
4

An Analysis of On-Chip Interconnection
Networks for Large-Scale
Chip Multiprocessors

DANIEL SANCHEZ, GEORGE MICHELOGIANNAKIS,
and CHRISTOS KOZYRAKIS
Stanford University

With the number of cores of chip multiprocessors (CMPs) rapidly growing as technology scales
down, connecting the different components of a CMP in a scalable and efficient way becomes
increasingly challenging. In this article, we explore the architectural-level implications of inter-
connection network design for CMPs with up to 128 fine-grain multithreaded cores. We evaluate
and compare different network topologies using accurate simulation of the full chip, including
the memory hierarchy and interconnect, and using a diverse set of scientific and engineering
workloads.

We find that the interconnect has a large impact on performance, as it is responsible for 60%
to 75% of the miss latency. Latency, and not bandwidth, is the primary performance constraint,
since, even with many threads per core and workloads with high miss rates, networks with enough
bandwidth can be efficiently implemented for the system scales we consider. From the topologies
we study, the flattened butterfly consistently outperforms the mesh and fat tree on all workloads,
leading to performance advantages of up to 22%. We also show that considering interconnect and
memory hierarchy together when designing large-scale CMPs is crucial, and neglecting either
of the two can lead to incorrect conclusions. Finally, the effect of the interconnect on overall
performance becomes more important as the number of cores increases, making interconnection
choices especially critical when scaling up.

Categories and Subject Descriptors: B.4.3 [Hardware]: Input/Output and Data Communications—
Interconnections; C.1.2 [Computer Systems Organization]: Multiple Data Stream Architec-
tures—Interconnection architectures

General Terms: Design, Performance

Additional Key Words and Phrases: Networks-on-chip, chip multiprocessors, hierarchical networks

This work was supported in part by the Stanford Pervasive Parallelism Lab, the Gigascale Sys-
tems Research Center (FCRP/GSRC), the National Science Foundation under Grant CCF-0702341,
and the National Security Agency under Contract H98230-08-C-0272. Daniel Sanchez is sup-
ported by a Fundacion Caja Madrid Fellowship and a Hewlett-Packard Stanford School of Engi-
neering Fellowship. George Michelogiannakis is supported by a Robert Bosch Stanford Graduate
Fellowship.
Authors’ addresses: Electrical Engineering Department Stanford University, Stanford, CA;
email: {sanchezd, mihelog}@cs.stanford.edu; christos@ee.stanford.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1544-3566/2010/04-ART4 $10.00
DOI 10.1145/1756065.1736069 http://doi.acm.org/10.1145/1756065.1736069

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:2 • D. Sanchez et al.

ACM Reference Format:
Sanchez, D., Michelogiannakis, G., and Kozyrakis, C. 2010. An analysis of on-chip interconnection
networks for large-scale chip multiprocessors. ACM Trans. Architec. Code Optim. 7, 1, Article 4
(April 2010), 28 pages
DOI = 10.1145/1756065.1736069 http://doi.acm.org/10.1145/1756065.1736069

1. INTRODUCTION

Due to the scaling difficulties of uniprocessor architectures [Agarwal et al.
2000], chip multiprocessors (CMPs) have become the dominant design ap-
proach. Thanks to the increasing transistor budget provided by Moore’s Law,
it is expected that the number of cores per chip will grow accordingly. CMPs
with tens of cores are already being manufactured [Bell et al. 2008; Tremblay
and Chaudhry 2008], and chips with hundreds of cores will be available in the
near future [Intel 2008].

To connect the increasing number of cores in a scalable way, researchers are
evaluating packet-switched networks-on-chip (NoCs) [Dally and Towles 2001;
De Micheli and Benini 2002; Owens et al. 2007]. The increasing disparity be-
tween wire and transistor delay [Ho et al. 2001] and the dependence between
interconnect and memory system performance suggest that the relative impor-
tance of NoCs will increase in future CMP designs. As a result, there has been
significant research in topologies [Bononi et al. 2007; Kim et al. 2008; Tota et al.
2006], router microarchitecture [Kim et al. 2005; Mullins et al. 2004], wiring
schemes [Balasubramonian et al. 2005], and power optimizations [Wang et al.
2003]. Nevertheless, there is a great need for further understanding of inter-
connects for large-scale systems at the architectural level. Previous studies
have focused on small-scale CMPs [Kumar et al. 2005], have used synthetic
traffic patterns [Bononi et al. 2007; Kim et al. 2005; Mullins et al. 2004] or
traces [Tota et al. 2006], or do not model the other components of the memory
hierarchy [Kim et al. 2008].

In this article, we explore the performance, area, and power cost trade-offs
of NoCs for large-scale CMPs with up to 128 multithreaded cores. Similarly
to a previous study for small-scale CMPs with up to 16 cores and bus-based
interconnects [Kumar et al. 2005], we investigate the interconnection network
together with the memory system. Specifically, we use full-detail execution-
driven simulation to model a homogeneous CMP system with simple multi-
threaded cores and directory-based cache coherence. We use several diverse
applications from the PARSEC [Bienia et al. 2008], SPLASH-2 [Woo et al.
1995], and BioParallel [Jaleel et al. 2006] suites for the evaluation. To trim
down the huge design space, we make reasonable assumptions on what con-
stitute realistic design points. We study three realistic topologies (mesh, fat
tree [Leiserson 1985], and flattened butterfly [Kim et al. 2007]) under different
bandwidth assumptions and also compare them against an idealized network.
In order to see the impact of the interconnect on the system, we use chip-level
metrics (performance, area, and power), instead of traditional interconnect-
centric metrics (e.g., bisection bandwidth).

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:3

Using this infrastructure, we attempt to shed light into the following ques-
tions that can help guide future work on large-scale CMPs and their intercon-
nects: What is the best network topology in terms of performance, area, and
power for a large-scale CMP? Does one topology clearly dominate or is there
space for hybrid or reconfigurable designs? What are the key constraints that
limit network performance, cost-performance ratio, throughput, and latency?
What is the relative importance of the interconnect versus other design de-
cisions, such as the sharing scheme in the memory hierarchy? What is the
importance of the interconnect for the overall system? What conclusions can
we extract to guide future research in interconnects and memory hierarchies
for CMPs?

The main conclusions from our study are the following.

—The interconnect has a large impact on overall performance. Compared to
an idealized interconnect, practical topologies triplicate miss latency and
increase execution times by up to 76%, severely impacting scalability. Fur-
thermore, the relevance of the interconnect increases with the number of
cores.

—For CMPs with up to 128 multithreaded cores, we can build networks with
enough throughput for all applications well within reasonable area and
power budgets. Hence, network latency, and not throughput or congestion, is
the main performance constraint for NoCs in such systems.

—The interconnect topology is the parameter, among the ones explored in this
study, that has the largest impact on performance. We identify the flattened
butterfly as the best topology among the evaluated ones. For a negligible in-
crease in system area and power budgets, the flattened butterfly outperforms
the mesh and the fat tree in all our workloads, with speed-ups of up to 22%.

—Increasing the number of threads per core, which makes each core more tol-
erant to network latency, slightly decreases the differences across topologies.
However, interconnect latency is still the limiting factor in memory system
performance, and significant differences between topologies remain.

—Changes in the L2 cache organization affect the traffic offered to the inter-
connect. To draw meaningful conclusions, cache hierarchy and interconnect
must be studied together.

The rest of the article is organized as follows. Section 2 reviews NoCs.
Section 3 presents the architectural framework for our study. Section 4 de-
scribes the experimental methodology. Section 5 analyzes our evaluation re-
sults, while Section 6 summarizes the lessons learned. Finally, Section 7
presents related work, and Section 8 concludes the article.

2. ON-CHIP INTERCONNECTION NETWORKS

Small-scale CMPs use interconnect schemes such as buses, rings, and cross-
bars [Kumar et al. 2005]. While buses are relatively simple, they suffer from
scalability issues as all communication is serialized. Moreover, arbitration for
the shared medium can impose a significant latency. Crossbars eliminate se-
rialization by providing a separate path from each source to each destination.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:4 • D. Sanchez et al.

Unfortunately, the area and power costs of a crossbar increase quadratically
with the number of network endpoints. For rings, the average hop count is
proportional to the number of nodes, and all traffic shares the same links,
making bandwidth a possible bottleneck. Hence, none of these approaches is
appropriate for large-scale CMPs.

2.1 Background on Scalable Interconnects

Packet-switched NoCs have been proposed as a scalable and modular alterna-
tive for large scale CMPs [Dally and Towles 2001; De Micheli and Benini 2002;
Owens et al. 2007]. NoCs are composed by a topology of routers connected
via point-to-point links. Packets are divided into flow-control digits (flits). Flits
may be composed of multiple—but usually one—physical digits (phits), the size
of which is defined by the network link width. Thus, packets are transferred
across the narrower channels over several cycles, incurring a serialization la-
tency. The head flit carries the destination address that routers use to deter-
mine the proper output port and virtual channel (VC) [Dally 1990] for the whole
packet. Routing can be either deterministic, always following the same path,
or adaptive, taking into account the network state, such as congestion.

Routers are the basic building block of scalable interconnects. They use
per-VC input port buffers. Head flits at buffer heads go through routing com-
putation and VC allocation. Nonhead flits are assigned the same output port
and VC as their head flit. Flits then proceed to switch allocation. Allocators try
to find the best match considering all requests and output port states. Winning
flits traverse the switching fabric, which delivers them to the proper output
ports. Routers are typically pipelined and several speculation or precomputa-
tion techniques are used to reduce the critical path or the latency under light
load [Kim et al. 2005; Mullins et al. 2004].

NoCs use VCs to enable deadlock avoidance, optimized channel utilization,
improved performance, and quality of service [Bjerregaard and Mahadevan
2006; Dally 1990]. Disjoint traffic classes use separate VCs and routing al-
gorithms are designed to avoid cycles within and across VCs [Duato 1993].
Blocked flits from one VC do not affect flits from other VCs, since they use
independent buffering resources. Per-VC credits are used to avoid input buffer
overflow. A router can forward flits only if it has credits to consume from the
downstream router for that VC. Credits represent free slots in the correspond-
ing next-hop buffer.

2.2 Topology

The topology defines how routers are connected with each other and the net-
work endpoints. For a large-scale system, the topology has a major impact on
the performance and cost of the network. In this work, we study three practical
topologies suggested for large-scale CMPs: the 2D mesh, the fat tree [Leiserson
1985], and 2D flattened butterfly [Kim et al. 2007]. Figure 1 illustrates the
position of routers and point-to-point links in each topology. Table I provides
an asymptotic comparison of the three topologies for key metrics. T represents
the number of sources and destinations in the network. Topology options are

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:5

Fig. 1. The three topologies in a 2D layout: 2D mesh (left), fat tree (center), and 2D flattened
butterfly (right). The fat tree connects to higher-level nodes using multiple links.

Table I. Qualitative Comparison of the Three Topologies for a
CMP System with T Nodes (Cores, Cache Banks, and Controllers)

Routers (N) Router I/Os (P) Bisection BW

2D mesh T
C (C + 4)

√
NW

Fat tree
∑L

i=1
T
Di DL (root) DLW

2D FBFly T
C (C + 2(

√
N − 1))

√
NW� N

2 �
Hops (worst) Hops (average)

2D mesh 2
√

N ∼ √
N + 1

Fat tree 2L ∼ 3
2 L

2D FBFly 4 3.5

The point-to-point links have a width of W bits. The mesh and flattened
butterfly use a concentration factor of C. The fat tree degree is D, hence
the tree has L = logD T levels. The hop count is the number of link traver-
sals under dimension-order minimal routing. The average number of hops
assumes uniformly distributed traffic.

numerous in large-scale systems. Although we have chosen representative,
fundamentally different topologies, other design points exist. For example,
topologies which have direct links between distant routers, such as express
cubes [Grot et al. 2009; Dally 1991] or other low-diameter networks [Xu et al.
2009], can have similar advantages as the flattened butterfly due to their re-
duced hop count.

2D Mesh. The 2D mesh is a popular interconnect choice in large-scale
CMPs [Bell et al. 2008; Intel 2008]. Each of the T

C routers connects to its
four neighboring routers and C source or destination nodes. The degree of con-
centration C, in nodes per router, is typically applied to reduce the number of
routers and therefore hops. In this work, we use a mesh with a concentration
factor, commonly referred to as a cmesh.

The major advantage of the mesh is its simplicity. All links are short and
balanced and the overall layout is very regular. The routers are low radix with
up to C + 4 input and output ports, which reduces their area footprint, power
overhead, and critical path. The major disadvantage is the large number of hops
that flits have to potentially go through to reach their final destination (pro-
portional to

√
N for N routers). Each router imposes a minimum latency (e.g., 3

cycles) and is a potential point of contention. A large number of hops has a direct
impact on the energy consumed in the interconnect for buffering, transmission,

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:6 • D. Sanchez et al.

and control. Hence, meshes could face performance and power scalability issues
for large-scale systems. To address this shortcoming, researchers have proposed
meshes with physical [Dally 1991] or virtual [Kumar et al. 2008] express links.

Fat Tree. The fat tree connects routers in a tree manner, with sources and
destinations at the leaves. A tree with degree D has logDT levels. To avoid
congestion toward the root of the tree, fat trees use an increasing number of
point-to-point links per connection. The number of links is multiplied by the
tree degree D as we move toward the root. Flits travel upward in the tree until
they reach the first common ancestor between the source and the destination.
If multiple links are available at a level, one is chosen at random.

The major advantage of the fat tree is the large amount of bandwidth avail-
able. The fat links reduce the probability of contention under low load as well.
The disadvantage of fat trees is the need for large-radix routers toward the
top of the tree. Such routers have higher area and power overheads due to the
quadratic increase in the complexity of the internal crossbar. Finally, the fat
links contribute to higher leakage power consumption than a mesh.

2D Flattened Butterfly. The 2D flattened butterfly is derived by flattening the
routers in each row of a conventional butterfly topology while preserving inter-
router connections [Kim et al. 2007]. Routers connect with every other router
in each axis. Essentially, this topology provides the connectivity of a mesh with
additional links. Thus, in a 4 × 4 network, each router connects with three
other routers in the x axis, and with three others in the y axis. Similarly to the
mesh, a concentration factor is typically applied to reduce the router overhead.
If the concentration factor in our example is 5 nodes per router, each router is
11 × 11.

The major advantage of the flattened butterfly is the small number of hops
for network traversals under minimal routing. For two dimensions, flits can al-
ways reach any node with three or four hops (i.e., two or three routers). Using
the longer links minimizes the number of routers visited with their associated
latency and energy overheads. The additional links reduce the chance of con-
gestion and provide higher bandwidth as well. The major disadvantage of the
flattened butterfly is the high-radix routers, which are expensive in terms of
area and power. The larger number of links increases area and leakage power
as well.

3. CMP ARCHITECTURE FRAMEWORK

To trim the huge design space for large-scale CMPs, we only consider homo-
geneous chips with directory-based, cache-coherent memory hierarchies. Such
systems scale reasonably well, have been the focus of several academic and
industrial efforts, and put significant pressure on the interconnect. Figure 2
presents the CMP organization and Table II summarizes its key parameters.
We investigate systems with up to 128 cores, using 64 cores as the default con-
figuration because it can be implemented within reasonable area and power
budgets in a 32 nm process (see Section 4). We use fine-grain multithreaded
cores to provide tolerance to memory access latency. The L2 cache size was
chosen to make its total area roughly equal to that of the cores.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:7

Fig. 2. Tiled CMP design.

Table II. Main Characteristics of the CMP System

Cores 32–128 cores (default 64), x86 ISA, IPC = 1,
1/2/4-way multithreaded

Coherence Directory-based, MOESI between L1s-L2s and L2s-directory
protocol
Consistency Sequential consistency
model
L1 caches 32KB, 4-way set associative, split D/I, 1-cycle latency
L2 cache 256KB - 1MB per bank, 4 banks/tile, 16-way set associative

shared by L1s of the same tile, noninclusive
5-cycle tag/10-cycle data latencies for 1MB banks, pipelined

L3 cache 16MB per bank, 1 bank/tile, 16-way set associative
shared across the whole chip, acts as victim cache for L2s
10-cycle tag/21-cycle data latencies, pipelined

Directory 1 bank/tile, idealized
Memory 1 controller/tile, single DDR-3 channel
controller

Default values are shown in boldface. The latencies assume a 64-node system implemented
on a 32 nm process.

3.1 Base Architecture

We structure the chip in a number of tiles, each with four cores, an L2 cache,
an L3 cache bank, a memory directory bank, and a memory controller. The four
banks of each L2 cache are shared by the four cores in the tile via the local
interconnect. In addition, the L2 and directory banks are directly connected to
the tile’s global interconnect router. When a request must access an L3 cache
bank, a memory directory bank, or a memory controller, the request is routed
to the proper tile based on the address interleaving scheme.

The tiled design is motivated by several factors. First, due to temporal and
spatial locality, L1 misses are likely to be much more common that L2 misses.
Having a fully shared L2 across 64 or more cores would cause an unnecessarily
high average L2 access time, even with NUCA designs. Sharing the L2 cache,
however, has been shown to be beneficial due to increased hit rates, faster
communication between cores that share the L2, and a more balanced cost
between maintaining L1 and L2 cache coherence [Huh et al. 2005]. Having a
private L2 per four cores is a reasonable compromise. We use a full crossbar
as the local interconnect as it is cheap to implement within a tile and allows

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:8 • D. Sanchez et al.

all possible communication pairs. Bus-based interconnects could face scalabil-
ity issues for the eight components connected to the local interconnect and
may impose significant latency due to arbitration, which is a primary concern
for these networks, as we will see in Section 5. Second, tiling provides a con-
centration factor for the global interconnect of C = 5 (the four L2 banks and
directory), reducing the number of routers and thus the latency of the global
interconnect.

The three-level cache hierarchy uses a full-fledged cache coherence protocol.
The L1 caches are write-back, allocate-on-write. The L2 cache is noninclusive
with respect to the L1s. For coherence purposes, the L2 maintains a copy of the
L1 tags. Coherence between L1s and same-tile L2 and between different L2s is
kept using a directory-based MOESI protocol. Data addresses are interleaved
across the directory banks of the different tiles, and each bank manages the
memory mapped by its own memory controller. To mitigate the high latency of
main memory accesses, we include an L3 cache. This cache is shared by the full
chip, has a 16MB bank per tile, and acts as a victim cache for the L2s [Jouppi
1990]. We assume that the L3 is implemented on a different die and is stacked
on top of the CMP [Benkart et al. 2005], with one set of vias per L3 bank
connecting it to the proper CMP tile. To minimize global interconnect traffic,
the address interleaving scheme is such that L3 misses are serviced by the
memory controller on the same tile.

We model an idealized directory with a fixed 6-cycle latency that keeps a
full bit vector of sharers for each cache line. A realistic implementation would
use a directory cache per tile with additional directory entries stored in the L3
cache and main memory. Each tile has a memory controller with a single DDR-
3 memory channel. For a 64-way CMP, this gives 16 memory channels. This
is optimistic, as it would take a high number of pins. A practical alternative
would be to model FB-DIMM channels, which can be implemented using a total
of 1,120 pins and would offer similar bandwidth at somewhat higher latencies.
However, this issue does not affect the accuracy of our results: Due to the large
L3 cache used, none of our applications exhausts DRAM bandwidth (as we will
see in Section 4.3). For reference, the peak memory bandwidth usage across all
the benchmarks in the 64-way CMP is 39GB/s.

3.2 Interconnection Networks

Table III shows the implementation details of the local and global interconnects.
We use 3-stage pipelined routers. The first pipeline stage consists of look-
ahead routing [Galles 1997] and VC allocation. Look-ahead routing decides
the output at the next hop. Thus, head flits enter the router containing their
desired output, so that VC allocation can start immediately and in parallel with
routing computation. They represent a reasonable design point, since 2-stage
routers with a comparable, but still larger, cycle time would require speculative
VC allocation, thus complicating the router design [Mullins et al. 2004]. Link
latencies depend on the distance between the routers in the global interconnect
scheme. The fat tree and flattened butterfly topologies include some short links
and some long links. We discuss this issue in Section 4. Flits are composed of

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:9

Table III. Main Characteristics of the Interconnection Networks

General Two separate virtual networks for requests/replies
in both global and local networks

Routers 3-stage pipeline: look-ahead routing computation
and VC allocation, switch allocation, switch traversal
Round-robin separable VC/switch allocators
4 VCs per virtual network
Buffering: 144 bytes per VC (8 flits with 18B flits)

Links 9, 18, or 36B flit size, point-to-point, bi-directional (full-duplex)
1 cycle latency in local interconnect,
2–7 cycle latency in global interconnect

one phit for all network configurations and datapath widths. Their size is equal
to the network link width. Since cache lines are 64 bytes, we model 8-byte data
requests messages and 72-byte responses. We use an 18-byte (144 bits) flit size
by default so that requests are 1 flit and responses 4 flits long.

The fat tree degree is 4. When the system size is such that the root node
would only have two children (e.g., in systems with 32 tiles), we connect these
children directly and eliminate the root. Also, we use multiple root nodes to
avoid routers with a radix larger than 8. For the mesh and the flattened but-
terfly, we use deterministic dimension-order routing in order to easily prevent
cyclic dependencies. Dimension-order routing also helps reduce the latency of
routers by simplifying routing computation and thus doing it in the same cy-
cle as VC allocation. Adaptive routing would have minimal benefits for our
experiments, as links are not highly utilized.

4. METHODOLOGY

4.1 Simulation

We perform detailed execution-driven simulation of the whole CMP. We use
our own simulator to model in-order, fine-grain multithreaded x86 cores with
IPC = 1 for all operations excluding main memory accesses. Multithreading is
used for latency tolerance. Section 5.8 shows why 2-way multithreading is a
reasonable default choice for our system. To faithfully model the memory hier-
archy and interconnect, we interface to the Wisconsin GEMS toolset [Martin
et al. 2005], which includes Princeton’s Garnet interconnect simulator [Agarwal
et al. 2007]. We only simulate user-level application and library code. Al-
though full-system simulation is possible with Simics and GEMS, it leads to
10 times slower simulation, which is prohibitive for the scale of the CMPs
we study. We have modified both GEMS and Garnet to cover our modeling
needs.

When comparing the different topologies, we also use an idealized net-
work. This network has a fixed 3-cycle latency in the local interconnect, and
a fixed 9-cycle latency in the global interconnect. The idealized network does
not have any contention issues and does not require serialization of packets
into flits. Hence, it is a tool that helps us measure the overall importance
of the interconnect in application performance. We also model an unrealistic

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:10 • D. Sanchez et al.

Table IV. Area and Power Projections for Cores and Caches in our 64-core CMP in 32nm

per Component Total Chip Component Total Chip
CMP Area Area Power Power

Cores 64 3.20mm2 205mm2 0.8W 51.2W
L2 banks 64 2.27mm2 145mm2 108mW 6.93W
L3 banks 16 17.20mm2 275mm2 153mW 2.44W

Total – – 350mm2(CMP) – 60.6W
– – 275mm2(L3) –

Table V. Area and Power Projections for the Cores based on the Sun
Niagara 2 and Intel Atom Designs

Process Frequency
Original 32nm Scaled

Core Area Core Area

Niagara 2 65nm, 1.2V 1.4GHz 12mm2 3mm2

Atom 45nm, 1.1V 1.6GHz 6.8mm2 3.4mm2

Estimated 32nm, 0.9V 2.0GHz – 3.2mm2

Chip Core 32nm Scaled
TDP TDP Core TDP

Niagara 2 95 W 5.4 W 1.1 W
Atom 2.5 W 1.1 W 0.5 W

Estimated – – 0.8 W

crossbar topology with single-cycle links in the global network to see the rela-
tive influence of serialization and contention on performance.

All the simulations are performed with warmed-up caches. Moreover, we use
a small random perturbation to main memory latency and do multiple runs per
configuration and workload to obtain stable averages [Alameldeen and Wood
2003].

4.2 Area, Power, and Latency Models

For power and area estimations, we use technology parameters based on ITRS
predictions for the 32nm technology node [ITRS 2007]. At this process, the 64-
core CMP at a frequency of 2GHz has reasonable area and power requirements.
Table IV lists the area and power requirements for the major CMP components.
We now explain how we estimated these requirements.

Cores. We approximate core area and power by scaling down two existing core
designs: the Sun Niagara 2 [Nawathe 2007] and the Intel Atom [Gerosa et al.
2008]. Table V shows their characteristics and scaled-down area and power.
We use a 32nm, 0.9V process as predicted by ITRS. For area calculations, we
assume that core dimensions scale proportionally to feature size. For power
calculations, manufacturers provide only the thermal design power (TDP) of
the whole chip, so we approximate the per-core TDP by assuming that the
power density in the cores is twice as in the rest of the chip. We compute power
as P = 1

2CV2
DD f , assume that the switched capacitance scales down with area,

and take into account the differences in frequency and voltage. We cannot scale
the leakage component of power differently, as manufacturers do not publish its

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:11

Table VI. Area, Latency and Power Projections for the L2
and L3 Caches, based on CACTI 5.3

Area
Tag Data

Latency Latency

1MB L2 bank 2.27mm2 5 cycles 9 cycles
16MB L3 bank 17.20mm2 10 cycles 21 cycles

Energy per Leakage Estimated
read access power total power

1MB L2 bank 0.37nJ 0.1mW 108mW
16MB L3 bank 1.32nJ 1.4mW 153mW

contribution to overall power. In a 32nm process, a scaled-down Niagara 2 core
would measure 3mm2, while a scaled Atom would measure 3.4mm2. Therefore,
we assume 3.2mm2 per core to be a reasonable area budget. In terms of power,
a Niagara 2 consumes 1.1W versus the 0.5W of the Atom. Differences in power
are larger because the Niagara 2 has multithreaded, server-oriented cores,
while the Atom is a low-power processor. We can assume that a reasonable
power budget for our simple cores is 0.8W per core.

Caches. We estimate the area, latency and power of L2 and L3 caches using
CACTI 5.3 [Thoziyoor et al. 2008]. For both caches, we use a single 128-bit read-
write port. The L2 cache is implemented in the ITRS-LSTP process (transistors
with high threshold voltage to reduce leakage), and the L3 cache die is imple-
mented in a conventional commodity DRAM process. Table VI enumerates the
detailed power, area, and latency estimations. We also list power estimations
at 2GHz for our applications with highest power consumptions for the L2 (svm)
and L3 (canneal). However, note that these estimates may be lower than the
worst-case ones, since higher cache utilization can be achieved with especially
memory-intensive workloads or a power virus.

Interconnect. To estimate the area and power requirements for the inter-
connect, we used detailed models from [Balfour and Dally 2006]. We use tech-
nology parameters from the 32nm 0.9V ITRS-HP process provided by CACTI
5.3. For the point-to-point links, we use wires in the 4× plane, which have
a 256nm pitch. A reasonable delay/wire length is 110ps/mm. This requires
repeaters spaced 514μm and 25× the size of the smallest inverter. In our
channel area models, we include the repeaters and flip-flops, but assume that
the 4× wires can be routed over logic without impacting logic density. This
is somewhat optimistic, but obtaining an accurate estimation of the overhead
introduced by the wires would require synthesis and layout of the chip. Note
that unlike previous work [Kumar et al. 2005], we use narrow point-to-point
links instead of wide buses, so it is more likely that a significant percent-
age of the wire area is hidden. Power models for the links include dynamic
and leakage power for repeaters and flip-flops, and clock wire power. The flip-
flops in the channels are clock-gated locally. Router area is estimated using
detailed floorplans. This includes the crossbar and the buffers, which are mod-
eled as efficient custom SRAMs. Power models also include the control wires
throughout the router, clock wire power, and take into account both dynamic

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:12 • D. Sanchez et al.

and leakage power. However, the power for the allocators is not modeled.
This causes only minor inaccuracies, since allocators constitute only a small
fraction of router power—for example, 7% as shown in Kahng et al. [2009].
Critical devices in the channels and router datapaths, such as the repeaters
driving large wire capacitances, are sized to ensure correct operation at our
clock frequency. A more detailed description of these models can be found
in Balfour and Dally [2006].

Traditional interconnect-focused studies typically equalize the area, power,
or bisection bandwidth of the interconnect to provide a fair comparison be-
tween different topologies. However, bisection bandwidth was developed as a
fairness metric in off-chip networks, since wires were expensive and required
I/O chip pins, but wires are abundant in on-chip networks [Dally and Towles
2001]. Thus, large-scale CMP designs are more likely to be limited by area
and power instead of on-chip wiring. Additionally, in the context of a full CMP,
only channel widths that cause packets to be an integer multiple of the flit size
are reasonable. Therefore, instead of equalizing topology metrics, we choose an
acceptable range of flit sizes and evaluate the trade-offs between performance
and cost (area and power) in the context of the full chip. Optimizing chip-level
metrics is, after all, the overall goal of a CMP design.

Since we compare routers of different radix, the differences in cycle time
may become a concern for routers with more I/Os. However, we find that this
is not the case. Increasing the radix primarily affects crossbar size and delay.
Using ITRS predictions, for the default 18B flit width and a 128nm wire pitch,
a mesh router needs a crossbar of 147 × 147μm2, while our highest-radix router
(FBFly, 128 cores) requires a 258 × 258μm2 crossbar. These are small enough
to not require repeaters, and have traversal delays of 50 and 112ps, respec-
tively (derived from ITRS wire delay data for this pitch). While crossbar delay
increases, the 62ps difference would be only 12% of the cycle time at 2GHz.
Thus, a larger radix imposes a minor timing overhead for the routers we study.

4.3 Workloads

We focus on the scientific and engineering workloads presented in Figure 3(a),
with two applications from the SPLASH-2 suite [Woo et al. 1995], five from
the recently released PARSEC suite with recognition, mining, and synthesis
benchmarks [Bienia et al. 2008]; and one from the BioParallel suite, which
focuses on bioinformatics applications [Jaleel et al. 2006]. We simulate the
entire parallel section of each application. This set of benchmarks was chosen
for its diversity: The applications represent a wide set of domains, with varying
behaviors in terms of working set size, amount of data sharing and exchange,
synchronization granularity, and synchronization primitives used. Figure 3(b)
displays their scalability, measured by varying the number of tiles in the CMP
with an idealized interconnect, in systems from 32 to 128 cores (i.e., 64 to 256
threads). For the input sets used, most of the applications scale reasonably well
up to 128 cores. Table VII summarizes their most important characteristics as
measured on the baseline CMP with 64 cores.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:13

Fig. 3. Workloads, input sets, and scalability with an idealized interconnect.

Table VII. Main Workload Characteristics for a 64-core, 128-thread
CMP with an Idealized Interconnect

Instrs. Loads Stores L1D hit rate

swaptions 5.6B 54% 19% 99.3%
fluidanimate 25.9B 39% 12% 99.7%
barnes 1.4B 51% 31% 99.1%
blackscholes 3.3B 34% 21% 97.8%
streamcluster 27.8B 41% 1.2% 97.4%
ocean 2.7B 63% 14% 97.6%
canneal 988M 36% 13% 94.8%
svm 4.4B 52% 0.6% 90.8%

Misses served by
Local L2 Remote L2 L3 Memory

swaptions 99.4% 0.1% 0.0% 0.5%
fluidanimate 78.4% 18.3% 2.6% 0.6%
barnes 77.8% 9.0% 13.1% 0.0%
blackscholes 99.6% 0.4% 0.0% 0.0%
streamcluster 95.7% 4.2% 0.0% 0.0%
ocean 85.8% 9.8% 2.9% 1.4%
canneal 36.4% 26.7% 25.1% 11.7%
svm 48.8% 41.5% 9.7% 0.0%

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:14 • D. Sanchez et al.

Fig. 4. Performance and AMAT for the baseline 64-core CMP, using 18-byte flits.

5. EVALUATION

This section evaluates the design space of CMP interconnects, examining their
performance, area, and power requirements. We also study the importance
of latency and bandwidth, measure the impact of different L2 cache configu-
rations when the interconnect is taken into account, and the implications of
multithreading.

5.1 Baseline Performance

Figure 4(a) shows the relative performance of the different workloads when
running on the baseline 64-core, 128-thread CMP. For the three topologies un-
der evaluation (FBFly, Mesh, and FTree), we use 18-byte flits and realistic link
latencies determined by wire length. We also present results for two nonreal-
istic interconnects: Ideal, an idealized network with all-to-all communication
and no contention or serialization, and Crossbar, which has an unrealistic full
crossbar with single-cycle links as a global interconnect but illustrates the
effects of serialization and contention.

From Figure 4(a), we can clearly distinguish three kinds of applications.
Applications such as swaptions and fluidanimate are barely affected by the
interconnect. They have high L1 hit rates and do not suffer a noticeable slow-
down with respect to the idealized interconnect, as they rarely use the global
and local interconnects. Applications such as barnes and blackscholes are af-
fected by the local interconnect only: Their working sets do not fit in the L1

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:15

cache, so the number of L1 misses is significant. Since their working sets fit
in the L2 and they use coarse-grain synchronization between threads, they
rarely use the global interconnect and are barely affected by its organization.
Finally, applications such as ocean, streamcluster, and especially canneal and
svm are affected by both local and global interconnects. They have moderate
to high L1 and L2 miss rates and use the global interconnect frequently. These
applications are significantly affected by the choice of global interconnect.

Both the local and the global interconnect choices have a noticeable effect on
performance. For applications that stress the global interconnect, the realistic
topologies lead to a 17% to 56% performance loss compared to the ideal topol-
ogy. The flattened butterfly consistently outperforms the other topologies. For
svm, the flattened butterfly is 6% and 17% faster than the mesh and the fat
tree, respectively. As we explain further in Section 5.2, the performance differ-
ences are primarily due to the latency of traversing each topology. Figure 4(b)
shows the average memory access time (AMAT) for the different applications
and topologies, broken into its memory hierarchy components (L1, L2, L3, di-
rectory, and main memory latencies) and interconnect components (local and
global network and serialization latencies). The local interconnect typically con-
tributes to the AMAT more than the global interconnect as most of the traffic
is between the L1 and L2 caches. We can also see how network latencies dom-
inate over the latencies of the memory hierarchy. In fact, from Figure 4(b),
we see that the interconnect is responsible for 60% to 75% of the miss
latency.

Comparing Figures 4(a) and 4(b), we see that, although differences in ex-
ecution time and AMAT are certainly correlated, there can be a significant
variation in runtime with very similar AMATs. For example, streamcluster
has a 12% runtime variation between topologies with only a 0.7% variation in
AMAT. A similar trend can be seen for ocean. This mainly happens because
synchronization is slower in networks with higher latency, but slower synchro-
nization leads to higher hit rates (e.g., more time spent spinning on a TTS
lock), lowering the AMAT. This shows that execution time or other direct per-
formance metrics should always be used to compare different interconnects
instead of lower-level metrics, such as AMAT or miss latency.

5.2 Bandwidth and Latency

Network behavior is characterized by two interacting factors, throughput and
latency. Figures 4(a) and 4(b) establish that for applications with high L2 miss
rates, global interconnect latency is directly correlated to overall application
performance. We first turn our attention to throughput. If the interconnect
has significant throughput limitations, we will see large variations in end-
to-end latency. Otherwise, latency will be close to zero-load latency, which is
determined by the number of hops, the length of links, the serialization la-
tency, and the latency of routers. Figure 5(a) shows average utilization of the
network links for the baseline CMP. The plotted ranges indicate the maxi-
mum and minimum link utilizations for each network. Global network link
utilization is always fairly low, topping at just 23% for the mesh on canneal,

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:16 • D. Sanchez et al.

Fig. 5. Link utilization and latencies on a 64-core CMP. The bars indicate the average utilization
across links, while the ranges comprise the maximum and minimum individual link utilizations.

and never exceeding 7% for the flattened butterfly. Local network utilization
is also generally low. The differences in utilization across links are generally
small, with the flattened butterfly having the smallest spreads, and the mesh
having the largest ones (due to higher traffic near the center of the chip).
Figure 5(b) shows packet latencies for canneal, the application that stresses
the interconnects the most. Blocking latency is small, with low spreads even
for these worst cases, so we conclude that network congestion is not a sig-
nificant issue. Hence, it is not worth focusing on adaptive routing algorithms
for such systems, and most importantly, throughput metrics are of secondary
importance. Instead, the focus should be on latency metrics and optimization
techniques.

Given the low link utilization, one may consider to use narrow links that offer
lower peak throughput but have reduced power and area overheads. Neverthe-
less, the link width affects latency as well, as it determines the serialization
latency. Figure 6 shows how link width in the local and global interconnects
interacts with overall application performance (we only show applications that
are affected by varying the flit size). The flit size matters more in the local in-
terconnect, where we see performance dropping by 4% to 11% as we reduce flit
size from 36 to 9 bytes. This is partly because the local interconnect has more
traffic than the global one (L1 miss rates are higher than L2 miss rates), but
mostly because packet serialization is a bigger portion of the overall latency
in the smaller local interconnect. In the global interconnect, flit size matters
less, with canneal and svm being the only applications that exhibit significant
sensitivity.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:17

Fig. 6. Performance for the baseline 64-core CMP with varying: (a) local flit sizes and (b) global
flit sizes. The nonvarying flit size is kept to 18 bytes.

5.3 Scaling

The performance impact of the interconnect may vary significantly with the
size of the CMP. To quantify this, we scale the number of tiles in the system,
while keeping the tile configuration the same. We simulate CMPs with 8, 16,
or 32 four-core tiles, corresponding to CMPs with 32 to 128 cores (and 64 to 256
threads). Note that aggregate L2 capacity, L3 capacity, and memory channels
grow as we increase the number of tiles.

Figure 7 shows the differences in runtime as we increase the number of
tiles. For each processor count, we normalize the execution time with each
topology to the execution time with the same processor count and the idealized
topology. There are two interesting trends. First, the impact of the interconnect
on performance increases with the number of cores. For streamcluster, for
example, using the mesh causes a slowdown of 26% and 52% compared to the
ideal interconnect for the 64-core and 128-core CMPs, respectively. Second,
differences between global interconnect topologies increase with core count.
With 64 cores, for instance, streamcluster is 7% faster when using a flattened
butterfly instead of a fat tree, while for 128 cores, it is 15% faster. Both effects
are more pronounced in the applications that stress the global interconnect
frequently (svm, canneal, ocean, and streamcluster).

Regarding the performance scalability of the topologies, it is clear that the
mesh is the least scalable, the fat tree shows a slightly better scalability, and

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:18 • D. Sanchez et al.

Fig. 7. Execution time normalized for the ideal network, for 32, 64, and 128 cores.

Fig. 8. Area estimations in 32nm for local and global interconnects.

the flattened butterfly is the most scalable. Hence, if area and power budgets
allow it, a flattened butterfly seems to be the network of choice.

5.4 Area Comparison

Figure 8 shows the area estimations for the three topologies in 32nm as we
vary the flit size (Figure 8(a)) and number of cores (Figure 8(b)). Area is broken
down into link and router area. Link area dominates. As a reminder, link area
includes repeaters and flip-flops, but not the area of wires as we assumed they
are routed over other logic.

Focusing on Figure 8(a), we can see that, for a 18B flit size, the areas of
the local and global interconnects are similar in case of the mesh and fat tree
(3.5mm2), and larger for the flattened butterfly (5.6mm2). Nevertheless, the
flattened butterfly with 9-byte flits outperforms the other two networks with
18-byte flits due to the lower overall latencies (see Figure 6(b)) and has smaller
area (2.4mm2).

Looking at Figure 8(b), we can see that the areas of the local interconnect,
the mesh and fat tree topologies scale well. However, the flattened butterfly
suffers a large area increase for 128 cores. This is due to the higher number

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:19

Fig. 9. Interconnect power estimations in 32nm for local and global interconnects when running
canneal.

of longer wires and the larger radix of the global routers, since the amount
of routers is doubled, and each router must be connected to 10 other global
routers. We could improve the scalability of the flattened butterfly by increasing
the concentration factor or the dimension of the network [Kim et al. 2007]. This
could also be mitigated by limiting the number of links on each dimension to,
for example, 4, but would come at the expense of extra delay.

In absolute terms, for the system sizes we consider, the area taken by the
interconnect is particularly small with respect to other components of the chip.
For example, an 18B flattened butterfly would take 1.6% of the total 64-core
chip area. Therefore, even with the large-area flattened butterfly, the overall
overhead remains small. These breakdowns do not include wiring area because
we assume that wires can be routed over other logic. However, the wiring areas
are relatively small, for example, 10.2mm2 for the mesh and 37mm2 for the
flattened butterfly in the default 64-core CMP. If, for example, the logic density
below interconnect wiring decreased by 20%, this would cause additional small
overheads of 2 and 7.4mm2, respectively (corresponding to 0.6% and 2.1% of
chip area). Thus, even with wiring area, the interconnect is still a small portion
of the overall area.

5.5 Power Comparison

Figure 9 shows the power consumption of the local and global interconnects
for canneal, the benchmark that uses them most frequently. Power varies with
both flit size and system size. Figure 9(a) shows that the local network power is
significantly smaller than the global ones. This happens because links, which
consume most of the power, are shorter in the local interconnect, and the num-
ber of hops is smaller. For the global interconnects, the flattened butterfly,
which is the topology with the largest occupied area, consumes only slightly
more power than the mesh due to the higher leakage of the extra links. On
the other hand, the fat tree consumes the most power because of the large
number of high-radix router hops and link stages that a flit traverses, on av-
erage, on the fat tree. Figure 9(b) shows interconnect power for an 18-byte flit

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:20 • D. Sanchez et al.

Fig. 10. Performance of a 64-core CMP, using 18B flits and L2 banks of 256KB and 512KB.

size and a varying number of cores. We observe how all the global topologies
scale roughly linearly with system size. Also, note that as the number of cores
increases, the flattened butterfly becomes more power hungry because of its
superlinear increase in leakage power.

When compared with the total estimated power of the system, we see that the
interconnect contributes a moderate amount. For example, when using 18-byte
flits on a 64-core system with a flattened butterfly topology, the interconnect
consumes 5.2W, roughly 75% of the L2 cache power and a small fraction of the
power consumed by the 64 cores.

5.6 Sensitivity to L2 Cache Size

In our evaluation so far, we have used 1MB L2 cache banks. This choice balances
the area between cores and caches, but leads to larger L2 caches compared to
contemporary designs. In Figure 10, we show the sensitivity of our results to the
L2 cache size. We present normalized execution times using 256KB and 512KB
L2 banks. Smaller banks lead to higher miss rates but are faster to access
(4-cycle tag and 9-cycle data latencies for 512KB, have 4-cycle tag and 8-cycles
data for 256KB). Results are presented only for applications with significant
L1 misses and are normalized to the configuration with 1MB banks.

Overall, most applications are fairly insensitive to L2 size variations. Only
barnes, canneal, and svm exhibit a significant increase of capacity misses with

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:21

Fig. 11. Execution time with shared and private L2s.

smaller caches. These extra misses do not affect performance in barnes or ocean
because multithreading hides their effect, but they significantly degrade the
performance of svm.

5.7 Sensitivity to L2 Cache Sharing

We evaluate how performance differs if each core has a private L2 cache. Private
L2s eliminate the need for the local interconnect, a major contributor to the L2
access latency (see Section 5.1). In the private L2 configurations, each core has
a dedicated 3-cycle link between the L1 and L2. On the other hand, sharing the
L2 banks has two potential performance benefits: increased L2 hit rates due to
better space utilization and faster communication between cores of the same
tile, as coherence misses are served by the L2. Of course, sharing L2 banks can
also lead to destructive interference between threads that causes more traffic
on the global network. We did not notice significant interference issues for the
applications we studied.

Figure 11 shows how performance varies with shared (per-tile) and private
L2s for the different topologies. With an idealized network, all the applications
suffer a slowdown with private caches. However, when a realistic interconnect
is introduced, the trends change. Blackscholes and streamcluster, which do not
stress L2 capacity and have small or moderate interthread communication,
benefit from the reduced L2 hit time. For canneal and svm, which have a large
amount of communication and sharing, the advantages and disadvantages of
L2 sharing roughly cancel out, although the higher amount of global traffic
penalizes the slower mesh and fat tree interconnects. Finally, barnes and ocean
stress L2 capacity, and private L2s cause a drop in L2 hit rate and are worse
than using shared L2s for all the global networks. There are two takeaway
points. First, any study of cache sharing schemes should carefully model local
and global interconnects. Second, the choice of sharing does not seem to affect
the comparison between the three topologies we study.

5.8 Sensitivity to Degree of Multithreading

Multithreading allows us to tolerate access latency in an energy efficient way
compared to out-of-order execution techniques. We now explore the trade-offs in
varying the degree of multithreading, and explain why 2-way multithreading

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:22 • D. Sanchez et al.

Fig. 12. Performance characteristics of a 64-core CMP with different degrees of multithreading.

is a reasonable default choice for this study. Figure 12(a) shows the average
utilization of the cores when we use 1-, 2-, and 4-way multithreaded cores
on our 64-core system, and Figure 12(b) shows the execution time differences
between topologies for different degrees of multithreading.

As Figure 12(a) shows, single-threaded cores work well for applications that
do not stress the memory hierarchy, but fail to keep the cores highly utilized for
memory-intensive applications. Two-way multithreading provides a significant
boost for these applications. Going to 4-way multithreading rarely achieves a
significant increase in utilization. Figure 12(b) makes clear that having a higher
degree of multithreading reduces the relative differences between network
topologies, although significant differences remain. However, going beyond 2-
way multithreading is rarely useful for these applications, as the overhead of
synchronization and load imbalance increase with the number of threads. Only
blackscholes and svm exhibit small performance increases of around 3% when
going from 2- to 4-way multithreaded cores (and 128 to 256 threads).

Differences in the traffic characteristics of the network are still small, and
we have only observed slight increases in interconnect pressure for 4-way mul-
tithreading: The average link utilization is maximized by canneal at 26%
on a mesh, just a 3% increase from the 2-way multithreaded cores. Thus,
our main conclusion still holds: Interconnect throughput is secondary to la-
tency. Although the effect of latency is partially reduced with a high degree

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:23

of multithreading, these configurations often degrade performance in applica-
tions that do not scale linearly with the number of threads.

6. LESSONS AND LIMITATIONS

The following are the major insights and lessons from our study on intercon-
nects for large-scale CMPs:

Overall relevance. The interconnect has a major impact in performance, rep-
resenting 60% to 75% of the miss latency in all our applications. Moreover, the
global interconnect becomes increasingly critical for performance as system
size grows. Assuming that the number of cores continues to increase accord-
ing to Moore’s Law and that data-intensive applications become the dominant
workloads, the interconnection network will require a major design focus in
future CMP architectures.

Bandwidth versus latency. Performance of both local and global intercon-
nects is mainly constrained by latency, not throughput. This is true even for
multithreaded cores and applications with large miss rates. Therefore, mini-
mizing latency should be a priority on interconnects for such CMPs.

Topology comparison. In terms of performance and performance-cost, the
flattened butterfly topology is the best interconnect choice among the evaluated
ones, for the systems we study. It consistently outperforms the mesh and the
fat tree, due to its reduced latency, for a marginal increase in system area and
power. Even with a limited interconnect area and power budgets, a flattened
butterfly with a narrower flit size still outperforms a wider mesh or fat tree
and has lower cost. Other topologies with direct links between distant routers,
such as express cubes [Grot et al. 2009; Dally 1991] or other low-diameter
networks [Xu et al. 2009], are likely to have similar advantages as the flattened
butterfly, as they focus on reducing latency. Given this result, we also see no
need for interconnect schemes that allow for a reconfigurable topology on these
systems [Kim et al. 2008].

Scaling up. All the topologies have reasonable costs for the sizes we explore.
Both the mesh and fat tree scale well in terms of area and power. The flattened
butterfly would suffer from excessive area and router radix for significantly
larger systems. These problems could be solved by using flattened butterflies
with a higher concentration factor or dimension (e.g., 3D instead of 2D) [Kim
et al. 2007].

Interactions with the memory hierarchy. We have observed significant inter-
actions between the cache hierarchy choices and the design parameters of the
interconnection network in terms of traffic patterns and latencies. Idealisms on
the one side may skew the results or hide important challenges on the other. Fu-
ture research for large-scale CMPs should carefully model the interconnection
network and cache hierarchy.

Limitations. Despite our efforts to perform a comprehensive exploration, it
is important to recognize that our study has limitations. First, we use bench-
marks from the engineering and scientific domains that, while diverse, cannot
capture all possible behaviors. It would be interesting to repeat this study with
memory-intensive commercial workloads and draw conclusions for the server

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:24 • D. Sanchez et al.

domain. Second, we model a homogeneous CMP with in-order cores, which is
a popular option but not the only one. Moreover, while we have made reason-
able assumptions on what constitute realistic design points, the design space
offers a huge number of alternative choices. Finally, while we attempt to model
state-of-the-art interconnects, there are several alternative topologies, flow con-
trol, wiring, and router architecture techniques that could be explored. Despite
these limitations, we believe that the conclusions of this study are important
for understanding the significance of interconnection networks in large-scale
CMPs and motivating future research.

7. RELATED WORK

Research in on-chip interconnects has now focused on scalable packet-switched
networks [Dally and Towles 2001; De Micheli and Benini 2002; Owens et al.
2007]. Balfour and Dally [2006] studied performance and power trade-offs for
tiled CMP interconnects. Using synthetic traces, they conclude that a con-
centrated mesh topology performs best. Kim et al. [2007] introduced the flat-
tened butterfly topology and demonstrated its advantages with synthetic pat-
terns and source-destination traces. While these studies simulate large-scale
interconnects, they neglect the interactions with memory hierarchy revealed
with execution-driven simulation. Particular hierarchical network topologies
have already been proposed such as meshes [Das et al. 2009]. Recent work
has also focused on the implementation of various aspects of the interconnect
such as pipelined and speculative routers [Mullins et al. 2004], power-efficient
routers [Wang et al. 2003], wiring schemes [Balasubramonian et al. 2005],
interconnect-aware coherence protocols [Cheng et al. 2006; Eisley et al. 2006],
token flow control [Kumar et al. 2008], predictive routers [Matsutani et al.
2009], and express virtual channels [Kumar et al. 2008].

In the memory hierarchy side, the increasing relevance of wire delay has
sparked a significant amount of work in static and dynamic nonuniform caches
(NUCA) [Kim et al. 2002; Huh et al. 2005], which can significantly decrease
overall access time. In the context of CMPs, Beckmann and Wood [2004] show
that the block migration scheme used in dynamic NUCA is inefficient at han-
dling shared data. To cope with this, multiple proposals have used the concept of
block replication [Zhang and Asanovic 2005; Chang and Sohi 2006; Beckmann
et al. 2006]. All these studies were typically done in the context of small-
scale CMPs (with at most 8 or 16 cores). In our study, we consider simple and
relatively small L2 caches shared by a few cores, leaving proposals that use
replication as the object of future work.

Previous work has demonstrated that the interconnect and the memory hi-
erarchy should be considered together. Kumar et al. [2005] show that when
using a bus-based interconnect with point-to point links, a careful codesign of
the on-chip network and the cache hierarchy is required to design a balanced,
small-scale CMP. They advocate using private L2 caches due to the high area
overhead required for shared L2s. Muralimanohar et al. [2008] and Jin et al.
[2007] consider interconnect design for large on-chip caches and introduce in-
terconnect enhancements that significantly reduce their overall access latency.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:25

Our work extends past work by performing comprehensive evaluations to
characterize the impact of interconnect and cache hierarchy design choices in
large-scale CMPs using chip-level metrics. Through these evaluations, we pro-
vide guidance to future work by identifying which parameters have the largest
overall impact on performance, area, and power, and under which conditions.

8. CONCLUSIONS

We have studied the architecture-level implications of interconnect design for
CMPs with up to 128 cores. We adopt a tiled CMP design approach, with
separate local (intratile) and global (intertile) interconnects. We have shown
that the interconnect is a major component in memory hierarchy and overall
performance. Latency, not throughput, is the main interconnect performance
constraint for these systems. From the topologies we study, we conclude that
the flattened butterfly outperforms the conventional mesh and fat tree, mainly
due to its reduced network latency. In terms of cost, all topologies have moderate
area and power requirements for the sizes we explore, but they have significant
differences in scalability. We have also shown that the global interconnect has a
more pronounced impact on performance as the number of cores increases and
that the interconnect is sensitive to changes in the cache hierarchy. Therefore,
architects must consider and balance both interconnects and cache hierarchies
in order to design efficient large-scale CMPs.

Our work indicates that future research on large-scale CMPs should care-
fully consider the on-chip interconnect along the other components of the mem-
ory hierarchy. As we enter the many-core era, the interconnection network will
become a major performance bottleneck and further work is required to en-
hance the scalability of these systems as well as to characterize their limits.
Research on interconnects should be more concerned with techniques to reduce
latency (e.g., by reducing router delay or number of hops) or mitigate its effect
than with schemes that improve the maximum network throughput. A topology
that offers significant latency reduction compared to alternative ones is likely
to be optimal across all workloads.

ACKNOWLEDGMENTS

We sincerely thank Woongki Baek, Hari Kannan, Jacob Leverich, and the
anonymous reviewers for their useful feedback on earlier versions of this
manuscript.

REFERENCES

AGARWAL, N., PEH, L.-S., AND JHA, N. 2007. Garnet: A detailed interconnection network model
inside a full-system simulation framework. Tech. rep., Princeton University.

AGARWAL, V., HRISHIKESH, M., KECKLER, S., AND BURGER, D. 2000. Clock rate versus IPC: The end
of the road for conventional microarchitectures. In Proceedings of the 27th Annual International
Symposium on Computer Architecture. ACM, New York.

ALAMELDEEN, A. R. AND WOOD, D. A. 2003. Variability in architectural simulations of multi-
threaded workloads. In Proceedings of the 9th International Symposium on High-Performance
Computer Architecture. IEEE, Los Alamitos, CA.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:26 • D. Sanchez et al.

BALASUBRAMONIAN, R., MURALIMANOHAR, N., RAMANI, K., AND VENKATACHALAPATHY, V. 2005. Microar-
chitectural wire management for performance and power in partitioned architectures. In Pro-
ceedings of the 11th International Symposium on High-Performance Computer Architecture.
IEEE, Los Alamitos, CA.

BALFOUR, J. AND DALLY, W. J. 2006. Design tradeoffs for tiled CMP on-chip networks. In Proceed-
ings of the 20th Annual International Conference on Super-Computing. ACM, New York.

BECKMANN, B. M., MARTY, M. R., AND WOOD, D. A. 2006. ASR: Adaptive selective replication for
CMP caches. In Proceedings of the 39th Annual International Symposium on Microarchitecture.
IEEE, Los Alamitos, CA.

BECKMANN, B. M. AND WOOD, D. A. 2004. Managing wire delay in large chip-multiprocessor caches.
In Proceedings of the 37th annual International Symposium on Microarchitecture. IEEE, Los
Alamitos, CA.

BELL, S., EDWARDS, B., AMANN, J., CONLIN, R., JOYCE, K., LEUNG, V., MACKAY, J., REIF, M., BAO, L.,
ET AL. 2008. TILE64 processor: A 64-core SoC with mesh interconnect. In Proceedings of the
International Solid-State Circuits Conference. IEEE, Los Alamitos, CA.

BENKART, P., KAISER, A., MUNDING, A., BSCHORR, M., PFLEIDERER, H.-J., KOHN, E., HEITTMANN, A.,
HUEBNER, H., AND RAMACHER, U. 2005. 3D chip stack technology using through-chip intercon-
nects. IEEE Des. Test Comput. 22, 6, 512–518.

BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. 2008. The PARSEC benchmark suite: Characteri-
zation and architectural implications. Tech. rep. TR-811-08, Princeton University.

BJERREGAARD, T. AND MAHADEVAN, S. 2006. A survey of research and practices of network-on-chip.
ACM Comput. Surv. 38, 1.

BONONI, L., CONCER, N., GRAMMATIKAKIS, M., COPPOLA, M., AND LOCATELLI, R. 2007. NoC topologies
exploration based on mapping and simulation models. In Proceedings of the 10th Conference on
Digital System Design Architectures, Methods and Tools. IEEE, Los Alamitos, CA.

CHANG, J. AND SOHI, G. S. 2006. Cooperative caching for chip multiprocessors. In Proceedings of
the 33rd Annual International Symposium on Computer Architecture. ACM, New York.

CHENG, L., MURALIMANOHAR, N., RAMANI, K., BALASUBRAMONIAN, R., AND CARTER, J. B. 2006.
Interconnect-aware coherence protocols for chip multiprocessors. In Proceedings of the 33rd
Anuual International Symposium on Computer Architecture. ACM, New York.

DALLY, W. 1991. Express cubes: Improving the performance of k-ary n-cube interconnection
networks. IEEE Trans. Comput. 40, 9, 1016–1023.

DALLY, W. J. 1990. Virtual-channel flow control. In Proceedings of the 17th annual International
Symposium on Computer Architecture. ACM, New York.

DALLY, W. J. AND TOWLES, B. 2001. Route packets, not wires: On-chip interconnection networks.
In Proceedings of the 38th Conference on Design Automation. ACM, New York.

DAS, R., EACHEMPATI, S., MISHRA, A. K., NARAYANAN, V., AND DAS, C. R. 2009. Design and evaluation
of a hierarchical on-chip interconnect for next-generation CMPs. In Proceedings of the 15th
International Symposium on High-Performance Computer Architecture. IEEE, Los Alamitos,
CA.

DE MICHELI, G. AND BENINI, L. 2002. Networks on chip: A new paradigm for systems on chip
design. In Proceedings of the Conference on Design, Automation and Test in Europe. ACM, New
York.

DUATO, J. 1993. A new theory of deadlock-free adaptive multicast routing in wormhole networks.
In Proceedings of the 5th Symposium on Parallel and Distributed Processing. IEEE, Los Alamitos,
CA.

EISLEY, N., PEH, L.-S., AND SHANG, L. 2006. In-network cache coherence. In Proceedings of the
39th Annual International Symposium on Microarchitecture. IEEE, Los Alamitos, CA.

GALLES, M. 1997. Spider: A high-speed network interconnect. IEEE Micro 17, 1.
GEROSA, G., CURTIS, S., D’ADDEO, M., JIANG, B., KUTTANNA, B., MERCHANT, F., PATEL, B., TAUFIQUE, M.,

AND SAMARCHI, H. 2008. A sub-1W to 2W low-power IA processor for mobile internet devices and
ultra-mobile PCs in 45nm hi-K metal gate CMOS. In Proceedings of the International Solid-State
Circuits Conference. IEEE, Los Alamitos, CA.

GROT, B., HESTNESS, J., KECKLER, S. W., AND MUTLU, O. 2009. Express cube topologies for on-
chip interconnects. In Proceedings of the 15th International Symposium on High-Performance
Computer Architecture. IEEE, Los Alamitos, CA.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

An Analysis of On-Chip Interconnection Networks • 4:27

HO, R., MAI, K., AND HOROWITZ, M. 2001. The future of wires. Proc. IEEE. 89, 4, 24.
HUH, J., KIM, C., SHAFI, H., ZHANG, L., BURGER, D., AND KECKLER, S. W. 2005. A NUCA substrate

for flexible CMP cache sharing. In Proceedings of the 19th Annual International Conference on
Super-Computing. ACM, New York.

INTEL. 2008. Intel Tera-scale Computing Research Program. http://www.intel.com/go/terascale.
ITRS. 2007. International technology roadmap for semiconductors. http://www.itrs.net.
JALEEL, A., MATTINA, M., AND JACOB, B. 2006. Last level cache performance of data mining work-

loads on a CMP. In Proceedings of the 12th International Symposium on High-Performance
Computer Architecture. IEEE, Los Alamitos, CA.

JIN, Y., KIM, E. J., AND YUM, K. H. 2007. A domain-specific on-chip network design for large
scale cache systems. In Proceedings of the 13th International on High-Performance Computer
Architecture. IEEE, Los Alamitos, CA.

JOUPPI, N. P. 1990. Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers. In Proceedings of the 17th Annual International
Symposium on Computer Architecture. ACM, New York.

KAHNG, A., LI, B., PEH, L.-S., AND SAMADI, K. 2009. Orion 2.0: A fast and accurate noc power and
area model for early-stage design space exploration. In Proceedings of the Conference on Design,
Automation and Test in Europe. ACM, New York.

KIM, C., BURGER, D., AND KECKLER, S. W. 2002. An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM, New York.

KIM, J., BALFOUR, J., AND DALLY, W. 2007. Flattened butterfly topology for on-chip networks.
In Proceedings of the 40th Annual International Symposium on Microarchitecture. IEEE, Los
Alamitos, CA.

KIM, J., PARK, D., THEOCHARIDES, T., VIJAYKRISHNAN, N., AND DAS, C. R. 2005. A low latency router
supporting adaptivity for on-chip interconnects. In Proceedings of the 42nd Annual Conference
on Design Automation. ACM, New York.

KIM, M. M., DAVIS, J. D., OSKIN, M., AND AUSTIN, T. 2008. Polymorphic on-chip networks. In
Proceedings of the 35th Annual International Symposium on Computer Architecture. ACM, New
York.

KUMAR, A., PEH, L.-S., AND JHA, N. K. 2008. Token flow control. In Proceedings of the 41th Annual
International Symposium on Microarchitecture. IEEE, Los Alamitos, CA.

KUMAR, A., PEH, L.-S., KUNDU, P., AND JHA, N. K. 2008. Toward ideal on-chip communication using
express virtual channels. IEEE Micro. 28, 1.

KUMAR, R., ZYUBAN, V., AND TULLSEN, D. M. 2005. Interconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling. In Proceedings of the 32nd Annual Interna-
tional Symposium on Computer Architecture. ACM, New York.

LEISERSON, C. E. 1985. Fat-trees: Universal networks for hardware-efficient super-computing.
IEEE Trans. Comput. 34, 10, 892–901.

MARTIN, M. M., SORIN, D. J., BECKMANN, B. M., MARTY, M. R., XU, M., ALAMELDEEN, A. R., MOORE, K.
E., HILL, M. D., AND WOOD, D. A. 2005. Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset. Comput. Archit. News 33, 4, 92–99.

MATSUTANI, H., KOIBUCHI, M., AMANO, H., AND YOSHINAGA, T. 2009. Prediction router: Yet another
low latency on-chip router architecture. In Proceedings of the 15th International Symposium on
High-Performance Computer Architecture. IEEE, Los Alamitos, CA.

MULLINS, R., WEST, A., AND MOORE, S. 2004. Low-latency virtual-channel routers for on-chip
networks. In Proceedings of the 31st Annual International Symposium on Computer Architecture.
ACM, New York.

MURALIMANOHAR, N., BALASUBRAMONIAN, R., AND JOUPPI, N. P. 2008. Architecting efficient intercon-
nects for large caches with CACTI 6.0. IEEE Micro. 28, 1, 69–79.

NAWATHE, U. 2007. Design and implementation of Sun’s Niagara2 processor. Tech. rep., Sun
Microsystems.

OWENS, J. D., DALLY, W. J., HO, R., JAYASIMHA, D. N., KECKLER, S. W., AND PEH, L.-S. 2007. Research
challenges for on-chip interconnection networks. IEEE Micro. 27, 5, 96–108.

THOZIYOOR, S., MURALIMANOHAR, N., AHN, J. H., AND JOUPPI, N. P. 2008. CACTI 5.1. Tech.rep. HPL-
2008-20, HP Labs.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

4:28 • D. Sanchez et al.

TOTA, S., CASU, M. R., AND MACCHIARULO, L. 2006. Implementation analysis of NoC: a MPSoC
trace-driven approach. In Proceedings of the 16th Great Lakes Symposium on VLSI. ACM, New
York.

TREMBLAY, M. AND CHAUDHRY, S. 2008. A third-generation 65nm 16-core 32-thread plus 32-scout-
thread CMT SPARC processor. In Proceedings of the International Solid-State Circuits Confer-
ence. IEEE, Los Alamitos, CA.

WANG, H., PEH, L.-S., AND MALIK, S. 2003. Power-driven design of router microarchitectures in on-
chip networks. In Proceedings of the 36th Annual International Symposium on Microarchitecture.
IEEE, Los Alamitos, CA.

WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. 1995. The SPLASH-2 programs:
Characterization and methodological considerations. In Proceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture. ACM, New York.

XU, Y., DU, Y., ZHAO, B., ZHOU, X., ZHANG, Y., AND JUN, Y. 2009. A low-radix and low-diameter
3D interconnection network design. In Proceedings of the 13th International Symposium on
High-Performance Computer Architecture. IEEE, Los Alamitos, CA.

ZHANG, M. AND ASANOVIC, K. 2005. Victim replication: Maximizing capacity while hiding wire
delay in tiled chip multiprocessors. In Proceedings of the 32nd Annual International Symposium
on Computer Architecture. ACM, New York.

Received March 2009; revised September 2009; accepted September 2009

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 4, Publication date: April 2010.

