achieved highest intra-node performance in the literature

«Continuing effort with additional platforms and algorithms

-Developlng rooftop.model which offers insight into CMP performance -Pruned original SPARSITY suite down to 14 matrices of interest Refe.r_ence | o | | o |

Model ’FIeS together. | o | -None should fit in cache12-135MB (memory intensive benchmark) S. Wllllams, J. Carter, L. Ollkgr, J. Shalf, K. Ye!lck_, Lattice Boltzmann Slmulgtlon Optimization on Leading

floating point performance, arithmetic intensity, memory performance -4 categories Multicore Platforms”, International Parallel & Distributed Processing Symposium (IPDPS) (to appear), 2008.
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eParadoxically, the most complex/advanced architectures required the ) _ o

most tuning, and delivered the lowest performance » *Thus it requires: o

‘Niagara2 delivered both very good performance and productivity Reference 2 Momenfcum (27 component). d'S_t”b_Ut'on ana L.
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'C?j” delivered extremely good performance and efficiency (processor S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel, "Optimization of Sparse Matrix-Vector Multiplication 7 macroscopic quantities |
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-Our multicore-specific autotuning is required to achieve top performance _ .. . .
Architectural transparency is invaluable in optimizing code _ _ _ *Two phases to the code: collision() advances the grid one time step
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-Results suggest CMPs designs should maximize efrective bandwidth Cache-based Pthreads, and Cell local-store based. Each cell update requires ~1300 flops and ~1200 bytes of data
utilization with increasing cores, even at cost of single core performance -1D parallelization by rows “flop:byte ~ 1.0(ideal), ~0.66(cache-based machines)
*Progressively expanded the autotuner (constant levels of productivity) 2 Problem Sizes: 643(330MB), and 1283(2.5GB)
*Currently utilize Structure-of-Arrays data layout to maximize locality
Autotuning
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