
Improving Memory Subsystem Performance using
ViVA: Virtual Vector Architecture

Joseph Gebis12,Leonid Oliker12, John Shalf1, Samuel Williams12,Katherine Yelick12

1 CRD/NERSC, Lawrence Berkeley National Laboratory Berkeley, CA 94720
2 CS Division, University of California at Berkeley, Berkeley, CA 94720

{JGebis, LOliker, JShalf, SWWilliams, KAYelick}@lbl.gov

Abstract. The disparity between microprocessor clock frequencies and memory
latency is a primary reason why many demanding applications run well below
peak achievable performance. Software controlled scratchpad memories, such as
the Cell local store, attempt to ameliorate this discrepancy by enabling precise
control over memory movement; however, scratchpad technology confronts the
programmer and compiler with an unfamiliar and difficult programming model.
In this work, we present the Virtual Vector Architecture (ViVA), which combines
the memory semantics of vector computers with a software-controlled scratchpad
memory in order to provide a more effective and practical approach to latency
hiding. ViVA requires minimal changes to the core design and could thus be eas-
ily integrated with conventional processor cores. To validate our approach, we
implemented ViVA on the Mambo cycle-accurate full system simulator, which
was carefully calibrated to match the performance on our underlying PowerPC
Apple G5 architecture. Results show that ViVA is able to deliver significant per-
formance benefits over scalar techniques for a variety of memory access pat-
terns as well as two important memory-bound compact kernels, corner turn and
sparse matrix-vector multiplication — achieving 2x–13x improvement compared
the scalar version. Overall, our preliminary ViVA exploration points to a promis-
ing approach for improving application performance on leading microprocessors
with minimal design and complexity costs, in a power efficient manner.

1 Introduction

As we enter the era of billion transistor chips, computer architects face significant chal-
lenges in effectively harnessing the large amount of computational potential available
in modern CMOS technology. Although there has been enormous growth in micro-
processor clock frequencies over the past decade, memory latency and latency hiding
techniques have not improved commensurately. The increasing gap between processor
and memory speeds is a well-known problem in computer architecture, with peak pro-
cessor performance improving at a rate of 55% per year, while DRAM latencies and
bandwidths improve at only 6% and 30% respectively [13]. To mask memory laten-
cies, current high-end computers now demand up to 25 times the number of overlapped
operations required of supercomputers 30 years ago. This “memory wall” is a primary
reason why high-end applications cannot saturate the system’s available memory band-
width, resulting in delivered performance that is far below peak capability of the system.

Numerous techniques have been devised to hide memory latency, including out-of-
order superscalar instruction processing, speculative execution, hardware multithread-
ing, and stream prefetching engines; nevertheless, these approaches significantly in-
crease core complexity and power requirements [9, 12] (the “power wall”) while offer-
ing only modest performance benefits. This is particularly true of irregularly-structured
and data-intensive codes, which exhibit poor temporal locality and receive little benefit
from the automatically managed caches of conventional microarchitectures. Further-
more, a significant fraction of scientific codes are characterized by predictable data
parallelism that could be exploited at compile time with properly structured program
semantics; superscalar processors can often exploit this parallelism, but their generality
leads to high costs in chip area and power, which in turn limit the degree of parallelism.
This benefit is as important for multicore chips as it is for chips in the area of exponen-
tial clock frequency scaling.

Two effective approaches to hiding memory latency are vector architectures [5] and
software controlled memories [8]. These techniques are able to exploit regularity in
data access patterns far more effectively than existing prefetching methods using min-
imal hardware complexity. However, vector core designs are costly due to the limited
market and limited applicability, while software controlled memories require radical
restructuring of code and the programming model, and are currently incompatible with
conventional cache hierarchies.

In this work we extend the Virtual Vector Architecture (ViVA1), which combines
these two concepts to achieve a more effective and practical approach to latency hiding.
ViVA offers the hardware simplicity of software controlled memory hardware imple-
mentations, with familiar vector semantics that are amenable to existing vectorizing
compiler technology. Additionally, our approach can coexist with conventional cache
hierarchies and requires minimal changes to the processor core, allowing it to be easily
integrated with modern microprocessor designs, in a power-efficient fashion.

Overall results, measured by a series of microbenchmarks as well as two compact
numerical kernels, show that ViVA offers superior performance compared to a micro-
processor using conventional hardware and software prefetch strategies. ViVA thus
offers a promising, cost-effective approach for improving latency tolerance of future
scalar processor chip designs, while employing a familiar programming paradigm that
is amenable to existing compiler technology.

2 ViVA Architecture and Implementation

In this section we present the ViVA programming model and design philosophy. As
shown in Figure 1, ViVA adds a software-controlled memory buffer to traditional mi-
croprocessors. The new buffer logically sits between the L2 cache and the micropro-
cessor core, in parallel with the L1 cache. Block transfer operations move data between
DRAM and the ViVA buffer, and scalar operations move individual elements between
the ViVA buffer and existing scalar registers in the microprocessor core. Extensive de-
tails of the ViVA infrastructure are provided in a recent PhD thesis [6].

1 The ViVA acronym was developed with IBM during the BluePlanet collaboration [4]

Programming Model The block transfers, between DRAM and the ViVA buffer,
are performed with new instructions that have vector memory semantics: unit-stride,
strided, and indexed (gather/ scatter) are all supported. In order to fully take advantage
of the benefits of ViVA, and maximize the amount of concurrency available to the mem-
ory system, most programs should use ViVA in a double-buffered approach whenever
possible. A thorough exploration of techniques is given in [6].

The basic ViVA programming model is conceptually simple:

do_vector_loads;
for(all_vector_elements) {

transfer_element_to_scalar_reg;
operate_on_element;
transfer_element_to_buffer;

}
do_vector_stores;

A major advantage of the ViVA approach is that it can leverage vector compiler tech-
nology with only minor modifications, since the new ViVA instructions have vector
memory semantics. The compiler can generate regular vector code, with one straight-
forward exception: the arithmetic vector operations have to be replaced with a scalar
loop that iterates over a vector’s worth of elements. Since vector compilers are a mature,
well-understood technology, real applications could benefit from ViVA immediately.

VIVA Buffer Hardware Details Our approach allows the ViVA buffer to act as a set
of vector registers, but without the associated datapaths that accompany registers in
full vector computers. This reflects one of the main goals of ViVA: efficient memory
transfer at low cost. Since there are no datapaths associated with the ViVA buffer, no
arithmetic operations can be directly performed on elements stored within the buffer.
In order to perform arithmetic operations, elements must first be transferred to existing
scalar (integer or floating-point) registers.

As with most vector register files, the ViVA register length is not fixed in the ISA.
Instead, control registers are used for hardware to describe the lengths of the registers to
software. This allows a single binary executable to run on different hardware implemen-
tations. Thus, a low-cost ViVA design may have shorter hardware register lengths, while
a higher-performance version may have longer registers. In our experiments, we study
hardware registers lengths that vary from sixteen 64-bit words through 256 words, with
most experiments using 64 words (typical of many traditional vector computers). Thus
the ViVA buffer would require total storage of 16KB, approximately the same modest
chip area as L1 data cache of the PowerPC G5 (used in the experiments of Section 4).

The ViVA buffer is logically positioned between the core and the L2 cache. In the
system we model, no additional ports are added to the L2 cache. Instead, the cache
arbiter is modified slightly to add ViVA requests to the collection of other types of
requests that it prioritizes and presents to the L2 cache: demand and prefetch requests
for both the L1 data and instruction caches. Figure 1(b) and (c) show the operation
request and data flow for loads and stores performed with traditional scalar accesses, as
well as with ViVA accesses; thin arrows correspond to requests alone (that don’t need
to transfer data), while thick arrows correspond to actual data flow. This flow diagram

Main memory

L2 Cache

Scalar Regs

ViVA Buffer

L1 Cache

CPU
Core

(a)

core

Floating Point Register File

L1 Data Cache

L2 Cache

ViVA RF

DRAM

1

2

3 4

5

6

chip 3

5

2

41

Scalar Load ViVA Load

(b)

core

Floating Point Register File

L1 Data Cache

L2 Cache

ViVA RF

DRAM

1

2

3 7

6

chip

1

3

2

4

ViVA StoreScalar Store

(c)

Fig. 1: ViVA overview showing (a) existing memory hierarchy with ViVA buffer, and data flow
between DRAM and registers with and without ViVA for (b) loads and (c) stores. Requests with-
out associated data are shown with thin arrows, and data transfer is shown with thick arrows.

clearly shows ViVA’s potential to reduce memory traffic and requests compared with
the default scalar processor.

In many ways, the ViVA buffer acts as a vector register file and is logically split
into registers, which are used to identify the target or source for transfers. As a result,
no coherence mechanisms are required in the buffer. An element loaded into the ViVA
buffer will not be updated by scalar stores, much as an element that has been loaded
into a scalar register will not be updated by scalar stores. Once values are stored from
the ViVA buffer into the L2 cache, regular memory consistency models apply. No con-
sistency orderings are guaranteed between ViVA and scalar stores; memory fences are
required to enforce a particular order.

Because the ViVA buffer is treated as a vector register file, the lack of automatic
coherence between values in the buffer and memory values is not problematic. Vector
compiler technology can manage the coherence in the same manner as with traditional
vector machines. In some cases, scalar and vector memory operations in the same pro-
gram can be mixed without requiring the use of memory fences. As long as no single
memory location is written by one type of operation (e.g., a non-ViVA scalar store) and
then read by the other type (e.g., a vector load), a memory fence is not needed. This
memory model tends to work well for vectorizable applications.

The out-of-order handling of the ViVA buffer works similarly to the handling of
scalar out-of-order registers, with a few small differences. As with scalar registers, a
number of extra physical registers are used in the system — in ViVA’s case, that means
that the physical buffer is larger than the visible state. The system keeps track of both
committed state, as well as current state; in the case of an exception, the processor can
recover the committed state and begin re-processing from there.

New instructions and control registers The second major component to ViVA is
a small set of new instructions that are added to the processor’s ISA. The first class

of new instructions performs vector memory transfers between DRAM and the ViVA
buffer; the second class performs scalar transfers between the ViVA buffer and scalar
registers. The third and final class of new instructions contains only two operations:
one that stores a value from a general-purpose register to a ViVA control register, and a
complementary instruction that reads values from control registers.

ViVA has a small number of control registers: two that control the lengths of vectors,
and one for strides. The first length register is the maximum vector length (MVL) —
this is a hardwired read-only control register, that contains the physical length of vector
registers on the current machine. The MVL’s complement is the vector length (VL).
Programs write a value (up to MVL) to VL, and vector instructions are only processed
to that length. By writing a smaller value to VL, a program can run instructions on
vectors that are shorter than the physical vector registers. The stride register sets the
distance between consecutive elements for strided memory operations.

3 Experimental Platform

The ViVA simulator is based on Mambo, a cycle-accurate full-system simulator devel-
oped and used by IBM [3]. We modified the original version of Mambo to allow us to
model various configurations of ViVA. Approximately two years of graduate student
effort was required to modify the simulator, and to test the ViVA extensions. A detailed
description of the process is presented in [6].

The Mambo simulator used for our experiment was designed to model PowerPC
systems, and it was carefully calibrated to simulate our Apple G5 hardware platform.
This architecture contains a 2.7 GHz IBM PowerPC 970FX CPU, PC-32000 DDR
memory with 6.4 GB/s of memory bandwidth, 5.4 GB/s of North Bridge bandwidth
(each direction), and a load-to-use latency of approximately 156 ns. The overall struc-
ture of the modeled system is generally similar to platforms that include Intel or AMD
processors; while the specific details may differ, the general out-of-order processing,
memory configuration, and operation closely resemble our evaluated platform. Thus,
we expect many of the insights gained in this study to be applicable to broad range of
modern microprocessor technologies.

In order to calibrate the simulator, we compared the performance of the real and
simulated systems running a variety of existing and targetted custom benchmarks. The
first calibration benchmark uses a variety of arithmetic operations within small loops,
including: fixed- and floating-point operations, adds and multiplies, independent (to
test maximum throughput) and dependent (to test ALU latency) operations. Next, we
examined memory system latency at various levels using a version of the lat mem rd
code from the LMbench [11] benchmark suite. The benchmark creates a linked list of
pointers in an array of a particular size, and then measures the average time it takes to
read each element. Finally, we calibrate the memory bandwidth using a benchmark that
streams data out of arrays, which are sized to fit within the various levels of the memory
hierarchy. Figure 2(a–c) shows simulated performance compared with the G5 hardware
for the arithmetic, latency, and bandwidth calibration benchmarks respectively. Observe
that in general all configurations closely match the actual hardware performance, giving
us high confidence in our simulation results.

Execution Rate

0

100

200

300

400

500

Mul
Int
Dep

Mul
Int

Indep

Mul
FP

Dep

Mul
FP

Indep

Add
Int
Dep

Add
Int

Indep

Add
FP

Dep

Add
FP

Indep

Rr
at

e
(M

O
ps

/S
ec

) Hardware
Mambo

(a)

Memory Access Latency

1

10

100

1000

0.
00

0
0.

00
4

0.
01

2
0.

02
0

0.
02

7
0.

03
9

0.
05

5
0.

07
8

0.
10

9
0.

15
6

0.
21

9
0.

31
3

0.
43

8
0.

62
5

0.
87

5
1.

25
0

1.
75

0
2.

50
0

3.
50

0

Array size (MB)

A
cc

es
s

tim
e

(m
s)

Hardware

Mambo

(b)

Achieved Memory BW

100

1000

10000

100000

L1 Cache L2 Cache Main Mem

A
ch

ie
ve

d
M

em
or

y
BW

 (
M

B/
s) Hardware

Mambo

(c)

Fig. 2: Calibration results comparing G5 hardware and Mambo for (a) various arithmetic oper-
ations, (b) memory latency times for pointer-chasing and (c) achieved memory bandwidth for
varying array sizes.

ViVA Programming In a full system implementation, ViVA would be programmed
much as vector computers are programmed today: a vector compiler would vectorize
the loops and structure the code appropriately (using stripmining, etc). The ViVA com-
piler would require the additional straightforward step (included as the last part of a
vector compilation phase) of adding a scalar loop, to replace traditional vector arith-
metic instructions.

Since this effort focuses on ViVA’s proof of concept, we use assembly language
programming as the first step for conducting our experiments. Individual functions are
written in assembly, and then called from the main C code. Note that no special assem-
bly optimizations were used — in general, the code is a direct translation of the kernel
into assembly, with the ViVA buffers being used in a double-buffered approach (values
loaded into half of the registers, while the other half were used for calculations).

4 Performance Evaluation

We now examine performance results using ViVA within the Mambo simulator against
the conventional hardware, using several microbenchmarks and two frequently used
compact kernels. ViVA’s target applications include memory-intensive programs that
are common in traditional scientific computing. Such applications are also becoming
increasingly important as drivers of desktop and handheld systems, in the form of recog-
nition, synthesis, and other media processing programs. Because the simulator models
a complete system, its slowdown prohibits the full execution of large applications in
a timely manner, but the benchmark codes we use exercise the memory system in a
manner that mirrors that of our target workload.

4.1 Microbenchmarks

In this section, we examine four memory microbenchmarks that provide insights into
performance of numerous applications. We start with the unit-stride stream triad bench-
mark, which takes one dense vector, scales it by a constant, adds it with a second, and
stores to a third, executing the loop with the body: z[i] = x[i] × factor + y[i]. The

parallelism expressed to the memory subsystem is equal to the array size. Since ac-
cesses are in unit stride, all data within each cache line are used. The next experiment
explores strided memory accesses. The code is the same as the unit-stride benchmark,
except that it only operates on elements spaced apart a constant displacement (called the
stride). Once again, the memory level parallelism is as large as the number of elements
accessed.

We then examine the microbenchmark: z[i] = values[index[i]], which loops over
indexed accesses. The indices point to random locations within the value array, where
some values may be retrieved more than once, and some may not be retrieved at all. The
cache is cleared before each run, and the index array is streamed through exactly once.
Finally, we investigate a microbenchmark that mimics the memory access patterns for
blocking optimizations, used in such computations as dense matrices, structured grids,
and FFTs. This fourth kernel performs a stanza triad, where a given length stanza is
accessed in a unit-stride fashion, followed by a jump to another memory address. Note
that memory operations within and across stanzas are independent.

Unit-Stride Performance Results Figure 3(a) presents the unit-stride triad bench-
mark, showing performance of a straightforward scalar implementation, an optimized
scalar implementation, and ViVA with a variety of MVLs. Observe that for a small
MVL=16, performance is comparable to the scalar rate. This highlights that, unlike tra-
ditional vector platforms, we do not see significant penalties for small vector length
accesses. Additionally, as MVL increases we see significant performance benefits —
more than 1.8x at MVL=256.

It may seem counterintuitive that the ViVA approach can outperform the scalar core
for long unit-stride accesses, as the G5’s hardware prefetcher is designed to optimize
memory access patterns of this kind. However, the G5 prefetcher works on physical
memory addresses, which limits its ability to fetch across page boundaries. Thus, be-
tween page boundaries prefetching must ramp up streaming accesses before it can reach
a steady state. ViVA, on the other hand, does not have these constraints, allowing it to
request address across numerous pages. Additionally, a traditional hardware prefetcher
accesses a fixed number of lines ahead, a decision that could not possibly account for the
ultimate microprocessor’s clock speed, memory type, etc. Finally, a hardware prefetcher
in steady state is limited to prefetching lines from DRAM one at a time as the program
submits new demand requests, to avoid cache pollution. However, the ViVA approach
can submit multiple line requests at once, as it is known a priori that all of the requested
values are actually needed.

Finally, ViVA has another advantage for the case of storing a full cache line at once.
Typically, stores to lines that are not present in the L2 cache are required to first be
filled. ViVA is able to express full cache line writes directly to the processor, thus not
requiring a memory fetch for the fill. In principle a processor can perform the same
optimization for scalar stores, but the cache organization makes this unlikely for most
cases. Special instructions do exist on some architectures to avoid a cache fill, such
as the PowerPC dcbz instruction that zeros an entire cache line. However, these result
in relatively small performance improvements, as can be seen in the optimized scalar

ViVA Unit-Stride Performance

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

16 32 64 128 256

MVL Vector Register Length (doubles)

B
W

 (
M

B
/

s)

ViVA
Scalar
Scalar (Opt)

(a)

ViVA Stride Performance

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32
Stride (Words)

V
iV

A
 S

p
e
e
d

u
p

 v
s.

 S
ca

la
r

MVL16
MVL32
MVL64
MVL128
MVl256
Scalar

(b)

Fig. 3: Scalar vs. ViVA (a) bandwidth of unit-stride, for varying MVLs and optimized scalar
code (dcbz, software prefetching, manual unrolling) and (b) speedup relative to scalar for varying
strides and ViVA MVL (optimization of the scalar strided version did not improve performance).

behavior of Figure 3(a), which includes the use of the dcbz instructions, as well as
software prefetching, manual unrolling, and a variety of compiler flags.

Strided Performance Results Figure 3(b) shows the speedup of ViVA compared to
a default scalar version for varying strides; attempts to optimize the scalar code us-
ing dcbz, software prefetching, manual unrolling, and compiler flags did not improve
performance. Observe that in almost every case, ViVA is able to deliver a significant im-
provement over the scalar implementations, attaining a 2.5x improvement for stride=32.

The results for longer MVLs shows the effects of two opposing trends. Longer
MVLs allow more concurrency to be expressed to the memory subsystem, thereby
increasing the memory bandwidth potential. However, long MVLs also increase the
range of memory addresses touched by a single instruction, especially for operations
with long strides. Thus, long MVLs can actually reduce performance, while consuming
more register real estate and power. Due to these considerations we choose an MVL
of 64 doubles as a “sweetspot” of these tradeoffs, and conduct the remainder of our
experiments with this parameter.

Indexed Performance Results Figure 4(a) shows the scalar and ViVA bandwidth rate
of the indexed microbenchmark for varying array sizes; attempts to optimize the scalar
version did not improve performance. At the smallest array size of 1 KB (doubles)
ViVA shows only a slight advantage compared with the default hardware. Both imple-
mentations improve in performance as the array size grows, but ViVA shows a clear
advantage, achieving up to 4.3x speedup at 512KB arrays. In the scalar case, unit-stride
data streams (for both stores, and loads of indices) become longer with larger arrays, al-
lowing the hardware prefetcher to ramp up to its full potential – however, the hardware
prefetcher is not able to provide any benefit for value elements. For ViVA, larger array
sizes correspond to more available parallelism presented to the memory subsystem, for
all loads and stores. As the array sizes become much larger than the cache there is a

ViVA Index Stride Performance

0

1000

2000

3000

4000

5000

6000

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Array size (doubles)

B
a
n

d
w

id
th

 (
M

B
/

s)

Scalar

ViVA (MVL=64)

(a)

Stanza Triad Performance

0

500

1000

1500

2000

2500

3000

3500

4000

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Stanza Length (doubles)

B
a
n

d
w

id
th

 (
M

B
/

s)

Scalar
Scalar (Opt)
ViVA MVL=64
ViVA MVL=64 (Opt)

(b)

Fig. 4: Performance comparison of scalar versus ViVA for (a) indexed microbenchmark (optimiz-
ing the scalar indexed version did not improve performance) and (b) stanza triad where “ViVA
(Opt)” uses indexed accesses to transfer multiple short stanzas with a single vector instruction.

high probability that fetched cache lines will evict subsequently required data, resulting
in reduced performance. Additionally, as the total data size becomes much larger than
the amount of memory covered by the TLB, more page translation overhead is required.

Stanza Triad Performance Results Figure 4(b) presents the bandwidths of varying
stanza lengths for the G5 scalar processor (default and optimized) and ViVA (default
and optimized). For both scalar lines, performance continues to improve with increas-
ing stanza lengths as the prefetcher ramps up and becomes fully engaged. The hard-
ware prefetcher reaches its steady-state behavior after five consecutive cache lines are
accessed, equal to 80 doubles. Performance continues to improve past stanzas of 80
doubles because various overheads (such as prefetch ramp-up, TLB misses and page
translation) are amortized over the full length of the stream.

Figure 4(b) also shows that the ViVA implementation achieves better performance
for all stanza lengths. At short stanzas, the vector benefits are limited since each instruc-
tion expresses less parallelism to the memory system. As stanza lengths increase so does
the amount of parallelism expressed by a single ViVA instruction. As with scalar stanza
triad, bandwidth continues to increase, as page translation costs are amortized over the
number of elements accessed in the page.

4.2 Compact Kernel: Corner Turn

Having explored ViVA’s microbenchmark behavior, we now examine the behavior of
two compact kernels. The corner turn (CT) operation is frequently used in signal and
image processing applications that operate on multi-dimensional data in multiple stages.
An example where this is required is certain filtering operations followed by a beam-
forming computations [10]. CT’s pseudocode is simply:

for(i = 0 to row length) { for(j = 0 to col length) { out[j][i] = in[i][j]; } }
The idea behind this data-intensive kernel is to preserve data locality in the dimension

CT Relative Performance

0

2

4

6

8

10

12

14

16

18

20

22

50x5000 750x5000
Problem Size

S
p

e
e
d

u
p

 v
s

D
e
fa

u
lt

 S
ca

la
r

Scalar (Default)
Scalar (Unrolled)
Scalar (Blocked)
ViVA
ViVA (Blocked)

(a)

Relative SPMV performance

0

0.5

1

1.5

2

2.5

D
e
n

se
2

p
d

b
1

S

co
n

sp
h

ca
n

t

p
w

tk

rm
a
1

0

q
cd

5
_

4

sh
ip

s1

m
a
c_

e

sc
ir

cu
it

A
v
g

Matrix

S
p

e
e
d

u
p

 v
s.

 S
ca

la
r

Scalar
ViVA

(b)

Fig. 5: Speedup over default scalar version for (a) CT for two (out of cache) problem sizes,
showing unrolled scalar and ViVA performance and (b) SPMV for a variety of matrix structures.

being operated on by performing a matrix transpose, thus creating enormous pressure
on the memory subsystem. This kernel depends on two memory access patterns —
unit-stride and strided accesses — both of which were highlighted in our previous mi-
crobenchmarks. For larger sizes, the unit-stride reads can benefit from spatial locality
and hardware prefetching, but the strided accesses will likely be in different cache lines
and memory pages.

Figure 5(a) presents relative performance of the default and unrolled scalar codes
as well as the ViVA version. The unrolled scalar implementation sees an improvement
of approximately 4x and 6x for the small and large arrays (respectively). This speedup
is seen because (after the initial fetch) strided loads access the same page (and poten-
tially the same cache line). The ViVA results show even more impressive performance,
achieving a 5x and 13x improvement for the small and large arrays. The ViVA strided
accesses get the same benefit from page and cache-line reuse as the unrolled scalar im-
plementation, however, overall delivered bandwidth is higher because ViVA is able to
express more parallelism to the L2 cache. The relative advantage of ViVA compared
to the unrolled scalar code, is consistent with the trends of the unit-stride and strided
microbenchmarks (Figure 3).

Performance of CT using cache blocking, with and without ViVA, is also shown in
Figure 5(a). Note that blocking is an algorithmic transformation that is normally not
performed by a compiler, but instead requires hand optimization. Results show that (as
expected) the blocked scalar version significantly outperforms the default CT. However,
the blocked ViVA implementation delivers an additional performance improvements
compared to the blocked scalar code (8% and 14% for the small and large test case).
This demonstrates that ViVA can provide a performance boost either as a stand-alone
approach or in conjunction with traditional algorithmic optimization techniques.

4.3 Compact Kernel: Sparse Matrix Vector Multiplication

We now examine the more complex memory access patterns associated with SpMV,
an important kernel that dominates the performance of diverse applications in scientific

and engineering computing, economic modeling and information retrieval. The sparse
matrix structure is primarily filled with zero valued elements, which neither need to
be stored nor computed on. As a result, significant instructions and meta-data are re-
quired to correctly index the vector per floating point operation [14]; thus, conventional
implementations have historically delivered less than 10% of machine peak on single-
core cache-based microprocessor systems [15]. Extensive research has been conducted
to improve performance of this kernel, including code and data structure transforma-
tions and sophisticated auto-tuning libraries [15]. The standard scalar implementation
utilizes the compressed sparse row (CSR) format. CSR stores nonzeros by encoding
their values and columns, and an indexed operation is used to access the source vector.
Additionally, an array is created to specify the first and last nonzero for each row.

The ViVA implementation follows the segmented scan algorithm [2], which strip-
mines the matrix into vectors that may straddle multiple rows. For each of these vectors
of nonzeros, ViVA uses unit-stride loads for the values and column indices, and an
indexed load to access the source vector. Once the data is in the ViVA registers, it pro-
cesses nonzeros using regular scalar FPU operations. Finally, at the end of a row, the
sum is stored using scalar accesses. These two phases can be double buffered by loading
a group of vectors while processing a previous group.

To evaluate SPMV performance, we examine a variety of matrix structures and
non-zero patterns from actual physical simulations [15]. Figure 5(b) presents the ViVA
speedup compared with the scalar version for each studied matrix. Results show that
ViVA delivers an average of 2x performance (right-most values) compared with the
scalar code. Although raw performance drops for poorly structured matrices with large
vectors — which have trouble exploiting L2 temporal locality — ViVA consistently
outperforms the scalar version for a wide variety of underlying matrix structures.

5 Related Work

A number of strategies have been employed to balance Little’s Law — which states that
the number of outstanding memory requests in progress must match the product of the
memory latency and the available memory bandwidth [1] — by increasing the number
of concurrent requests presented to the memory subsystem. Different approaches (de-
tailed in [6]) explored in high-performance computing, microprocessors, and embed-
ded computers [7], include software prefetching, hardware (stream) prefetching, out-
of-order instruction processing, multithreaded and multicore processors, vector archi-
tectures, and software controlled memories. Nonetheless, the “memory wall” problem
generally continues to be exacerbated between successive microprocessor generations.

We summarize leading approaches in Table 1, which compares a variety of hardware
and software techniques to hiding memory latency (using the U.S. A–F grading system).
In the first three columns we note whether the technique is effective in hiding DRAM
latency for the specified memory access pattern. We also qualitatively note the VLSI
design effort required to implement such a solution — ViVA being a memory external
to the core requires relatively little work.

Perhaps one of the most important metrics for techniques which require software
changes is the compiler technology: in terms of both the compiler complexity as well as

Effectiveness integration compiler user
unit strided indexed complexity1 complexity maturity programmability

Out-of-order D D D D D n/a A
HW Prefetch A B F B A n/a A
SW Prefetch B C D A B C D

Multithreaded B B B C D2 D C
DMA/Local Store A B B B D F D

Vector A A B C D B B
ViVA A A B B D B3 B

Table 1: Qualitative comparison of DRAM latency hiding techniques using the A-F grad-
ing system. 1Integration complexity compared versus unithreaded, in-order core. 2For auto-
parallelization. 3Leveraging existing vector compilers.

the current maturity of this compilers technology. Vectorizing compilers, which ViVA
leverages, are decades old, and well established technology. The maturity of many other
compilation techniques is relatively poor. Finally we note the programmability, under
an ideal programming model, for each techniques. For example, multithreading works
well on multithreaded or parallelized codes; similarly, programmers are productive on
Vector and ViVA architectures when implementing data parallel codes. Clearly, when
compared to other techniques over a multidimensional analysis, ViVA provides a very
attractive solution to hiding memory latency.

6 Summary and Conclusions

In this work we present ViVA, which incorporates the minimum set of hardware fea-
tures required to see the benefits of vectorization without dramatically increasing the
complexity of existing processor design or programmability. The ViVA infrastructure
can exist within conventional cache hierarchies while employing familiar vector se-
mantics that can take advantage of existing vectorizing compiler technology; resulting
in memory accesses that are simpler and more power-efficient than the scalar approach.

ViVA has several important advantages over prefetching for tolerating memory la-
tency. It allows programs to explicitly describe their memory access patterns, avoiding
the need for power-hungry and error-prone stream detection hardware. A single ViVA
instructions expresses many memory accesses, increasing the parallelism that can be
presented to the memory systems. The use of a software-controlled memory buffer is
a simple, efficient way to allow many memory accesses to proceed concurrently. Addi-
tionally, no coherence mechanism is needed for the ViVA buffer, since elements loaded
into a scratchpad memory do not maintain automatic coherence with memory elements.

To validate our approach, we implemented ViVA on the Mambo cycle-accurate full
system simulator, which was carefully calibrated to match the performance on our un-
derlying G5 architecture. Results show that ViVA is able to deliver significant perfor-
mance benefits over scalar techniques for a variety of memory access patterns as well as
two important memory-bound compact kernels, CT and SpMV —- achieving 2x–13x

improvement compared the scalar version. Overall, our preliminary ViVA exploration
points to a promising approach for improving application performance on leading mi-
croprocessors with minimal design and complexity costs, in a power efficient manner.

In future work, we plan to consider a broader array of application kernels, while
studying additional extensions of the ViVA architecture that relax the strict semantics
of vectorization. We also plan to further compare ViVA to related technologies such
as DMA transfers. Additionally, ViVA could be extended to support more complex
latency-bound load patterns such as pointer-chasing that are common in database and
data mining applications. Finally, we plan to investigate the integration of ViVA to help
organize memory access patterns for chip multiprocessors.

7 Acknowledgments

All authors from LBNL were supported by the Office of Advanced Scientific Comput-
ing Research in the DOE Office of Science under contract number DE-AC02-05CH11231.

References
1. D. Bailey. Little’s law and high performance computing. In RNR Technical Report, 1997.
2. G. E. Blelloch, M. Heroux, and M. Zagha. Segmented Operations for Sparse Matrix Com-

putation on Vector Multiprocessors. Technical Report CMU-CS-93-173, Aug 93.
3. P. Bohrer, J. Peterson, M. Ozahy, R. Rajamony, A. Gheith, R. Rockhold, C. Lefurgy, H. Shafi,

T. Nakra, R. Simpson, E. Speight, K. Sudeep, E. V. Hensbergen, and L. Zhang. Mambo: a full
system simulator for the PowerPC architecture. ACM SIGMETRICS Performance Evaluation
Review, 31(4):8–12, 2004.

4. Creating science-driven computer architecture:a new path to scientific leadership. http:
//www.nersc.gov/news/reports/blueplanet.php.

5. R. Espasa, M. Valero, and J. E. Smith. Vector architectures: past, present and future. In
Proceedings of the 12th international Conference on Supercomputing, 1998.

6. Joseph Gebis. Low-complexity Vector Microprocessor Extensions. PhD thesis, University of
California, Berkeley, Berkeley, CA, USA, May 2008.

7. P. Grun, A. Nicolau, and N. Dutt. Memory Architecture Exploration for Programmable
Embedded Systems. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

8. M. Gschwind. Chip multiprocessing and the cell broadband engine. In Proceedings of 3rd
Conference on Computing Frontiers, pages 1–8, New York, NY, USA, 2006.

9. Y. Guo, S. Chheda, I. Koren, C. M. Krishna, and C. A. Moritz. Energy characterization of
hardware-based data prefetching. In ICCD ’04: Proceedings of the IEEE International Con-
ference on Computer Design, pages 518–523, Washington, DC, USA, 2004. IEEE Computer
Society.

10. HPEC Challenge Benchmark Suite. http://www.ll.mit.edu/HPECchallenge.
11. Larry W. McVoy and Carl Staelin. lmbench: Portable tools for performance analysis. In

USENIX Annual Technical Conference, pages 279–294, 1996.
12. K. Natarajan, H. Hanson, S.W. Keckler, C.R. Moore, and D. Burger. Microprocessor pipeline

energy analysis. pages 282–287, Aug. 2003.
13. David A. Patterson. Latency lags bandwith. Commun. ACM, 47(10):71–75, 2004.
14. O. Temam and W. Jalby. Characterizing sparse algorithms on caches. In Proc. Supercom-

puting, 1992.
15. R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of automatically tuned sparse

matrix kernels. In Proc. SciDAC 2005, Journal of Physics, 2005.

