
The Case for Partitioning Virtual Machines on
Manycore Architectures

Khaled Z. Ibrahim, Steven Hofmeyr, Costin Iancu
Lawrence Berkeley National Laboratory

Email: {kzibrahim, shofmeyr, cciancu}@lbl.gov

Abstract—In this paper we characterize the behavior with respect to
memory locality and I/O management of scientific computing applications
running in virtualized environments. Our results using MPI, UPC and
OpenMP implementations of the NAS Parallel Benchmarks, running on
Intel and AMD based systems, indicate that lack of proper NUMA support
determines an average performance degradation of 55% when compared
to native. In the current full virtualization environments this performance
degradation can be reduced by two techniques: i) hypervisor level page
remapping; and ii) partitioning the NUMA domains between multiple virtual
machines. Our analysis shows that hypervisor only schemes have little or
no potential for performance improvement. When the programming model
allows it, system partitioning with proper VM and runtime support is able
to reproduce single node native performance: in a partitioned system with
one virtual machine per socket the average workload performance is 5%
better than native. Partitioning also improves I/O performance on clusters
and we observe latency and bandwidth improvements as high as 10X in a
two node experiment. This translates into end-to-end application performance
improvements: partitioning decreases the average overhead of virtualization
on the NAS MPI workload from 242% to 17%. Overall, our results indicate
that partitioning is a simple and robust way to minimize the overhead of
virtualization in HPC environments.

I. INTRODUCTION

Virtualization technologies are ubiquitously deployed in
data centers and offer the benefit of resource consolidation [1],
performance and fault isolation, flexible migration [2] and
easy creation [3] of specialized environments. They have been
extensively used to run web server, E-commerce and data
mining workloads. With the recent advent of the cloud comput-
ing paradigm, these workloads have been supplemented with
High Performance Computing (HPC) applications: the Ama-
zon Elastic Compute Cloud (EC2) already provides virtualized
clusters targeting the automotive, pharmaceutical, financial
and life sciences domains. The US Department of Energy is
evaluating virtualization and cloud computing technologies in
the Magellan [4] project. The tasks in commercial workloads
are often independent and serve short lived requests; server
tasks are started at virtual machine boot time and kept alive
until shutdown. In contrast, HPC workloads have tasks tightly
coupled by data movement and tend to persistently use a sig-
nificant fraction of the system memory; applications are often
run in batch jobs with multiple independent runs submitted
simultaneously. In this paper we characterize the performance
of HPC applications in virtualized multicore environments and
quantify the performance expectations of several techniques
designed to improve memory locality and I/O performance.
For our evaluation we use a workload containing MPI, Unified
Parallel C (UPC) and OpenMP implementations of the NAS
Parallel Benchmarks [5].

In a virtualized environment, a virtual machine monitor
(VMM or hypervisor) is inserted between the operating system
and the hardware and multiple OS instances can run simul-
taneously, each inside a virtual machine (VM). Virtualized
environments have to bridge a semantic gap between the
hypervisor hardware resource management and the decou-
pled functionality inside the guest OS. Existing open source
solutions (Xen [6], KVM [7]), as well as proprietary ones
(VMware ESX [8] and hyperV) expose this gap in the areas
of NUMA and I/O support: our study focuses on the behavior
of KVM. We discuss related work in Section II and the details
of the KVM architecture in Section III.

In Section V we discuss the performance provided by exist-
ing virtualization technologies on AMD and Intel UMA and
NUMA processors. In contrast with previous HPC studies [9],
[10], [11] which report little or no impact from virtualization
on architectures with four or less cores, our results indicate a
significant performance degradation (up to 82%) when VMs
span sockets in 16 core NUMA architectures. Our analysis
also indicates that distributed memory programming models
such as MPI or Partitioned Global Address Space languages
are better suited and provide better performance and scalability
in virtualized environments when compared to shared memory
programming models such as OpenMP.

NUMA affinity in virtualized environments is currently
achieved by a combination of pinning guest VMs to CPUs and
having the hypervisor memory management module allocate
memory with affinity to CPUs. NUMA support in the OS
running inside guests is usually disabled, but once a page
is allocated by the hypervisor it will likely maintain the
proper affinity. Our survey of the KVM and Xen developer
mailing lists indicates that there is widespread belief that this
cooperation provides most of the NUMA support needed.

In Section VI we analyze the interaction between current
OS and hypervisor level memory management techniques and
show that current solutions cannot provide good NUMA local-
ity. Applications that start on a cold VM (right after booting)
exhibit as much as 28% better performance than subsequent
runs on warm VMs. The degradation is caused by the two-level
memory management inherent in virtualized systems com-
bined with the lazy page reclamation policies implemented in
modern OSes: the end result is a locality leakage where pages
are recycled from remote NUMA domains. The difference in
performance between cold and warm runs provides a good
upper bound for the expected performance gains of improved

NUMA support in virtualization technologies. The analysis
also indicates that up to 25% of the pages used in runs on
warm VMs have bad locality.

We then implement and analyze techniques designed to im-
prove locality in full virtualization environments: 1) hypervisor
only approaches (Section VII); and; 2) system partitioning
(Section VIII), which required modifications in both the hy-
pervisor and the parallel programming runtimes. These two
approaches maintain the advantages of virtualization while re-
quiring minimal modifications to existing software. In contrast,
“enlightenment” [12] has been proposed as a Xen extension
to inform the guest about the underlying hardware through
hypercalls. No performance evaluation is available and this ap-
proach is facing resistance from the community since it breaks
the virtualization tenets by enforcing a one-to-one virtual to
physical CPU mapping. Paravirtualization approaches require
guest modifications, e.g. Linux or Windows.

Our results indicate that hypervisor only approaches, while
the most portable, have little potential for performance im-
provements: up to 90% of the page translation activities on a
warm VM are serviced by the guest OS and only 2% of the
page translations can be correctly handled by the hypervisor.

In Section VIII we explore system partitioning using multi-
ple guest VMs. In order to achieve good performance we had
to extend the KVM support and implement shared memory
bypass in the MPI and UPC runtimes. Partitioning [13], [14],
[15] is increasingly mentioned as an approach to improve
performance on manycores: our results are the first presented
for multicore NUMA systems in an application setting and
add quantitative proof to the intuitive expectations. The results
indicate that partitioning is able to provide the best over-
all performance and we observe up to 60% improvements
when compared to the performance on VMs with “improved”
NUMA support, as captured by the performance of the cold
runs. This improvement is caused by a combination of good
locality and decreased VM contention. Best performance is al-
ways obtained for the configurations where VMs are contained
within one socket or NUMA domain.

In Section IX we explore the impact of partitioning on I/O
performance and we observe as much as 10X latency and
bandwidth improvements in a two node experiment. This trans-
lates into end-to-end application performance improvements:
partitioning decreases the average overhead of virtualization
on the NAS MPI workload from 242% to 17%. In the cluster
environment, partitioning also enables configurations using full
I/O virtualization to attain similar or better performance than
paravirtualized configurations. This contradicts the current
community agreement that paravirtualization is required for
good I/O performance.

Our paper makes several contributions. We characterize the
impact of current memory management techniques in virtual-
ized environments and quantify the performance expectations
of several KVM solutions designed to improve memory local-
ity. We provide a bound on the performance expectations of
improving NUMA support in virtualized environments without
exposing the hardware architecture. Overall, for the work-

loads considered the existing implementations cause a 55%
average performance degradation on KVM when compared to
native performance, the average performance of the cold runs
and better NUMA support is within 27%, while partitioning
reduces this impact to 11%. Since there are no published
results for techniques such as “enlightenment”, our evaluation
is also of interest to the proponents of providing contracts
between virtual machines and hypervisors. We also show that
partitioning also provides a simple and robust technique to
improve the performance of the I/O subsystem.

II. RELATED WORK

Memory translation in virtualized environments has been
extensively studied and hardware acceleration technology is
provided by Intel VT-X [16] and AMD AMD-V [17]. The
software solutions Xen [6], KVM [18] and VMware [8],
use these hardware mechanisms for hypervisor page table
traversal.

The impact of virtualization for scientific workloads has
received its fair share of attention. Xu et al. [10] study the
performance of multiple programming paradigms. Youssef et
al. [19] evaluate the impact of Xen on MPI performance
and report a low overhead of virtualization. They [11] also
evaluate the impact of virtualization on multi-threaded linear
algebra software and report low overhead on UMA systems.
The NUMA studies to date have been conducted on systems
with four or less cores and report a low performance impact.

Huang et al. present several Xen extensions to improve
virtualization performance. They present Xen-IB [20] where
shared memory bypass is implemented for communication
between MPI processes on the guest OS and InfiniBand
hardware. This shared memory is not used for inter-VM
communication. They also implement [9] Inter-VM communi-
cation (IVC) using MVAPICH and Xen extensions to provide
shared memory in the communication stack. They report
good performance improvements on a cluster with dual-socket
single core UMA nodes when running one VM per core.
Inter-VM communication using shared memory for the TCP/IP
stack is also discussed by Zhang et al. [21] for XenSocket, and
by Kim et al. [22], again at low core counts. In contrast, our
OpenMPI implementation bypasses completely the networking
(IP) stack with shared memory between processes and it is able
to provide better performance.

Lange et al. [23] present the implementation of Palacios
and Kitten, a hypervisor and a lightweight OS for high
performance computing. Although they report performance
close to native for large scale systems, to our knowledge their
results are obtained using only one of the eight cores per node
and Palacios is not yet tuned for multicore.

In general, most of the cited studies [9], [20], [23], [10],
[11], [19] for HPC workloads were conducted on systems with
a low core count and do not discuss NUMA effects. Most
studies report a low performance impact of virtualization: we
could replicate this behavior only on UMA systems or a single
socket in a NUMA system.

Partitioned operating system design on manycores has re-
ceived a fair share of attention recently. Tessellation [13],
Barrelfish [14] and fos [15] while describing different im-
plementations, advocate for partitioning, running OS services
as servers and for replacing the reliance on shared memory
with message passing. These are relatively young projects and
there is not enough experimental evidence using complicated
workloads to show their promised benefits. Our results with
partitioning are an encouragement. In particular, Tessellation
advocates for resource management and a space time parti-
tioning scheme using two level scheduling. Our analysis of
locality leakage is of direct interest.

As all these projects advocate a lightweight OS design, a
simplified approach to page management might alleviate the
need for better NUMA support in virtualized environments.
HPC specific systems such as Palacios and Kitten already
restrict the virtual memory support. On the other hand, con-
figurations currently used in cloud computing tend to use
commodity Operating Systems (Linux) and commercial vir-
tualization technologies (KVM, Xen) in configurations where
a virtual machine spans all the available cores.

III. MEMORY MANAGEMENT IN VIRTUAL MACHINES

Handling memory translation is one of the difficult problems
addressed in virtualized environments. Within any OS, paging
is used to map the separate per process virtual address spaces
to the single machine physical memory space. With virtualiza-
tion, any VM presents a single address space to the hypervisor
and a two level page translation scheme is required. Depending
on the vendor and implementation, NUMA support is provided
by one or more components in the virtualized environment.

The hypervisor functionality in KVM/Qemu is split between
the Qemu emulator, the KVM device driver, and the host OS.
Qemu is a machine emulator that creates a virtual machine
image for the guest OS: the emulated machine can have
any architectural configuration independent of the hardware
support available. Qemu relies on the KVM Linux kernel
driver to provide accelerated memory translation and I/O
support. In turn, the KVM driver relies on the Linux host
OS for NUMA support. While Qemu can create a NUMA
based virtual machine, this emulated machine is intentionally
decoupled from the underlying architecture. This decoupling
is to allow flexible scheduling and migration of guests and
also to allow dynamic resource allocation and management.

Similar to KVM/Qemu, VMware provides a solution based
on a kernel driver and a machine emulator, but it does
not expose any NUMA support to the guest. The VMware
hypervisor relies on the guest OS support for NUMA. Xen
provides a bare-metal hypervisor that interacts directly with
the hardware. As such, Xen implements its own NUMA policy
and statically allocates physical memory from the first NUMA
domain on which the guest resides. This allocation is subject
to space availability and does not maintain affinity if the guest
spans multiple NUMA nodes. HyperV [24] does not have any
explicit NUMA support.

...... Application virtual
address space

user space kernel space

.........

DMA
zone Guest physical

memory

Normal
zone

Highmem
zone

Guest virtual
memory

.........

Machine physical
memory

...

2

1

3

Fig. 1. The three page-translation stages for guest application virtual
addresses in KVM. The guest OS is responsible for the first translation phase.
The KVM device driver manages the two other phases with the assistance of
the host OS (hypervisor). Stage two of the mapping is static.

A. The KVM Memory Management Unit

In KVM, the hypervisor runs inside the Linux host kernel.
Since in KVM terminology the hypervisor is also referred
to as the host, we will use interchangeably the terms host
OS and hypervisor. Creating a virtual machine with KVM
involves allocating memory zones that reflect the simulated
architecture: some regions require direct mapping, e.g. I/O or
DMA, while most of the physical memory is virtualized. The
KVM/Qemu solution allocates all these regions and defines
a one-to-one mapping between the guest physical memory
and the host virtual memory. This mapping is transparently
registered with the KVM device driver.

Figure 1 illustrates the KVM address translation steps.
A memory reference within an application undergoes three
levels of translation: first, application virtual address to guest
physical address, performed inside the guest OS; second, guest
physical to guest virtual memory on the hypervisor space,
performed by the KVM modules, if hardware acceleration is
active; and third, host virtual address to host physical address,
performed by the (host OS) hypervisor. In KVM, the guest
physical to host virtual mapping is static, and is usually divided
into a few memory slots. The mapping on the host is dynamic,
but the host OS cannot handle it directly. When a virtual CPU,
registered with KVM, faults in a memory reference, the host
OS (hypervisor) redirects the fault to the KVM driver. In Xen,
the hypervisor runs directly on the bare metal and there are
only two levels of page translation: since the mid-level KVM
mapping is static the overall Xen translation process is similar
to KVM.

Page Mapping Policy: Page translation for a first touch
reference in a guest OS process involves four stages. 1) The
process tries to reference its virtual memory, but as there is
no physical translation, it traps into the guest OS to handle
the fault. If the the virtual address is valid, the guest OS
creates a page translation entry (PTE) in the page table. 2)
When the application tries to access memory based on the
new PTE, it faults again, but this time the fault is intercepted
by the hypervisor (host OS) as the guest OS cannot handle
it. The hypervisor redirects this fault to the KVM driver. 3)
The KVM driver in turn reads the faulting PTE and updates
the guest mapping. Then, it performs the second translation,
from guest physical to host virtual, and requests the actual
physical memory from the host OS. 4) The KVM module then
updates the guest PTE with the correct physical memory. The

application can resume execution normally. Any subsequent
TLB refilling of this page will require only reading the page
table of the application.
Page Reclamation: The host OS may decide be reclaim
memory pages from the running guest OS, for instance to
satisfy another VM or application. As the host cannot directly
access the guest page tables, it notifies the KVM module about
the page reclamation. The driver maintains a reverse mapping
of all virtual CPUs address mappings that are using this page,
it invalidates the relevant PTEs in the guest before returning
the page to the hypervisor for reclamation. Obviously, the
hypervisor involvement is not needed if page translations get
cached in the guest OS. The host translation also remains intact
if the same host page is reused multiple times by the guest.

B. Page Allocation Policy and Multi-Socket NUMA nodes

When a page is first touched, the actual physical page
is chosen by the hypervisor. As the faulting virtual CPU is
already occupying a physical CPU, the physical page can be
allocated on the NUMA node with proper affinity. Thus, for
the first touch of a page, NUMA-awareness is transparently
provided by the hypervisor. When virtual CPUs are bound
to physical CPUs the advantage of NUMA proximity of
allocation can be maintained. KVM exposes the hardware
architecture and a virtual CPU can be explicitly pinned to
any physical CPU.

NUMA domains can be identified only at the
host/hypervisor level and they are not exposed to the
guest OS for two reasons. First, what appears to guests as
physical memory is not allocated on the machine physical
memory until it is touched for the first time inside guests.
Second, while hypervisors try to observe NUMA allocation,
no strong affinity guarantees are implemented or provided:
the hypervisor retains its right to migrate or free pages
as needed by the memory management policy to balance
between concurrent activities. Consequently, only best-effort
guarantees are provided for NUMA allocation.

For these reasons, virtualization technologies (KVM, Xen,
VMware, hyperV) advocate “node confinement on NUMA
architectures: they restrict the virtual machine to run within
one NUMA domain, a strategy effective only when the number
of virtual CPUs is less than the number of physical CPUs
on a domain. As our results show, significant performance
degradation occurs when this requirement is not met. The
memory management in VMware 1 is relatively similar to that
in KVM. In KVM, when faults are propagated, the hypervisor
provides memory affinity with the faulting CPU, while in
VMware affinity management is solely delegated to guests.
In Xen, dom0 controls the pinning and while it provides
guarantees that a virtual CPU is pinned to a physical CPU, it
does not expose the identity of the latter. Affinity is provided
using the domain_to_node API which determines the node
associated with the first vcpu of the domain. Thus, Xen

1 Free VMware licenses allow only 2 vcpus, while commercial licenses
are limited to eight vcpus. A HyperV is restricted to 4 vcpus.

will exhaust one NUMA domain before moving to another,
regardless of the faulting CPU.

IV. EXPERIMENTAL SETUP

We experiment with KVM/Qemu 0.14.1 using the hardware
virtualization support provided by CPU vendors: Intel VT-X
and AMD-V. As guest OS we use the Linux kernel 2.6.32.8;
for KVM we use the same kernel for the host OS. The three
architectures used for the evaluation are: 1.6 GHz quad-core
quad-socket UMA Intel Xeon E7310 (Tigerton), 2 GHz quad-
socket quad-core NUMA AMD Opteron 8350 (Barcelona) and
2.4 GHz dual-socket quad-core NUMA Intel Xeon E5530
(Nehalem EP).

As a workload we use implementations of the NAS Parallel
Benchmarks [5] in popular parallel programming paradigms:
MPI (OpenMPI 1.4.2 with gcc 4.3.2), UPC (Berkeley UPC
with gcc 4.3.2) OpenMP (gcc 4.3.2 with GOMP). We run
the problem classes B and C and the memory footprint of the
workload varies from tens of MBs to tens of GBs. Asanović
et al [25] examined six different promising domains for
commercial parallel applications and report that most of them
use methods encountered in the scientific domain. In particular,
all methods used in the NAS benchmarks appear in at least
one commercial domain. Thus, beside their HPC relevance,
these benchmarks are of interest to other communities.

All benchmarks are executed using all the cores available
(16-way and 8-way parallelism) and each experiment is re-
peated at least 30 times. Some benchmarks (MPI BT and SP)
require a square number of processors at runtime and we did
not execute them in the 8-way configuration. The performance
variation between all runs of the same experiment is less than
10% in all cases.

For network I/O, we use two UMA Intel Tigerton nodes
connected through a Gigabit Intel 82545EM Ethernet con-
troller. We assess the network performance with the Multi-
BW(bandwidth) and Multi-latency OSU microbenchmarks
3.5 [26] between two nodes with 16 pair of processes.

For the multi NIC experiments we use mpich2 (version
1.4.1), as OpenMPI deadlocks. Single NIC performance for
OpenMPI and mpich is statistically equivalent. For the network
driver we use full virtualization of the rtl8139 NIC adapter and
a para-virtualized driver based on virtio [27].

Newer versions of the system software KVM/Qemu 1.0.1
and the Linux kernel 3.3.7 became available at the time of
the writing, although not yet deployed in production settings.
The NUMA performance and behavior on the newer releases
is identical to that observed in our setting. I/O performance
is improved from 40% of the hardware peak in our setting to
57% of peak. Although we have not tried to port all of our
kernel modifications to the new releases, we feel confident that
all conclusions and trends reported are still valid.

V. SINGLE NODE MULTI-SOCKET PERFORMANCE

Figure 2 shows the KVM performance compared to native
performance when virtual machines span an increasing number
of sockets. On a single socket, the performance on virtual

S P M G B T L U E P C G F T I S U A
- 4 0 %
- 2 0 %

0 %
2 0 %
4 0 %
6 0 %
8 0 %

Pe
rce

nta
ge

inc
rea

se
in e

xec
uti

on

tim
e c

om
par

ed
wit

h h
ost

N A S N P B - 3 . 3 O p e n M P

 1 s o c k e t 2 s o c k e t s 4 s o c k e t s
I n t e l X e o n E 7 3 1 0 - U M A

S P M G B T L U E P C G F T I S U A
- 4 0 %
- 2 0 %

0 %
2 0 %
4 0 %
6 0 %
8 0 %

A M D O p t e r o n 8 3 5 0 - N U M A

N A S N P B - 3 . 3 O p e n M P

S P M G B T L U E P C G F T I S

- 2 0 %

0 %

2 0 %

4 0 %

6 0 % I n t e l X e o n E 7 3 1 0 - U M A

Pe
rce

nta
ge

inc
rea

se
in e

xec
uti

on

tim
e c

om
par

ed
wit

h h
ost

N A S N P B - 3 . 3 M P I

S P M G B T L U E P C G F T I S

- 2 0 %

0 %

2 0 %

4 0 %

6 0 % A M D O p t e r o n 8 3 5 0 - N U M A

N A S N P B - 3 . 3 M P I

M G L U E P C G F T I S
0 %

5 %

1 0 %

1 5 %

2 0 %

2 5 % I n t e l X e o n E 5 5 3 0 - N U M A

Pe
rce

nta
ge

 in
cre

as
e i

n e
xe

cu
tio

n
tim

e c
om

pa
red

 w
ith

 ho
st

N A S N P B - 3 . 3 M P I

 1 s o c k e t 2 s o c k e t s

Fig. 2. Performance of the NAS NBP3.3 benchmarks MPI and OpenMP implementations running with KVM on UMA and NUMA architectures.

machines is mostly within 5% of the native performance,
regardless of the programming model used in the benchmark
implementation and the hardware utilized. Similar trends are
reported by earlier studies [20], [23], [11] that show hardware
virtualization being able to provide near native performance.

On the UMA architecture, the performance decrease is
caused mostly by a combination of slower memory translation
and slower performance in synchronization operations, e.g.
MPI and OpenMP barrier performance decreases by roughly
20% with virtualization across four sockets. For brevity, we
omit the detailed analysis of this behavior. On the NUMA
architecture, the lack of proper support causes additional
performance degradation. For example, on the AMD Opteron,
MPI runs using four sockets are slowed down on average
by roughly 40%, while single socket runs slow down by
10%. When increasing the number of sockets used by the
applications, the performance degrades by up to 82%. The
UPC results are similar to the MPI and omitted for brevity.

Many performance studies indicate that using large pages
provides a performance benefit in virtualized environments.
We have repeated the experiments using large pages with
libhugetlbfs in all combinations of host and guest OS.
For our particular workload, large pages cause performance
degradation. While all the trends reported in this paper are
valid when using large pages, all the results presented are for
runs with small pages.

We have explored [28] many configurations for virtual-
ization including multiple pinning strategies, different paging
granularities and emulated NUMA on the guest. In particular,
the same set of experiments repeated for Xen shows up to
4X slowdown on NUMA architectures. All results lead us to
conclude that multi-socket NUMA architectures are associated
with degraded performance for the current implementations of
virtual machines. In Sections VII and VIII we discuss possible
solutions and quantify their impact.

VI. ANALYSIS OF PAGING BEHAVIOR

To monitor paging activities, we have extended the KVM
device drivers to gather page faults and NUMA locality
statistics. We also monitor the paging activity inside the guest
OS: note that the information required to determine NUMA
locality is not available at this level. Figures 3 and 4 show the

paging activity observed at all translation levels, when running
16-way parallel MPI jobs (NPB class B) on the AMD Opteron
NUMA system with a VM spanning the four sockets. We plot
the percentage of page faults handled at each translation level
grouped by their memory locality.

Figure 3 plots the faults observed during the MPI implemen-
tations run on a cold VM; that is, the monitored application
is the first application running on the system after booting
the VM. As shown, for a cold run most of the memory is
not mapped and a significant percentage (up to 96%) of the
application page faults reaches the KVM driver which enforces
NUMA locality. These faults are captured by the bars labeled
“Unmapped”. A smaller percentage (19% on average) of the
page mapping is serviced by the guest OS without the need
of the host involvement, even for a cold run, as illustrated
by the bars labeled “Handled by guest”. As explained in
Section VI-A, the guest OS filters faults due to the process
based implementation of MPI. For the OpenMP case with
pthreads, faults are not filtered by the guest and all faults
are observed by the hypervisor. We could not determine the
locality of these pages but we expect them to be local, similarly
to the “Unmapped” pages.

The bars labeled “Local Node” and “Remote*” capture
the percentage of faults that reaches the KVM driver for
pages already mapped. “Local Node” pages have the correct
affinity. The bars labeled “Remote Multiple” indicate faults for
pages shared by multiple processes running inside the guest
OS, while the “Remote Single” pages are not shared and
are candidates for page migration. As shown, the combined
contribution of all these pages is small.

A completely different behavior is observed after warming
the VM, as shown in Figure 4, which captures the paging
behavior for subsequent runs of the same application. The
percentage of faults handled by the guest OS is high, up to
94%, due to caching of page mappings inside the guest. The
NUMA node locality information is not available at the guest
level and, while we cannot determine the locality of these
pages, based on the behavior of the cold run we expect most
of them to have the correct affinity. The percentage of page
faults reaching the KVM driver is significantly reduced and
we observe a high bias towards providing locality: for the
vast majority of faults reaching the hypervisor the memory

S P M G B T L U E P C G F T I S
0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

Perc
enta

ge o
f gu

est
faul

ts

N A S N B P - 3 . 3 M P I

 H a n d l e d b y g u e s t
 R e m o t e M u l t i p l e
 R e m o t e S i n g l e
 U n m a p p e d
 L o c a l N o d e

Fig. 3. The page translation activities for the first application running after
booting (cold) the VM.

S P M G B T L U E P C G F T I S
0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

Perc
enta

ge o
f gu

est f
ault

s

N A S N B P - 3 . 3 M P I

 H a n d l e d b y g u e s t
 R e m o t e M u l t i p l e
 R e m o t e S i n g l e
 U n m a p p e d
 L o c a l N o d e

Fig. 4. The page translation activities as seen by the KVM device driver for
the second run of an application.

is already mapped with the proper (“Local Node”) locality.
On the other hand, we observe a very noticeable increase in
the percentage (up to 25% for “Remote Multiple”) of faults
that are found mapped in a remote node. Until explicitly re-
turned for remapping, these pages will be “inherited” between
applications and provide bad locality inside the guest OS.

This locality leakage is the cause for the performance
degradations observed on NUMA architectures. Looking at
the execution time, we found that MPI and UPC runs on
cold VMs are always faster than subsequent runs, as shown
in Figure 5. For example, a run of IS on a cold VM is
20% slower than the native run, while the subsequent runs
are 60% slower than the native runs. On average, warm runs
are 30% slower than cold runs. When measuring the system
time on the guest (spent inside KVM and the host OS for
handling faults) we found that cold runs have a much higher
system time than subsequent runs. Later runs exhibit less than
25% of the system time of the first run, for most cases– but
user time suffers significantly. All warm runs exhibit similar
performance: this indicates that locality is lost mostly between
the first and second execution of an application. The variation
in performance for 30 cold and warm runs is within 5% for
all benchmarks but IS which exhibits a 25% variation. The
OpenMP cold runs are indistinguishable from warm runs and
we explain the difference in the next section.

The temporal distribution of page faults is determined by the
application’s memory footprint and access pattern. We evaluate
NPB implementations using class B and C settings; class C
has the largest footprint of the two. Unless explicitly stated
otherwise, the results presented are for class B problems. As
shown in Section VIII, increasing the dataset size to class C
increases the negative performance impact of virtualization.

For the class B problems, in all but two benchmarks (BT
and SP) the majority of page faults happens at problem
initialization time which is not accounted for by the NPB
performance measurement methodology. Thus, most class B
benchmarks do not fault during the measured runtime, only
in BT and SP about 10% of the faults occur during perfor-
mance measurements. This implies that the performance trends
reported for class B are solely determined by the ability of
the system to provide good locality when pages are initially
allocated. Note also the clustering of performance trends in
Figure 5: four benchmarks (MG, CG, LU, FT) provide cold run

performance better than native, while four benchmarks (BT,
SP, IS, EP) are slower than native. In the “fast” benchmarks
the percentage of page faults filtered by the guest OS during
a cold run is small with a peak observed by LU at 20% and
there are few faults during the measured runtime. In contrast,
the “slower” benchmarks either observe runtime faults (BT,
SP) or have a high percentage (≈ 40%) of faults filtered by
the guest OS in the IS and EP case.

A. Programming Model Interaction with Virtualization

Figure 6 presents the distribution of the page faults inter-
cepted by the hypervisor with respect to the NUMA nodes
for a run on a cold VM. This is an indirect measure of the
load balance of the application as well as its quality of locality
optimizations. For the MPI and UPC runs, memory is evenly
distributed across NUMA nodes for all benchmarks. For the
OpenMP runs, three out of eight implementations are not well
balanced across NUMA. Note that EP uses very little memory
so the outlier is not really illustrative of bad locality. The even
distribution of memory across NUMA nodes indicates that all
benchmark implementations are optimized for locality.

For the MPI case, the cumulative number of faults observed
by the hypervisor is well below 100% in most cases and as
low as 50%. In contrast, for OpenMP the hypervisor observes
almost 100% of the faults. This difference is caused by the
implementation of the two programming models. OpenMP
runs with pthreads and the application faults only once per
page since a mapping due to a fault is observed by all threads.
MPI runs with processes and provides a shared memory region
for efficient inter-process communication inside its runtime. In
MPI, only the first fault for a page in the shared memory region
reaches the hypervisor and the faults generated by all other
processes on the same page are served by the guest OS. The
MPI implementations also have a larger memory footprint than
the OpenMP implementations and observe a higher number
(up to three times more) of page faults for each benchmark.

The Berkeley UPC implementation allows execution using
either processes or pthreads. UPC, as well as other PGAS
languages, exports as shared a large fraction of its heap, while
MPI shares only “little” memory for communication buffers.
The UPC NPB implementations have memory evenly dis-
tributed across NUMA nodes and in terms of fault propagation
can behave in a similar manner to either MPI or OpenMP, e.g.
50% or 100% fault propagation. In UPC, native executions

O p e n M P (p t h r e a d s)

U P C p t h r e a d s

U P C p r o c e s s e s

M P I (p r o c e s s e s)

- 4 0 %

- 2 0 %

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

Pe
rce

nta
ge

 sl
ow

do
wn

 of
 su

bs
eq

ue
nt

run
s r

ela
tiv

e t
o t

he
 fir

st
run

 S P M G B T L U E P C G F T I S

Fig. 5. Execution time increase of runs on warm VMs
compared to the first run after booting the VM. MPI
and UPC applications become slower.

S P M G B T L U E P C G F T I S
0 %
5 %

1 0 %
1 5 %
2 0 %
2 5 %
3 0 %

Pe
rce

nta
ge

 of
 pa

ge
 fa

ult
s

rel
ati

ve
 to

 th
e g

ue
st

N A S N B P 3 . 3 M P I

 n o d e 0 n o d e 1 n o d e 2 n o d e 3

S P M G B T L U E P C G F T I S
0 %
5 %

1 0 %
1 5 %
2 0 %
2 5 %
3 0 %
3 5 %
8 5 %
9 0 %

N A S N B P 3 . 3 O p e n M P

Fig. 6. NUMA node distribution of page faults served by hypervisor for MPI and
OpenMP cold runs. Faults are separated by NUMA nodes, evenly allocated pages show
better NUMA allocation.

with either processes or pthreads exhibit indistinguishable
performance and we observe a pronounced difference between
cold and warm runs, as shown in Figure 5. Comparing the
process (38% slowdown) and pthreads (31% slowdown)
based UPC implementations, the former shows a larger differ-
ence between the performance of cold and warm runs. This
difference is explained by the paging behavior.

The OpenMP implementations exhibit identical perfor-
mance in cold and warm runs. We attribute this behavior to
the differences in the programming models. MPI and UPC
have an inherent notion of locality and data is copied before
reference, while OpenMP encourages a pure shared memory
style programming with repeated access to possibly remote
data. Intuitively, the OpenMP implementations have a worse
NUMA locality of reference than MPI and UPC: the affinity
shuffling that occurs between cold and warm runs degrades
locality in MPI and UPC, while it does not significantly change
the OpenMP locality.

VII. HYPERVISOR EXTENSIONS FOR NUMA SUPPORT

Page locality leakage in virtualized environments is caused
by the current OS design paradigms which optimize for
fast page fault handling at the expense of the reclamation
mechanisms. Because page faults are in the critical execution
path, the Linux kernel, as well as all other kernels, has an eager
policy and a page fault causes an immediate trap to the OS for
service. Virtual to physical memory mappings are aggressively
cached within the OS. In contrast, page reclamation, swapping
or removal, are done lazily by the OS depending on the amount
of physical memory available: pages can be moved to an
inactive state, cached or recycled. An asynchronous daemon
is usually activated for reclamation whenever the number of
the available pages drops below a certain threshold. In the
exceptional case of not having enough pages to satisfy a
request, an application may be synchronously blocked until
enough pages are freed.

Hypervisor only approaches are most portable and generic
since they do not require guest OS modifications. Several
solutions are available to improve page locality: 1) pages
can be migrated to the NUMA domain that has affinity with
the faulting core and; 2) the mapping of pages inside the
hypervisor can be completely reset when memory is no longer
in use by the guest (upon application termination).

We consider first a brute force approach that forces swap-
ping of the guest VM memory after each run in order to
determine a new mapping for pages and achieve the effects
of cold runs. We implemented a daemon that triggers page
reclamation from the virtual machine, whenever an application
terminates. Reclamation of pages depends on the page activity
and it requires the page to age so that it can be swapped.
For this experiment, we ignore the time needed to get the
page to age and to swap it out and report only the effect
on the performance of the next run. Unfortunately, this simple
technique leads to a performance decrease of all runs. In KVM,
the hypervisor sees only one address space for any VM and
we are forced to swap both kernel and user guest OS pages.

We observed slowdowns compared with the cold-run perfor-
mance measured as 17%, 50%, 17%, 26%, 10%, 42%, 10%,
and 43% for SP, MG, BT, LU, EP, CG, FT, and IS, respectively.
This performance decrease is larger than runs on a warm VM.
This indicates that selective page remapping is a necessity, if
the performance is to be improved.

A more specialized approach is to use migration to adjust
the affinity of the pages whose faults have been propagated to
the hypervisor. In this case, we can check if the page is in the
right NUMA domain. To respect the first touch policy we avoid
migrating pages used by other virtual CPUs. Migrating shared
pages on faults implements a last touch policy and causes a
hot-potato effect and further slowdown. We implemented this
mechanism in the KVM driver using mechanisms similar to
hotplug memory. As shown in Figure 4, while on average
30% of page faults are propagated to the hypervisor, only for
a small fraction of pages (≈ 1% labeled “Remote Single”)
can the locality be improved. Overall, this approach did
not improve the workload end-to-end performance. Detailed
results are omitted for brevity.

VIII. SINGLE NODE VM PARTITIONING

Node confinement eliminates NUMA problems at the ex-
pense of scalability and generality. Using a software config-
uration with a separate VM on each socket requires a pro-
gramming model able to run on distributed memory machines.
OpenMP which requires shared memory and pthreads
based implementations cannot span multiple VMs. On the
other hand, programming models specifically designed for
cluster based environments are well suited for this usage

S P M G B T L U E P C G F T I S

1 2 . 5 %
2 5 %
5 0 %

1 0 0 %
2 0 0 %
4 0 0 %
8 0 0 %

1 6 0 0 %
Per

cen
tage

 inc
reas

e in
 exe

cuti
on t

ime

com
pare

d w
ith h

ost

N A S N B P 3 . 3 M P I

 1 6 V M s (4 V M s p e r s o c k e t)
 8 V M s (2 V M s p e r s o c k e t)
 4 V M s (1 V M p e r s o c k e t)
 2 V M s (2 s o c k e t s p e r V M)
 1 V M (4 s o c k e t s p e r V M)

Fig. 7. Performance of various VM configurations on the 4-socket Quad-core
AMD Opteron 8350. Inter-VM communication uses virtio.

scenario. These models include MPI, as well as the Partitioned
Global Space Address (PGAS) languages illustrated here by
UPC. All the implementations, experiments presented and
inferences made for MPI in the rest of this section have been
replicated using the Berkeley UPC implementation. Although
for brevity we do not present any UPC results, our conclusions
are valid for both implementations.

Figure 7 shows the performance of the MPI applications.
For the configurations with multiple VMs, the MPI imple-
mentation uses the virtual network interface (loopback) and
the IP stack for communication. Although we use the virtio
driver which generally achieves up to 70% of the native
hardware bandwidth, the performance degradation is large (up
to 16 times) when increasing the number of VMs. Many
other [21], [22], [27], [29] research activities tried to address
communication problems in virtualized environments but we
did not find any mature and usable solution for efficient
communication between VMs using loopback.

A. Inter-VM Communication Using Shared Memory

Even when virtio performance reaches native hardware
performance, inter-VM communication using loopback is less
efficient than shared memory communication. Our shared
memory communication in KVM uses the ivshmem [30]
QEMU patch. Ivshmem exports shared memory on the host
as a PCI device on the guest. Specifically, it creates a shared
memory file on the host and memory-maps this device in the
address space of the virtual machines. A device is created for
the guest that is used to communicate information about the
shared memory segment. On the guest OS, a kernel module is
added to detect if the shared-memory device is exposed by the
system emulator. As such, the module gets information about
the address of the shared memory and tries to map it to the
guest address space. It also initiates a device that can be used
by applications, or runtime, to map the shared memory to their
address space. The original implementation of ivshmem was
based on 32 bit code and we had to extend it to 64 bit to allow
a larger accessible address space.

In contrast, Xen-based virtualization [6] allows sharing
pages between only two VMs [21], [29], [22] using the
GrantTable and it imposes severe restrictions on the amount
of memory allowed.

In general, inter-VM shared memory support poses design
and security issues that caused the virtualization vendors and
implementors to restrict it. First, sharing memory between

VMs establishes a tight coupling and complicates VM migra-
tion. Second, the security and stability of the system is only as
good as the protection mechanisms associated with the shared
memory.

B. OpenMPI Extensions for Shared Memory Bypass

The OpenMPI implementation uses the modular component
architecture (MCA) to integrate its various runtime compo-
nents. The implementation uses several layers; at the bottom
it uses an architecture dependent layer while the topmost layer
provides the high level MPI functionality. There is also a glue
layer between these two layers. Porting to a new architecture
requires implementing a new byte transport layer (BTL). At
startup, the MPI processes select the software components
that can be used to communicate with any other process. If
a process is reachable using multiple components, selection
logic is used to decide the best component for communication.
Components register themselves and declare their relative
priority (exclusivity in the OpenMPI jargon). For instance, a
process may be able to reach another using either TCP or
shared memory BTLs, but because the shared memory BTL
has a higher priority, the process then selects it. Each process
maintains a list of BTLs that can be used for communication,
one per destination process. To add a new communication BTL
that exploits shared memory between VMs, we developed the
following components:

1) A BTL that provides all the interfaces needed for inter-
VM communication. This BTL has a lower priority than
the native shared memory BTL and higher than any
network BTL.

2) A memory pool component to handle shared memory
allocation for the new communication BTL.

3) A memory-mapping component that handles the device
responsible for shared memory.

4) A component that uses the special shared memory
between the VMs for MPI collective operations: barrier,
broadcast, etc.

We also implemented the logic to determine inter-VM
reachability using shared memory: all VMs sharing a node are
assigned a unique node identifier. Finally, the logic to choose
different BTLs was modified to make sure that shared memory
communication can coexist with other BTLs without conflicts.

Figure 8 shows the communication layers used in distributed
memory systems. The communication between processes in a
node uses shared memory and a networking layer is used for
processes outside the node. Depending on message size and
type, data may be queued without the need to block sender, or
blocking may be needed to synchronize with the receiver. Two
message queues are provided: a shared queue with a fixed size
and an “eager” queue with size proportional to the number of
senders. Because receiver queues are shared between senders,
accessing them requires holding a lock to serialize the queue
updates.

Our extension implemented between VMs sharing a node
adds a new layer of communication, as shown in Figure 9.
Two of the layers shown in the figure use shared memory;

P0 P1 P2 P3

Shared Memory NIC

P0 P1 P2 P3

Shared MemoryNIC

2
11 2

Fig. 8. MPI Communication between processes without virtualization:
1- MPI communication within a SMP node uses shared memory; 2- MPI
communication across SMP nodes uses the fastest available network
card (using one of the tcp, IB, ..., etc BTLs).

Hypervisor shared Memory NIC

VM
P0 P1

VM Shared
Memory

V-NIC

1

VM
P3P2

VM Shared
Memory

V-NIC

2

Hypervisor shared MemoryNIC

VM
P3P2

VM Shared
Memory

V-NIC

VM
P0 P1

VM Shared
Memory

V-NIC

3
4

21

3 4

Fig. 9. MPI communication with inter-VM bypass: 1- communication
within a VM using a shared memory BTL; 2- Communication between VMs
using virtual NIC ; 3- newly introduced shared-memory communication
BTL for communication between VMs; 4- communication between VMs
across nodes using NIC interfaces.

S P M G B T L U E P C G F T I S- 2 0 %
- 1 0 %

0 %
1 0 %
2 0 %
3 0 %
4 0 %
5 0 %
6 0 %

4 s o c k e t s A M D O p t e r o n 8 3 5 0 - N U M A

Pe
rc

en
tag

e i
nc

re
as

e i
n e

xe
cu

tio
n t

im
e

co
mp

ar
ed

 w
ith

 ho
st

N A S N B P 3 . 3 M P I

 1 6 V M s (4 V M s p e r s o c k e t)
 8 V M s (2 V M s p e r s o c k e t)
 4 V M s (1 V M p e r s o c k e t)
 2 V M s (2 s o c k e t s p e r V M)
 1 V M (4 s o c k e t s p e r V M)

Fig. 10. The performance of MPI NAS benchmarks
with different virtual machine configurations on the
4-socket Quad-core AMD Opteron E8350. Inter-VM
communication uses shared memory.

M G L U E P C G F T I S- 2 0 %
- 1 0 %

0 %
1 0 %
2 0 %
3 0 %
4 0 %
5 0 %
6 0 %
7 0 % 2 s o c k e t A M D O p t e r o n 8 3 5 0 (N U M A)

Pe
rc

en
ta

ge
 in

cr
ea

se
 in

 e
xe

cu
tio

n
tim

e
co

m
pa

re
d

w
ith

 h
os

t
N A S N B P 3 . 3 M P I

M G L U E P C G F T I S- 1 0 %

0 %

1 0 %

2 0 %

3 0 %
2 s o c k e t I n t e l X e o n E 5 5 3 0 (N U M A)

N A S N B P 3 . 3 M P I

 8 V M s (4 V M s p e r s o c k e t)
 4 V M s (2 V M s p e r s o c k e t)
 2 V M s (1 V M p e r s o c k e t)
 1 V M s (2 s o c k e t s p e r V M)

Fig. 11. The performance of MPI NAS NBP benchmarks with different virtual machine
configuration on 2-socket Quad-core AMD Opteron E8350 and Intel Xeon E5530.

one within the VM and the other within a node. A third
path is used to communicate across nodes. The effect of this
additional layer is to create more localized communication
queues within the VM and other queues for communication
between VMs. These communication queues are protected by
separate locks, thus less conflicts are expected in the new
environment. Using the OMB [31] benchmarks to measure
the bandwidth and latency for 16 MPI tasks split into 8 pairs
on the AMD system, we measure three orders of magnitude
improvement over IP for small messages, with the smallest
difference of 66x associated with large messages.

OpenMPI does not currently support the ability to switch be-
tween BTLs at runtime. Without hot switching of components,
there are restrictions on migrating VMs while applications are
running. For instance, an application will need to switch from
the inter-VM shared memory BTL to the TCP BTL if one
of the participant VM migrates to a remote node. Adding
hot-swapping capability to the OpenMPI runtime component
architecture will provide a full solution for virtualized envi-
ronments when socket partitioning is desired.

C. Single Node MPI Performance with VM Partitioning

Figure 10 presents the performance on the quad-socket,
quad-core AMD NUMA system when partitioning the cores
between virtual machines. Three VM configurations are node
confined, while in the others (1 and 2) VMs span four and
two NUMA nodes respectively. As shown, the performance
varies with the VM configuration and the best performance
is always attained by the configuration with one VM per
socket. Node confinement with one or two VMs per domain
always produces better performance than a single wide VM.
In five cases, the best performance with partitioning matches
or exceeds the native performance.

Configurations with more than two VMs per domain provide

lower performance than the default of one VM per system. Our
conjecture is that having multiple VMs per socket unneces-
sarily stresses the memory subsystem by having multiple OS
images serving few processes, which leads to less effective
caching and less allocated time slots. Kernel SamePage Merg-
ing (KSM) is a recent Linux kernel feature which combines
identical memory pages from multiple processes into one
copy-on-write memory region. Note that these experiments
were run with KSM enabled.

Virtualization introduces two-level locking on data struc-
tures used to manage shared resources, such as memory.
In addition to enforcing NUMA affinity, partitioning also
reduces lock contention in the system and ultimately provides
better memory management scalability. The faults on inter-
VM shared memory occur during the application initialization
phase, which is not used when reporting NPB performance.
Thus, the performance of UPC implementations behaves iden-
tically to the MPI performance. When measuring application
initialization time, we observe about 50% increase for cold
runs compared with warm runs.

Figure 11 shows the same experiment (class B) conducted
on two-socket quad-core AMD Opteron and Intel Nehalem
systems. In this case, all applications noticeably benefit from
partitioning: using one VM per socket matches at least native
performance and even improves the performance by up to
15% in five out of six benchmarks. Without partitioning the
performance degrades by up 70% on the AMD system. Com-
paring the results in Figure 11 with the results in Figure 10,
notice that the performance improvement for the two-socket
experiments is larger than for the four-socket ones. One would
expect the impact of lack of NUMA support to grow with the
number of sockets/domains, but in this case this is mitigated
by better caching behavior. Better cache behavior reduces the
frequency of visiting the memory subsystem asking for lines,

thus reducing the impact of bad NUMA locality.
Figure 12 shows the behavior of classes B and C and

it illustrates the effect of increasing the dataset size. More
runtime page faults increase the page locality leakage during
the application execution. Increasing the dataset size has also
the side effect of reducing the effectiveness of the cache to
mask the NUMA allocation problem. Applications with a
larger footprint (class C) observe a higher average degradation
on a single VM, 54% compared with 39% for class B. For
the partitioned 2 system the degradation increases from 3%
for class B to 10% for class C. The results also suggest that
without partitioning, relying on runs on cold VMs as a cure
becomes less optimal, as the first run slowdown compared to
native increases from 9% for class B to 27% for class C.

A detailed analysis of page faults shows that in the par-
titioned case the correct locality is preserved, except for the
inter-VM shared memory regions used inside MPI for com-
munication. The remote NUMA accesses for communication
are unavoidable in a parallel application and are an intrinsic
characteristic of such applications: data has to move between
cooperating tasks. In the MPI case, the communication buffers
are used pairwise by tasks. Although MPI applications are
usually optimized to minimize communication, a particular
concern is when the communication buffers do not have
affinity with any of the endpoints. Since our implementation
of inter-VM shared memory is persistent and it has a sticky
mapping between runs, this situation can be easily avoided
by extending the MPI communication buffer allocation with
awareness of the inter-VM shared memory layout.

With partitioning, both cold and warm VMs are able to
provide the same level of performance, as shown in Figure 12.
Furthermore, any run on a partitioned system matches or
exceeds (in two cases) the performance of runs on a single
cold VM spanning all the cores.

For lack of space, we do not include detailed results for
partitioning on UMA systems. For our quad-socket quad-
core system, performance compared to native is slower by an
average of 2.2%, while performance with one VM spanning
all 16 cores is on average within 6% of native. We attribute the
better behavior with partitioning to less contention on shared
data structures.

When running in a cluster environment using a two node
UMA system (32 cores), part of the communication is done
across low performance virtualized IO cards. In the next
section we present how partitioning is able reduce the average
performance impact from 63% with one machine per node to
12%.

IX. MULTINODE VM PARTITIONING

On clusters, virtualization also affects networking and I/O
performance. Figure 13 shows the performance of the MPI
implementation of the NAS benchmarks class C on the two
node quad-socket quad-core Intel Tigerton cluster, already

2 IS performance is caused by un-tuned collective operations in the
partitioned system.

S P M G B T L U E P C G F T I S A v e r a g e- 2 0 %

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

Per
cen

tag
e in

cre
ase

 in e
xec

utio
n

tim
e co

mp
are

d w
ith

the
 ho

st

N A S N P B - 3 . 3 M P I

S i n g l e V M

S P M G B T L U E P C G F T I S A v e r a g e- 2 0 %

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

Per
cen

tag
e in

cre
ase

 in e
xec

utio
n

tim
e co

mp
are

d w
ith

the
 ho

st

N A S N P B - 3 . 3 M P I

C L A S S B (F i r s t : A v e r a g e s u b s e q u e n t :)
C L A S S C (F i r s t : A v e r a g e s u b s e q u e n t :)

F o u r V M w i t h s h a r e d m e m o r y b y p a s s i n g

Fig. 12. Performance of class B vs. class C for NPB MPI 3.3 for the base
system (1 VM per 4 sockets) compared with partitioned system with shared
memory bypassing (1 VM per socket). Architecture is based on AMD Opteron
E8350.

described in Section IV. We present the performance with
partitioning for fully-virtualized and para-virtualized I/O con-
figurations. With full virtualization, the RTL8139 Ethernet
adapter is software emulated by the VM and the guest OS
does not require modifications. For para-virtualization we have
used the virtio [27] driver.

As shown, partitioning cores in independent VMs does
improve the performance (I/O) on clusters. For virtio, the
performance degradation is reduced from 63% with a single
VM per node (4 socket per VM) to 34% with 2 VMs per
socket (2 cores per VM). The impact of partitioning on full
virtualization is more evident as the slowdown is decreased
from 224% with a single VM per node to 17% when using 2
VMs per socket.

As partitioning provides better concurrent access to the NIC,
these results (with shared inter-VM memory support) were
intuitively expected: we discuss the impact of I/O concurrency
in Section IX-A. The surprising result is that partitioned fully
virtualized configurations provide comparable or better per-
formance than partitioned para-virtualized configurations: the
consensus [32], [33] is that para-virtualization always offers
better I/O performance than full-virtualization. We analyze this
performance inversion in Section IX-B.

A. Impact of I/O Concurrency

Partitioning creates multiple independent system images on
a node, where each system provides its “own” NIC: all I/O re-
quests within a guest proceed independently and concurrently
to the hardware. KVM offers the capability to configure a VM
with multiple NICs: in this case all I/O requests addressed
to different NICs proceed independently and concurrently to
the hardware. Intuitively, partitioning increases concurrency
at the guest VM and at the hypervisor level, while multi-NIC
configurations increase I/O concurrency only at the guest level.

Figure 14 shows the performance when using multiple NICs
(8 NICs is the maximum supported by qemu). The 8-NIC

B T C G E P F T I S L U M G S P A v e r a g e- 5 0 %

0 %

5 0 %

1 0 0 %
2 0 0 %
3 0 0 % P a r a - v i r t u a l i z a t i o n

(V I R T I O)

Pe
rce

nta
ge

 in
cre

as
e i

n e
xe

cu
tio

n
tim

e c
om

pa
red

 w
ith

 ho
st

 3 2 V M s (4 V M s p e r s o c k e t) 1 6 V M s (2 V M s p e r s o c k e t) 8 V M s (1 V M p e r s o c k e t) 4 V M s (2 s o c k e t s p e r V M) 2 V M s (4 s o c k e t s p e r V M)

B T C G E P F T I S L U M G S P A v e r a g e- 5 0 %

0 %

5 0 %

1 0 0 %
2 0 0 %
4 0 0 %
6 0 0 %

F u l l - v i r t u a l i z a t i o n
(R T L 8 1 3 9)

Fig. 13. Performance with different partitioning layout for virtio and rtl8139.

B T C G E P F T I S L U M G S P a v e r a g e
0 %

5 0 %
1 0 0 %
1 5 0 %
2 0 0 %
2 5 0 %
5 0 0 %1 0 0 0 %1 5 0 0 %2 0 0 0 %

Pe
rce

nta
ge

 in
cre

as
e i

n e
xe

cu
tio

n t
im

e
co

mp
are

d w
ith

 ho
st

 1 N I C 8 N I C 8 N I C h y b r i d
P a r a - v i r t u a l i z a t i o n
(V I R T I O)

B T C G E P F T I S L U M G S P a v e r a g e
0 %

5 0 %
1 0 0 %
1 5 0 %
2 0 0 %
2 5 0 %
5 0 0 %

1 0 0 0 %
1 5 0 0 % F u l l - v i r t u a l i z a t i o n

(R T L 8 1 3 9)

Fig. 14. Performance when using multiple NICs (concurrent virtual channels) for virtio and rtl8139.

hybrid mode presents a configuration where processes within
a node explicitly bypass the network and use shared memory:
surprisingly this was not automatically done by MPI and we
had to extend the mpich2 implementation.
As shown, using multiple NICs degrades the performance of
all applications when compared to using a single adapter. This
impact is higher for para-virtualization (3.62X) than for full-
virtualization (3.02X).
Part of this behavior was expected, part is surprising. We
expected multiple NICs to provide similar or better perfor-
mance than a single adapter and lower performance than par-
titioning. Current solutions (KVM and VMware) use a service
thread for networking requests: partitioning provides multiple
threads (one per VM) and it was expected to provide a better
concurrent access to network resources. We expected single
and multi-NIC configurations to exhibit similar contention
for the service thread and comparable performance. As the
current runtime implementations deal poorly3 with multi-NIC
configurations we were not able to determine the causes of
the performance loss in this case. Adding multiple network
service threads to a VM might improve the performance of
configurations using multiple NICs. Overall, this experiment
clearly shows that the improvement achieved by VM partition-
ing cannot be achieved by multiple-emulated NICs.

3OpenMPI does not handle it correctly or hangs, mpich2 supports it with
significant overhead and we had to implement the “hybrid” mode for shared
memory bypass.

B. Para- and Full Virtualization of Network I/O

In full-virtualization schemes, the guest OS is unaware of
running in a virtualized environment: the hypervisor intercepts
any I/O request and traps to emulate the network device.
While the guest OS does not require any modifications,
the overhead of communication is expected to be high. In
para-virtualization, the guest and the hypervisor cooperate to
service network requests. The guest is supplemented with
an additional driver that communicates with the underlying
hypervisor through hypercalls.

With full-virtualization, I/O requests are usually serviced ea-
gerly. Para-virtualized environments usually perform through-
put optimizations by buffering and coalescing requests: virtio
provides queues to buffer requests. The driver is split into
a front-end within the guest and a back-end within the hy-
pervisor. These ends share a buffer that allows doing scatter-
gather operations. Flushing these buffers, through calling a
kick routine to start the communication, is tuned to improve
overall throughput. In general, para-virtualization is considered
to improve I/O performance for commercial applications.

Eager and lazy service policies for communication requests
lead to systems with different latency and bandwidth charac-
teristics. We measure the system bandwidth using the OSU
3.5 MPI performance [26] suite. Figure 15 shows that para-
virtualization and buffering leads to a high latency system:
eager service equates low latency. Figure 16 shows that
para-virtualization leads to a high throughput system: eager
service equates low bandwidth. Note that full-virtualization
still provides better bandwidth for small messages.

2 8 3 2 1 2 8 5 1 2 2 K 8 K 3 2 K 1 2 8
K

5 1 2
K 2 M

4
8

1 6
3 2
6 4

1 2 8
 La

ten
cy

 re
lat

ive
 to

 na
tiv

e

M e s s a g e s i z e

P a r a - v i r t : v i r t i o v i r t i o , 8 N I C
F u l l - v i r t : r t l 8 1 3 9 r t l 8 1 3 9 , 8 N I C

Fig. 15. Multi vs. single NIC multi-latency between two nodes, each running
a single 16 core VM.

2 8 3 2 1 2 8 5 1 2 2 K 8 K 3 2 K 1 2 8
K

5 1 2
K 2 M

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Fra
cti

on
 of

 na
tiv

e b
an

dw
idt

h

M e s s a g e s i z e

P a r a - v i r t : v i r t i o v i r t i o , 8 N I C
F u l l - v i r t : r t l 8 1 3 9 r t l 8 1 3 9 , 8 N I C

Fig. 16. Multi vs. single NIC multi-bandwidth between two nodes, each
running a single 16 core VM.

Trying to achieve the performance gains of partitioning
through the use of multiple NICs is not possible. As shown in
Figure 15, the latency of using 8 NICs (maximum allowed by
qemu) is higher than using single NIC. For large messages,
using multiple NICs causes 2X increase in latency on average.
For bandwidth, as shown in Figure 16 the bandwidth is
reduced with multiple NICs for almost all message sizes. The
impact on performance is more profound for para-virtualized
virtio because of the overhead emulating multiple virtio de-
vices sharing a bus.

These results suggest that partitioning performance cannot
be achieved simply by introducing concurrency in the guest.
The next section discusses the interaction between partitioning
and virtualization IO.

C. Partitioning and Virtualized I/O

Partitioning improves both the latency and the bandwidth
provided by virtualized environments, especially for full-
virtualization. As illustrated in Figure 17, partitioning im-
proves the latency of virtio by as much as 4X for small
messages, albeit in a nonuniform manner with respect to the
message size. For messages larger than 128K, partitioning
hurts the latency of virtio. In this case partitioning introduces
multiple VM buffers and changes (delays) the timing of the
invocation of the kick routine to deliver the messages. It
is possible that tuning the VM buffer size can alleviate this
behavior. The latency of ”Full-virt” is consistently improved

2 8 3 2 1 2 8 5 1 2 2 K 8 K 3 2 K 1 2 8
K

5 1 2
K 2 M

0 . 5
1
2
4
8

1 6
3 2
6 4

1 2 8

 La
ten

cy
 re

lat
ive

 to
 na

tiv
e

M e s s a g e s i z e

P a r a - v i r t : v i r t i o v i r t i o , P a r t i t i o n i n g
F u l l - v i r t : r t l 8 1 3 9 r t l 8 1 3 9 , P a r t i t i o n i n g

Fig. 17. Partitioning vs. single VM message latency between two 16 core
nodes.

2 8 3 2 1 2 8 5 1 2 2 K 8 K 3 2 K 1 2 8
K

5 1 2
K 2 M

0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Fra
cti

on
 of

 na
tiv

e b
an

dw
idt

h

M e s s a g e s i z e

P a r a - v i r t : v i r t i o v i r t i o , P a r t i t i o n i n g
F u l l - v i r t : r t l 8 1 3 9 r t l 8 1 3 9 , P a r t i t i o n i n g

Fig. 18. Partitioning vs. single VM bandwidth between two 16 core nodes.

by at least 5X and by as much as 8X.
The bandwidth improvements are shown in Figure 18:

virtio observes improvements as high as 3X, while ”Full-virt”
observes improvements as high as 5X. In particular, note that
para-virtualization combined with partitioning achieves 97%
of the native bandwidth.

As shown before, in application settings partitioning reduces
the performance degradation with virtio from 63% to 34% of
native. The impact of partitioning on full-virtualization is more
evident as the slowdown is decreased from 224% to 17% of
native. This trend is explained by the microbenchmark results
which indicate that the performance of fully-virtualized I/O is
improved more than the performance of para-virtualized I/O.

Partitioning supplements the parallelism at the guest OS
level with multiple service threads interacting with the hyper-
visor (qemu/KVM in our case). In contrast, the multi NIC
configuration has only one service thread. In addition, multi
NIC emulation introduces additional overhead when emulating
the shared bus. This is why multi NIC configurations provide
lower performance than single NIC configurations.

Overall, we conclude that the sub-optimal throughput as-
sociated with full-virtualization can be eliminated by the par-
allelization introduced through VM partitioning. Partitioning
with rtl8139 provides best throughput for small messages and
best latency for most message sizes. This lead to observing
the best overall performance for the studied applications.
Furthermore, partitioning enables native throughput (97%) for

para-virtualized environments. In contrast, the best throughput
reported to date for virtio is around 70% of native.

X. TO PARAVIRTUALIZE OR NOT?

As virtualized environments have to bridge the semantic
gap, they offer degraded memory locality and I/O perfor-
mance. Partitioning clearly provides performance improve-
ments in para-, as well as fully virtualized environments.
For I/O in particular, partitioning enables the full vir-
tualization approach to attain performance comparable to
para-virtualization: this contradicts the consensus that para-
virtualization is required for best performance. As partitioning
also improves memory locality and performance on NUMA
architectures, the question remains whether engineering com-
plex para-virtualization software can provide significant per-
formance improvements when compared to fully virtualized
memory management.

When “preserving” memory locality, our experimental eval-
uation for the MPI workload on KVM shows that cold runs
observe a 27% average performance degradation on an quad-
core quad-socket AMD NUMA system. Runs on warm VMs
observe an average performance degradation of 54% caused by
locality leakage and full virtualization approaches have little
potential for improving this behavior.

Para-virtualization is required to improve the performance
of warm runs: its biggest drawback is that it requires modifica-
tions in any guest OS, e.g. Linux and Windows. Furthermore,
based on our understanding of the Linux kernel code, these
modifications will require a significant if not complete re-
implementation of the memory management code. As shown
in Figure 4, for runs on a warm VM, most of the page faults
are filtered by the guest OS and are not observed at the
hypervisor level. Inside the guest OS, we can determine when
a page is no longer needed, e.g. at application termination.
As the actual NUMA nodes are available only at the host,
the guest needs to communicate this page (or page group) for
checks and possible reclamation. Currently, it is not possible
to synchronously communicate these pages, as no traps are
supported for page freeing and pages might not get reclaimed
immediately inside the host in the KVM case.

We perform a simple experiment to disable caching of the
page mappings inside the guest OS and cause the propagation
of faults to the hypervisor. Page mappings are kept inside
kernel memory which in Linux is managed by the slab
allocator. The slab allocator provides per-core page caches,
as well as a global page cache. Linux is configurable and
provides the option of disabling the per-core caches and using
only the global cache: this is referred to as the slub allocator.
When using the slub allocator a higher percentage of faults is
propagated but the overall result is that performance is lower
than in any of the slab runs.

This indicates that a more specialized approach to provide
selective page unmapping is required. This could be imple-
mented using a hypervisor daemon coordinating with the guest
kernel but we consider such an approach way beyond the scope
of this paper. Beyond the challenges posed by the software

architecture of the current Linux memory management code,
an asynchronous daemon approach faces the “semantic gap”
challenges (lack of information about the guest activities): it
cannot tell if a page is used by an application if the application
is not scheduled on any guest virtual CPU; if a page is in use,
it cannot determine its desired locality or whether it is shared.
This also has the potential of significantly slowing down the
system for the common case of pages that have the “right”
NUMA affinity. A solution based on “enlightenment”, while
still breaking the virtualization abstractions is more tractable
due to better contained software changes to Linux.

Furthermore, we expect a selective unmapping approach to
provide a level of performance situated between the perfor-
mance of runs on warm VMs and the performance of runs on
cold VMs. We consider the performance of cold runs as a good
indicator of performance expectations for a paravirtualized
selective unmapping approach.

Overall, our experiments indicate that partitioning is able
to provide good performance in fully virtualized environments
and it does eliminate most of the need for paravirtualization.

XI. CONCLUSIONS

In this paper we evaluate the impact of virtualization on
the performance of parallel scientific applications on multi-
socket multicore systems, and we advocate the adoption of
resource partitioning. As a workload we use implementations
of the NAS Parallel Benchmarks in MPI, UPC and OpenMP.
Our results on single node UMA systems confirm previous
results and we find an average slowdown of 6% when com-
paring to native performance. The NUMA support in current
virtualization solutions is incomplete and this translates into an
average performance degradation of 47% for the whole NPB
workload (B and C), when compared to native. This impact
is much higher than that previously reported: the difference is
attributed to the higher node core count currently available.

We further evaluate techniques to improve locality in full
virtualization environments: hypervisor level page migration
and system partitioning. We also provide a thorough dis-
cussion of the interaction between the implementations of
programming models and virtualized environments. Our re-
sults indicate that were NUMA support improved in current
implementations, the average slowdown compared to native is
still at 27%. Using partitioning with efficient inter-VM com-
munication, the average performance on the NUMA system is
within 3% and 11% of native for class B and C respectively,
while on the UMA system is within 2.2% of native.

For the NPB workload, our analysis of paging behavior
indicates that improving the NUMA support only at hypervisor
level is unlikely to mitigate most of the performance impact
of virtualization. A more complete solution requires both
hypervisor and guest OS modifications (para-virtualization)
and it breaks the central tenet of hiding the system resource
management from guests. Thus, this approach is likely to
face resistance from commercial implementors whose target
applications are not HPC centric.

When the programming model allows, e.g. MPI or Parti-
tioned Global Address Space languages or hybrid approaches
(MPI+OpenMP, PGAS+OpenMP), partitioning is a simple and
robust approach to improve locality and I/O performance: this
translates directly into end-to-end application performance.
With partitioning the average impact of virtualization on a
two-node quad-socket quad-core cluster is as low as 17%.

Besides cloud computing environments, we believe that
we provide compelling evidence in favor of partitioning and
adding shared memory support for inter-VM communication
in other solutions specifically designed for high performance
computing.

REFERENCES

[1] J. Matthews, T. Garfinkel, C. Hoff, and J. Wheeler, “Virtual Machine
Contracts For Datacenter And Cloud Computing Environments,” ACDC
’09: Proceedings of the 1st workshop on Automated control for data-
centers and clouds, pp. 25–30, 2009.

[2] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum, “Optimizing the Migration of Virtual Computers,”
SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 377–390, 2002.

[3] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase, “Virtual Machine
Hosting for Networked Clusters: Building the Foundations for ”Auto-
nomic” Orchestration,” VTDC ’06: Proceedings of the 2nd International
Workshop on Virtualization Technology in Distributed Computing, p. 7,
2006.

[4] “National Impact Series: Scientists Look To The Clouds To Solve Com-
plex Questions,” Available at http://www.er.doe.gov/News Information/-
News Room/2009/Oct%2014 ComplexQuestions.html, 2009.

[5] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow, “The NAS Parallel Benchmarks 2.0,” Technical Report NAS-
95-010, NASA Ames Research Center, 1995.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, pp. 164–177, 2003.

[7] Kernel Based Virtual Machine, “http://www.linux-kvm.org/,” 2008.
[8] C. A. Waldspurger, “Memory Resource Management in VMware ESX

Server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194, 2002.
[9] W. Huang, M. J. Koop, Q. Gao, and D. K. Panda, “Virtual Machine

Aware Communication Libraries For High Performance Computing,” in
SC ’07: Proceedings of the 2007 ACM/IEEE conference on Supercom-
puting. New York, NY, USA: ACM, 2007, pp. 1–12.

[10] C. Xu, Y. Bai, and C. Luo, “Performance Evaluation of Parallel
Programming in Virtual Machine Environment,” NPC ’09: Proceedings
of the 2009 Sixth IFIP International Conference on Network and Parallel
Computing, pp. 140–147, 2009.

[11] L. Youseff, K. Seymour, H. You, D. Zagorodnov, J. Dongarra,
and R. Wolski, “Paravirtualization Effect On Single- And Multi-
Threaded Memory-Intensive Linear Algebra Software,” Cluster Com-
puting, vol. 12, no. 2, pp. 101–122, 2009.

[12] D. Rao and J. Nakajima, “Guest NUMA Support (PV) and (HVM) ,”
Xen Summit North America 2010.

[13] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanović, and J. Kubiatowicz,
“Tessellation: Space-Time Partitioning in a Manycore Client OS,” in
Proc. of the first USENIX Conference on Hot Topics in Parallism
(HotPAR, 2009.

[14] A. Schpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris, and
R. Isaacs, “Embracing Diversity In The Barrelfish Manycore Operating
System,” in In Proceedings of the Workshop on Managed Many-Core
Systems, 2008.

[15] D. Wentzlaff and A. Agarwal, “Factored Operating Systems (fos): The
Case For A Scalable Operating System For Multicores,” SIGOPS Oper.
Syst. Rev., vol. 43, no. 2, 2009.

[16] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
Virtualization Technology,” Computer, vol. 38, no. 5, pp. 48–56, 2005.

[17] AMD-Vł Nested Paging, “developer.amd.com/assets/npt-wp-1%201-
final-tm.pdf,” 2008.

[18] I. Habib, “Virtualization with kvm,” Linux Journal, vol. 2008, no. 166,
p. 8, 2008.

[19] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Evaluating the
Performance Impact of Xen on MPI and Process Execution For HPC
Systems,” in VTDC ’06: Proceedings of the 2nd International Workshop
on Virtualization Technology in Distributed Computing. Washington,
DC, USA: IEEE Computer Society, 2006, p. 1.

[20] W. Huang, J. Liu, B. Abali, and D. K. Panda, “A Case For High Per-
formance Computing With Virtual Machines,” in ICS ’06: Proceedings
of the 20th annual international conference on Supercomputing. New
York, NY, USA: ACM, 2006, pp. 125–134.

[21] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin, “Xensocket: A
High-Throughput Interdomain Transport For Virtual Machines,” Mid-
dleware ’07: Proceedings of the ACM/IFIP/USENIX 2007 International
Conference on Middleware, pp. 184–203, 2007.

[22] K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S. Kim, “Inter-Domain
Socket Communications Supporting High Performance And Full Binary
Compatibility On Xen,” VEE ’08: Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on Virtual execution envi-
ronments, pp. 11–20, 2008.

[23] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
A. Gocke, S. Jaconette, M. Levenhagen, , and R. Brightwell, “Palacios
and Kitten: New High Performance Operating Systems For Scalable
Virtualized and Native Supercomputing,” in IPDPS ’10: Proceedings
of the 24th IEEE International Parallel and Distributed Processing
Symposium, 2010.

[24] B. M. Posey, “Virtualization: Optimizing Hyper-V Memory Usage,” Mi-
crosoft TechNet Magazine http://technet.microsoft.com/en-us/magazine/-
hh709739.aspx, Dec 2011.

[25] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The Landscape of Parallel Computing Research: A View
from Berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[26] “OSU MPI benchmarks, OMB 3.5,” Network-Based Computing
Laboratory, Ohio State University, http://mvapich.cse.ohio-
state.edu/benchmarks/.

[27] R. Russell, “VIRTIO: Towards a De-facto Standard for Virtual I/O
Devices,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 95–103, 2008.

[28] K. Z. Ibrahim, S. A. Hofmeyr, and C. Iancu, “Characterizing the
Performance of Parallel Applications on Multi-socket Virtual Machines,”
in 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2011, Newport Beach, CA, USA, May 23-26, 2011.

[29] F. Diakhaté, M. Perache, R. Namyst, and H. Jourdren, “Efficient Shared
Memory Message Passing for Inter-VM Communications,” Euro-Par
2008 Workshops - Parallel Processing, pp. 53–62, 2009.

[30] V. S. Junior, L. C. Lung, M. Correia, J. da Silva Fraga, and J. Lau,
“Intrusion Tolerant Services Through Virtualization: A Shared Memory
Approach,” Advanced Information Networking and Applications, Inter-
national Conference on, pp. 768–774, 2010.

[31] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, D. K.
Panda, and P. Wyckoff, “Microbenchmark Performance Comparison of
High-Speed Cluster Interconnects,” IEEE Micro, vol. 24, no. 1, pp. 42–
51, 2004.

[32] B. Zhang, X. Wang, R. Lai, L. Yang, Y. Luo, X. Li, and Z. Wang, “A
Survey on I/O Virtualization and Optimization,” ChinaGrid Conference
(ChinaGrid), 2010 Fifth Annual, pp. 117 –123, july 2010.

[33] P. Muditha Perera and C. Keppitiyagama, “A performance comparison
of hypervisors,” The 2011 International Conference on Advances in ICT
for Emerging Regions (ICTer), p. 120, Sept. 2011.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

	I Introduction
	II Related work
	III Memory Management in Virtual Machines
	III-A The KVM Memory Management Unit
	III-B Page Allocation Policy and Multi-Socket NUMA nodes

	IV Experimental Setup
	V Single Node Multi-Socket Performance
	VI Analysis of Paging Behavior
	VI-A Programming Model Interaction with Virtualization

	VII Hypervisor Extensions for NUMA Support
	VIII Single Node VM Partitioning
	VIII-A Inter-VM Communication Using Shared Memory
	VIII-B OpenMPI Extensions for Shared Memory Bypass
	VIII-C Single Node MPI Performance with VM Partitioning

	IX Multinode VM Partitioning
	IX-A Impact of I/O Concurrency
	IX-B Para- and Full Virtualization of Network I/O
	IX-C Partitioning and Virtualized I/O

	X To Paravirtualize or Not?
	XI Conclusions
	References

