
X-TUNE
X-Stack PI meeting
Mary Hall (Utah), Samuel Williams (LBNL), Paul Hovland (ANL)

Background

Programming Challenges

X-Stack PI Meeting
December 2015 3

!  Performance portability
•  single source delivering close to theoretical performance will likely be impossible tomorrow
•  worse, OMP4 may never deliver close to peak performance on GPU architectures
•  Thus architecture-specific solutions (CUDA, OpenACC) may be required (not scalable)

!  As architecture-specific implementations will be required…
•  Rare to find programmers equally capable of programming CPUs and GPUs.
•  Keeping CPU and GPU implementations in sync will be a challenge

 = impediment to integrating novel physics
 = impediment to integrating novel algorithms
 = impediment to integrating novel optimizations

!  Exascale machines (CPU or GPU) will be capable of running MPI+OpenMP.
•  Unfortunately, CPU and GPU OpenMP4 implementations are different (presence of target clauses).
•  (single source) portability is not possible without #ifdef’s guarding CPU and GPU code (not scalable)

Will Vendors Solve This For Us?

X-Stack PI Meeting
December 2015 4

!  Vendors have developed compilers and programming models to maximize
performance/productivity/generality on their respective platforms.

!  Mandating vendors provide performance portability requires mandating a common
programming model (i.e. portability)
•  requires one class of architecture giving up generality/productivity
•  requires the other class giving up specialization/performance/efficiency

!  Providing performance portability (to their competitors) is not in the
financial interest of any vendor

!  DOE must solve this ourselves

ECP Vision

Tools Must Hide Complexity from Developers

!  Ultimately, we want to map functionality
expressed by applications to a range of
target platforms without sacrificing…
•  portability
•  performance
•  generality/extensibility/maintainability

X-Stack PI Meeting
December 2015 6

Processor

A
Processor

C
Processor

B

App

1
App

2
App

3
App

4

communicating sequential processes model

Motif / Lib

1
Motif / Lib

3
Motif / Lib

2

!  In reality, we often think of apps in
terms of “motifs” and libraries
•  often based on CSP model OpenACC CUDA OMP4 OMP4/target

•  increasingly require hybrid programming
models to exploit architectures/mitigate scaling
limitations

Motif / Lib

1
Motif / Lib

2

Tools Must Hide Complexity from Developers

X-Stack PI Meeting
December 2015 7

Processor

A
Processor

C
Processor

B

OpenACC CUDA

Motif / Lib

3

App

1
App

2
App

3
App

4

OMP4 OMP4/target

Motif / Lib

1

!  One could hope writing OpenMP4
would provide performance portability

!  In reality, to use GPUs, one needs a
different dialect of OpenMP4
•  ‘target’ clauses
•  complexity has been exposed
•  (performance) portability has been impaired
•  maintainability/extensibility has been hurt

Motif / Lib

2

!  performance-sensitive motifs may
maintain multiple implementations
•  required for portability
•  required for performance
•  possibly vendor-specific like CUDA
•  possibly architecture-specific (intrinsics)

Processor

A
Processor

C
Processor

B
Processor

A
Processor

C
Processor

B

OMP 6

CUDA 15

OpenACC 4

…

!  Worse, architectures continue to
evolve (optimizations useful today
may not be optimal tomorrow)

!  Moreover, programming models
continue to evolve (code bloat
required today may not be required
tomorrow)

Tools Must Hide Complexity from Developers

!  For each path there is a potentially
huge optimization space between
functional description and execution
•  architectures may require different optimizations
•  motifs/inputs may require different optimizations

X-Stack PI Meeting
December 2015 8

Processor

A
Processor

C
Processor

B

OpenACC2 CUDA7

Motif / Lib

1
Motif / Lib

2
Motif / Lib

3

Optimization Space

App

1
App

2
App

3
App

4

OMP4 OMP4/target

Processor

A
Processor

C
Processor

B
Processor

A
Processor

C
Processor

B

Tools Must Hide Complexity from Developers

!  Define a common abstraction(s) that
programmers can target

!  Use compilation tools to map to
optimal implementation
•  hide programming model choices from users
•  hide architectural complexity from users
•  hide tuning from users

X-Stack PI Meeting
December 2015 9

Processor

A
Processor

C
Processor

B

Motif / Lib

1
Motif / Lib

2
Motif / Lib

3

Optimization Space

App

1
App

2
App

3
App

4

common abstraction level

Source-to-Source
Compilers and Auto-tuners

OpenACC CUDA OMP4 OMP4/target

Several Viable Approaches…

X-Stack PI Meeting
December 2015 10

Domain Specific Domain Agnostic

!  Compiler Transformation Framework (ability
to compose complex transformations)

!  Augmented with:
•  domain-inspired transformations/optimizations

 (requires user guidance/knowledge)
•  auto-parallelization (OMP, CUDA, etc…)
•  auto-tuning rather than heuristics
•  ability to use vendor compilers (source-to-source)

Unique DSL and DS-compiler for each motif
•  multiple targets (OMP, CUDA, etc…)
•  ability to leverage vendor compilers (source-to-source)
•  different compiler for each motif
•  motif x target explosion (no backend reuse)
•  difficult to compose transformations

!  Embedded DSL for each motif
!  General purpose compiler augmented to:

•  parse each eDSL
•  perform domain-specific transformations
•  auto-parallelization (OMP, CUDA, etc…)
•  AMM heuristics rather than auto-tuning
•  leverage vendor compilers (source-to-source)

X-TUNE

!  Source-to-Source Compiler/Transformation Framework developed at Utah
!  Open Source (GPL)
!  Maintained by staff programmers at Utah (contingent on funding)
!  run on NERSC and Utah clusters (some attempts to create NERSC module)

Gfortran f90
externally funded prototype

Background: CHiLL

X-Stack PI Meeting
December 2015 12

.c ROSE CHiLL
AST

CHiLL AST
Transformations output .c

.cu output

“CUDA-CHiLL”

clang clang
AST recipe

(.lua)

‘Old School’ Auto-tuning
!  Fixed functionality routines
!  Code generator scripts
!  Brute-force tuning search

X-Stack PI Meeting
December 2015 13

Compiler-Driven Auto-tuning
!  Arbitrary routines written in c
!  Compiler parses c, generates AST,

performs transformations on AST,
outputs c

!  User can specify additional
transformations on AST

!  Compiler produces multiple code
variants (e.g. loop blockings)

!  Intelligent search algorithms tune over
code variants

X-TUNE Project

X-TUNE is NOT about…
✘  New languages
✘  New programming models
✘  New execution models
✘  Fine-grained locality controls
✘  Runtimes
✘  Resilience
✘  Energy

X-Stack PI Meeting
December 2015 14

X-TUNE focused on…
"  Optimizing Compilers (CHiLL)
"  Vanilla C language
"  Domain-inspired Transformations

(Stencils, GMG, and Tensors)
"  Hiding complexity of targeting

CPUs and GPUs from the user
"  Hiding on-node programming model

choices from the user
"  Exposing knobs for compiler-based,

user-driven auto-tuning

X-TUNE Hides Complexity
from the Programmer

progress within V-cycle!

Use Case #1: Geometric Multigrid

!  PDEs discretized onto a structured
grid is a common theme in scientific
computing

!  Multigrid is a recursive technique for
solving systems of linear equations
•  GMG is a specialization for structured grids

(stencils)
•  Stresses performance at different

degrees of parallelism, locality, working
set sizes, etc…
 == hard/impossible to optimize every
case by hand

X-Stack PI Meeting
December 2015 16

X-TUNE used the miniGMG Benchmark

X-Stack PI Meeting
December 2015 17

Collection of
subdomains
owned by an
MPI process

one subdomain
of 643 elements

!  Proxies the GMG solves found in CHOMBO and BoxLib codes
!  Distributed memory (MPI) implementation, focused on on-node challenges…

•  operator fusion
•  cache blocking
•  communication-avoiding smoothers and Krylov methods
•  high-order operators

!  Previous work developed hand-optimized implementations
•  MPI+OpenMP including communication-avoiding implementations
•  MPI+CUDA (NVIDIA GPUs)
•  X-Tune Research: tools that productively deliver comparable performance

!  n.b., miniGMG is the predecessor of the ExaCT CoDesign’s
 HPGMG-FV Proxy App

1. CHiLL Productively Delivers Performance

X-Stack PI Meeting
December 2015 18

!  miniGMG w/CHiLL…
•  fused operations
•  created a communication-avoiding wavefront
•  auto-parallelized (OpenMP)

!  auto-tuned to find the best
implementation for each box size…
•  wavefront depth (degree of comm. avoiding)
•  nested OpenMP configuration
•  inter-thread synchronization (barrier vs. P2P)

!  For fine grids (large arrays) CHiLL attains
nearly a 4.5x speedup over the baseline
and was faster than hand-optimized.

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

4.0x

4.5x

5.0x

64^3 32^3 16^3 8^3 4^3

S
pe

ed
up

 o
ve

r
B

as
el

in
e

S
m

oo
th

er

Box Size (== Level in the V-Cycle)

GSRB Smooth (Edison)

CHiLL generated

Manually Tuned

Baseline

fusion+
Wavefront

fusion

4 teams x
3 threads

12 teams x
1 thread

2. CHiLL went one step further

X-Stack PI Meeting
December 2015 19

!  CHiLL fused the residual and restriction
operations into the wavefront as well.
•  read uh, Rh, and coefficients once
•  perform 4 smooths (no additional DRAM data

movement)
•  write smoothed uh and new R2h

•  CHiLL exploits excess compute capacity

j

k

i

(N/2)3 coarse grid

Thread 0 Thread 1 Thread 2 Thread 3

smooth (red)

smooth (black)

smooth (2nd red)

smooth (2nd black)

residual

restriction

N3 fine grid

Cross Section of 3D - Grid

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

4.0x

4.5x

7pt VC
Jacobi

7pt VC
GSRB

7pt VC
Jacobi

7pt VC
GSRB

Edison Hopper

S
pe

ed
up

 o
ve

r
B

as
el

in
e

S
ol

ve
 +Wavefront(everything)

+Residual/Restriction Fusion
+Wavefront(smooth only)
Baseline

!  CHiLL can just as quickly apply these
transformations to a different smoother and
auto-tune it…
•  up to a 3x improvement in MGSolve time
•  Jacobi suffered from more frequent inter-thread

synchronization within the wavefront

3. CHiLL Hides Architectural Complexity

X-Stack PI Meeting
December 2015 20

5.224148

4.861889
4.774941

0

2

4

6

8

10

12

Ti
m

e
(s

ec
on

ds
)

2D Thread Blocks <TX,TY>

GSRB Smooth on 64^3 boxes

CUDA-CHiLL

Handtuned

Handtuned-VL

!  CHiLL can obviate the need for
architecture-specific programming
models like CUDA
•  CUDA-CHiLL took the sequential GSRB

implementation (.c) and generated CUDA that
runs on NVIDIA GPUs

•  CUDA-CHiLL tunes for the current target
machine whereas static implementations hand-
optimize for yesterday’s GPUs
 == avoids code rot

•  CUDA-CHiLL auto-tuned over the thread block
sizes and is ultimately 2% faster than the hand-
optimized minigmg-cuda

4. CHiLL Enables Extensibility

X-Stack PI Meeting
December 2015 21

!  Applied mathematicians have a penchant for changing the math
!  Consider the following variations (stencils) on the discretization of the Laplacian

•  low-level implementations (optimized OMP4) may provide high performance
•  but are one-off solutions as requisite optimizations/tuning change from one stencil to the next

4. CHiLL Enables Extensibility

X-Stack PI Meeting
December 2015 22

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

7pt 27pt 13pt 125pt 7pt 27pt 13pt 125pt

Edison Hopper

M
S

te
nc

ils
/s

Smoother Performance (Fine Grid)

All Optimizations
+Fusion & Wavefront
+Fusion & Partial Sums
+Fusion
Baseline
Roofline Memory Bound

!  CHiLL optimized/tuned each of these
stencils…
•  selected unique optimizations for each stencil

 (and at each level of the MG V-Cycle)
•  Without a communication-avoiding wavefront,

CHiLL delivered performance near the Roofline
bound.
 == productive & performance portability

•  Using a wavefront, CHiLL can nearly double the
nominal Roofline performance for the 7- and 27-
point operators.

X-TUNE Developed
Efficient Search

Algorithms

Use Case #2: Tensor Contractions

X-Stack PI Meeting
December 2015 24

!  Found in Chemistry, Spectral Element (and Finite Element) codes
!  Consider example from 3D spectral element codes…

•  Naïvely, this is a 6-deep loop nest (each ijk has a summation over lmn)
•  Optimizations exploit symmetry/common subexpressions

!  Challenges…
•  What is the optimal contraction order? … O(p6) -> O(p4)
•  What is the optimal loop order? (N! different implementations)
•  Search space is discontinuous, noisy, and expensive to evaluate

 == intractable brute force search space
 == need intelligent search algorithms

V	ijk	 =	A	k	
l	B	j	

m	C	i	
n	 =	U	lmn	 Σ	Σ	Σ	

l=0	 m=0	n=0	

p	 p	 p	

A	k	
l	B	j	

m	C	i	
n	U	lmn	

SURF: Model-Based Search

X-Stack PI Meeting
December 2015 25

!  Search Using Random Forests
•  state-of-the-art statistical ML algorithm
•  handles binary permutation parameters
•  handles nonlinear parameter interactions

!  Approach…
•  start with promising small set of parameter

configurations
•  evaluate performance
•  fit surrogate model (ML)
•  predict new set of high-performing

configurations
•  iterate…

!  Prototyped as module in ORIO

Example Surrogate Model Fitted to Sampled Performance
(iterative refinement improves the statistical model)

Baracuda:
X-TUNE Demonstration

Prototype

Baracuda Framework

X-Stack PI Meeting
December 2015 27

!  Framework for compiler- and model- driven auto-tuning of Tensor Contractions
•  Octopi: High-level domain-specific frontend; interfaces with TCR
•  TCR: Low-level mathematical interface to generated C, CUDA-CHiLL, SURF search tool
•  CUDA-CHiLL: Parses .c, optimizes, generates high-performance CUDA.
•  SURF: Search Using Random Forests module added to ORIO

!  Baracuda conducts a model-driven search of the transformations possible for
tensor contractions generating and evaluating each CUDA implementation.

!  For research purposes….
•  Automatically generated CUDA was manually modified into OpenACC
•  ‘Naïve OpenACC’ simply expressed parallelism and gauges the vendor compiler’s ability to productively

generate high-performance code
•  ‘OpenACC’ includes expert user micromanagement of parallelism

Optimizing NWChem with Baracuda

X-Stack PI Meeting
December 2015 28

!  Extracted representative on-node
tensor contractions from
NWChem/TCE
•  many small contractions
•  atypical of OpenACC use model

!  Baracuda generates optimized
CUDA for NVIDIA’s Fermi or
Kepler GPUs

!  Manually modified CUDA to
OpenACC…
•  Naïve replaces CUDA with OpenACC
•  OpenACC = naïve + manual explicit

control over hierarchical parallelism

0"

10"

20"

30"

40"

50"

60"

70"

80"

d1_1" d1_2" d1_3" d1_4" d1_5" d1_6" d1_7" d1_8" d1_9"

Sp
ee
du

p&
D1&

Barracuda&-&C2050& OpenACC""4"C2050" Barracuda&-&K20& OpenACC"4"K20"

Sp
ee

du
p

ov
er

 N
aï

ve
 O

pe
nA

C
C

Optimizing NEKBone with Barracuda

X-Stack PI Meeting
December 2015 29

!  Extracted representative tenor contractions from NekBone (CESAR CoDesign
Center Proxy App)
•  Many, small (e.g. 12x12x12) contractions
•  Nominally implemented as many BLAS3 calls

!  Baracuda generates optimized CUDA for NVIDIA’s Fermi or Kepler GPUs
!  Compare to single HSW core.

Naïve
OpenACC

Optimized
OpenACC

Baracuda
(CUDA)

K20 2.86 12.39 36.47
C2050 1.18 19.21 34.65

Potential
ECP R&D

Observations

X-Stack PI Meeting
December 2015 31

!  X-TUNE prototyped compiler transformation technologies that…
•  hide the complexity of targeting emerging architectures without exposing complexity to the programmers
•  are extensible as novel optimizations or programming models emerge
•  are complimentary to eDSL solutions

!  X-TUNE developed new ML based search techniques to efficiently autotune in the
presence of huge optimization spaces

!  Funding for application integration/evaluation (CHOMBO) was cut from the original
proposal. As such, consensus on app-facing interface was not reached.

Issues / Decision Points

X-Stack PI Meeting
December 2015 32

!  NDA’s with universities?
•  many SW projects require university collaborations
•  FF, DF (, CORAL?, APEX?) NDA’s bar universities

!  Consensus on vendor compilers vs. S2S w/auto-parallelization
•  eDSLs vs. compiler transformation frameworks with domain-inspired optimizations?
•  What functional interface should we export to motif/framework/lib developers?
•  What tuning interface should we export?

!  What is the target PM for accelerated systems?
•  OpenMP 4.1+, OpenACC 3.0+, or CUDA 7+?
•  How do we easily switch between host parallelism and device parallelism?
•  Do we have to compose multiple models (or dialects)?
•  (if CUDA) how do we hide the complexity of data allocation (UVM, ZC, malloc, …) from users?

ECP R&D Timeline

X-Stack PI Meeting
December 2015 33

FY17 FY18 FY19 FY20 FY21 FY22 FY23 FY24

Research

Development Complete clang (and C++)
integration into CHiLL

Harden Fortran support (GFortran / PGI / flang)
Track OpenMP and CUDA developments

Provide consistent funding for CHiLL staff

Research ideas to hide the complexity of allocating data on
GPUs (UVM, ZC, malloc, …)

Work with app stakeholders to provide interface/functionality needed without burdening them with optimization/target complexity

create a library version of CHiLL
to facilitate eDSL research path

Harden search tools / algorithms
(ORIO, ActiveHarmony, OpenTuner)

Research and Prototype other, novel, motif-inspired
transformations in CHiLL

Add support for Sparse Motif (prototyped under SciDAC)
Research transformations for particle methods

Track OpenMP and CUDA developments (and add OpenACC support if desired)

push promising research ideas into development chain Decide on
eDSLs vs.

transformation
frameworks.

Other Issues

X-Stack PI Meeting
December 2015 34

!  Ensure hybrid MPI+x codes attain MPI bandwidth comparable to flat MPI codes?
!  Ensure no MPI routine has a worse case computational complexity no worse than

O(PlogP)
!  Latency/Overhead of vendor threading runtimes

•  KNC OMP overheads can be horrendous (10s of us) compared to IVB
•  CUDA launch times are also O(10us)
•  High overheads demand exponentially increasing work per parallel region in the future

!  Exposing performance counters (e.g. data movement) to users (not just root)
•  Without trusted, user-accessible counter data, most performance analysis won’t work

!  How do we avoid the network wall tomorrow?
•  Today, for some codes, poor code optimization can hide behind the memory wall.
•  Tomorrow, will on-node optimization matter if we are bottlenecked by the network?

Acknowledgements
!  This research used resources of the National Energy Research Scientific Computing Center

(NERSC), which is supported by the Office of Science of the U.S. Department of Energy under
contract DE-AC02-05CH11231.

X-Stack PI Meeting
December 2015 35

Publications / Software
!  CHiLL v0.2: http://ctop.cs.utah.edu/ctop/?page_id=21
!  Protonu Basu, “Compiler Optimizations and Autotuning for Stencils and Geometric Multigrid”, PhD Thesis,

University of Utah, December 2015.
!  Thomas Nelson, Axel Rivera, Prasanna Balaprakash, Mary Hall, Paul D. Hovland, Elizabeth Jessup, Boyana Norris,

“Generating Efficient Tensor Contractions for GPUs”, International Conference on Parallel Processing (ICPP),
September 2015.

!  Protonu Basu, Samuel Williams, Brian Van Straalen, Mary Hall, Leonid Oliker, Phillip Colella, "Compiler-Directed
Transformation for Higher-Order Stencils", International Parallel and Distributed Processing Symposium (IPDPS),
May 2015.

!  Protonu Basu, Samuel Williams, Brian Van Straalen, Leonid Oliker, Mary Hall, "Converting Stencils to
Accumulations for Communication-Avoiding Optimization in Geometric Multigrid", Workshop on Stencil
Computations (WOSC), October 2014.

!  Protonu Basu, Anand Venkat, Mary Hall, Samuel Williams, Brian Van Straalen, Leonid Oliker, "Compiler generation
and autotuning of communication-avoiding operators for geometric multigrid", 20th International Conference on
High Performance Computing (HiPC), December 2013, 452—461.

X-Stack PI Meeting
December 2015 36

Questions and
Discussion

Questions

X-Stack PI Meeting
December 2015 38

!  The goals of your project and its current status
-  Do you release your software as open source? OSS/GPL
-  Do you have DOE/NNSA users of your software? no users depend on CHiLL. We used proxies and apps and demonstrated value of CHiLL

-  Have facilities, vendors, or ISVs picked up your software? Users have installed it on NERSC. Attempts to create NERSC module stalled
-  What is the support model for your software? Utah staff programmers funded by a variety of sources. Research contributions funded thru ASCR.
-  Are there any applications in particular that the outcomes of your project are targeting? CHOMBO/BoxLib BSAMR codes, Nek5K, NWChem.

!  Will the developed software technologies be mature enough to be part of the software stack on exascale systems
expected to be selected in 2019 and installed in 2023?
 Transformation technologies are mature; frontend choices are maturing (F/C++); integration model
(including interface) requires consensus with application stakeholders

!  How would the proposed activities build on the research you have been carrying out with ASCR Research funding?
 Provide broader language support (C,C++,Fortran); integration model; target execution support; domain-
inspired transformations

Questions

X-Stack PI Meeting
December 2015 39

!  What do you feel are the key challenges posed and opportunities offered by exascale systems for your specific area?
 See slide 33

!  What is the R&D that you would like to carry out within the ECP?
 See slide 33

!  What research remains for your project’s outcomes to benefit key DOE applications?
 See slide 33

!  What are the proposed activities that you believe would contribute to the ECP?
 See slide 33

!  Your roadmap/timeline for maturing the software technologies and deploying them on exascale platforms, with a few
intermediate milestones or decision points (forks in the roadmap). The timeline is of particular importance in selecting
what the ECP will include in the development plans.
 See slide 33

Backup
Slides

Adaptive Mesh Refinement (AMR)

!  Acceleration and memory savings technique that creates hierarchy of grids of
different grid spacings (plus subcycling)

!  CHOMBO and BoxLib are frameworks for block structured AMR
!  Both use GMG solvers applied to AMR levels

X-Stack PI Meeting
December 2015 41

GSRB Smoothers

X-Stack PI Meeting
December 2015 42

!  Gauss-Seidel Red Black is a go to smoother for geometric multigrid
!  Complex update pattern is an impediment for most compilers…

•  iteration space is the union of four stride-2 rectangular domains
•  many research projects concentrate on Jacobi and Chebyshev-like smoothers

!  miniGMG uses the 2nd order variable-coefficient Helmholtz (αu - ∇•β∇u)
•  7-point stencil with 6 weights (3 unique) plus an extra diagonal term
•  variable RHS, periodic BC’s

!  With sufficient thread parallelism, smoother is heavily
 memory-bandwidth bound.
•  Previous work prototyped communication-avoiding smoothers
•  Exchange deeper ghost zones, wavefront GSRB on each box
•  Can we modify CHiLL to automatically generate a threaded wavefront ?

GSRB Wavefronts

X-Stack PI Meeting
December 2015 43

Thread 0 Thread 1 Thread 2 Thread 3

residual

j

k

i

!  With sufficient thread parallelism, smoother is heavily memory-bandwidth bound
•  operator is created piecemeal (laplacian, diagonal term, smoother)

 == multiple passes thru memory for each smooth.

!  Previous work prototyped communication-avoiding smoothers
•  fuse operator and smoother loops
•  Exchange deeper ghost zones
•  Create a 2D wavefront that sweeps thru each box

 updating a red or black points on a plane
 == perform 4 updates but only read/write the data once

!  Can we modify CHiLL to automatically fuse loops
 and generate a OpenMP-threaded (and synchronized)
 wavefront from sequential code?

Performance with Scalability

GSRB smoother

Hopper and Edison

Baseline vs. CHiLL

X-Stack PI Meeting
December 2015 44

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 10 100 1000

M
G

 S
ol

ve
 T

im
e

(S
ec

on
ds

)

Compute Nodes (24 cores each)

miniGMG Weak Scaling
Hopper(Baseline)
Hopper(CHiLL)
Edison(Baseline)
Edison(CHiLL)

Smoother Performance (finest MG level)

X-Stack PI Meeting
December 2015 45

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

7pt 27pt 13pt 125pt 7pt 27pt 13pt 125pt

Edison Hopper

M
S

te
nc

ils
/s

Smoother Performance (Fine Grid)

All Optimizations
+Fusion & Wavefront
+Fusion & Partial Sums
+Fusion
Baseline
Roofline Memory Bound

!  Without a communication-avoiding
wavefront, CHiLL was able to deliver
performance near the Roofline limit
across both platforms and across all
stencils
 == productive performance portability

!  Using a wavefront, CHiLL can nearly
double the nominal Roofline performance
for the 7- and 27-point operators.

Smoother Auto-tuning

X-Stack PI Meeting
December 2015 46

!  Unlike a human, CHiLL will tune its
implementation for each level in the
MG V-Cycle

!  As shown, the optimal configuration
varies with MG level (2563… 163)

!  CHiLL delivers good performance on the
first few levels (those that dominate
performance) but struggles on the
latency-limited levels 0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

256 128 64 32 16 256 128 64 32 16

27pt (6th order) Operator 125pt (10th order) Operator

M
S

te
nc

ils
/s

Smoother Performance by Level

All Optimizations
+Fusion & Wavefront
+Fusion & Partial Sums
+Fusion
Baseline

Overall MG Solver Speedup

X-Stack PI Meeting
December 2015 47

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

7pt 27pt 13pt 125pt 7pt 27pt 13pt 125pt

Edison Hopper

S
pe

ed
up

Speedup on miniGMG

CHiLL, tuned
Baseline

!  CHiLL attained around a 2x speedup
over the baseline implementation.

!  Speedup is greater on platforms with
excess compute capacity that can be
exploited by a compiler via
communication-avoiding optimizations
 == motivation for integrating compiler
efforts with HW/SW co-design efforts

SURF: Model-based search

X-Stack PI Meeting
December 2015 48

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

1.5

2

2.5

3

3.5

4

4.5

5

1 3 5 7 9 11 13 15

1
2

3
4

5
6

7
8

9
10

0

1

2

3

4

5

x 107

Unroll Factor jUnroll Factor i

Ti
m

e
[C

PU
 m

s]

Learning model

Performance
metrics

Promising
configurations

Unevaluated parameter
configurations

Evaluation

