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ABSTRACT

This paper presents an update on the detection and attribution of global annual mean surface air
temperature changes, using recently developed climate models. In particular, it applies a new methodology
that permits the inclusion of many more general circulation models (GCMs) into the analysis, and it also
includes more recent observations. This methodology involves fitting a series of energy balance models
(EBMs) to the GCM output in order to estimate the temporal response patterns to the various forcings.

Despite considerable spread in estimated EBM parameters, characteristics of model performance, such
as the transient climate response, appear to be more constrained for each of the forcings. The resulting
estimated response patterns are provided as input to the standard fingerprinting method used in previous
studies. The estimated GCM responses to changes in greenhouse gases are detected in the observed record
for all of the GCMs, and are generally found to be consistent with the observed changes; the same is
generally true for the responses to changes in stratospheric aerosols from volcanic eruptions. GCM re-
sponses to changes in tropospheric sulfate aerosols and solar irradiance also appear consistent with the
observed record, although the uncertainty is larger. Greenhouse gas and solar irradiance changes are found
to have contributed to a best guess of �0.8 and �0.3 K warming over the 1901–2005 period, respectively,
while sulfate aerosols have contributed a �0.4 K cooling. This analysis provides an observationally con-
strained estimate of future warming, which is found to be fairly robust across GCMs. By 2100, a warming
of between about 1.5 and 4.5 K can be expected according to the Intergovernmental Panel on Climate
Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B emissions scenario.

These results indicate an emerging constraint for global mean surface temperature responses to external
forcings across GCMs, which is corroborated in the observed record. This implies that observationally
constrained estimates of past warming and predictions of future warming are indeed becoming robust.

1. Introduction

A major feature of the Third Assessment Report of
the Intergovernmental Panel on Climate Change
(IPCC) is the chapter on the detection and attribution
of climate change (Mitchell et al. 2001). This chapter
contains a synthesis of the first quantitative and proba-
bilistic methods dealing with the subject and of their
application to a number of dynamical climate models

available at the time. Since the publication of the report
several more years of observations have been accumu-
lated, the methodologies have been further developed,
and new, more advanced general circulation models
(GCMs) have been developed and used to produce
more expansive ensembles of simulations of past cli-
mate. Combined, these factors provide a base for a use-
ful update on the detection and attribution issue (Inter-
national Ad Hoc Detection and Attribution Group 2005).

In the past several years, multisignal detection and
attribution studies have been performed on surface air
temperature (SAT) (Tett et al. 1999; Stott et al. 2000,
2001; Tett et al. 2002), ocean heat content (Barnett et
al. 2001, 2005), tropopause height (Santer et al. 2003),
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land precipitation (Lambert et al. 2004; Gillett et al.
2004), and Northern Hemisphere sea level pressure
(Gillett et al. 2003). These studies find that observed
changes are inconsistent with natural internally gener-
ated variability, but are at least partially consistent with
externally forced changes simulated by the GCMs, al-
though the degree of agreement varies (International
Ad Hoc Detection and Attribution Group 2005). A
general weakness of these studies is their dependence
on a small number of GCMs, because only a few have
been used to generate the multiple ensembles of simu-
lations necessary for a multiple-detection study. Never-
theless, in theory the results of the optimal detection
methodology used in these studies should be relatively
independent of the GCM used because the response
patterns tend to be similar across GCMs. There are now
several GCMs worldwide that have been used to gen-
erate these necessary simulations, and Stott et al. (2006)
find that they produce consistent detection and attribu-
tion results for large-scale SAT changes on decadal
time scales.

Nevertheless, most GCMs have not been used to
generate all of the simulations necessary for a multisig-
nal attribution study. However, a couple of recently
developed techniques get around this limitation for
SAT (S. A. Crooks et al. 2006, unpublished manuscript,
hereafter CR06; Stone et al. 2007), thus permitting a
large additional number of GCMs to be included in the
study of the attribution of observed SAT changes. In
this paper we present an update on the attribution of
global mean SAT using the new technique of Stone et
al. (2007) applied to the recent suite of GCM simula-
tions provided by the various modeling groups to the
IPCC for analysis in the upcoming Fourth Assessment
Report (AR4), along with simulations from older
GCMs. We also include more recent observations, in-
clude higher-frequency data (annual rather than de-
cadal), and separate the forcings.

2. Model and data

We analyze model SAT output from the historical
simulations provided by the various modeling centers
around the world to the IPCC Fourth Assessment
Model Output database (https://esg.llnl.gov:8443/index.
jsp). We also analyze SAT output from simulations of
older GCMs examined extensively in the IPCC Third
Assessment Report (McAvaney et al. 2001). The
GCMs used in this study are listed in Table 1. Historical
simulations are included only if the corresponding sec-
tions of the preindustrial control simulations have
reached equilibrium, judged by lack of exceedance of a
0.2 K century�1 trend. All models include the changing
anthropogenic forcings (ANT) of greenhouse gases

(GHG) and tropospheric sulfate aerosols (SUL), while
some also include the changing natural forcings (NAT)
of stratospheric volcanic aerosols (VOL) and solar ir-
radiance (SOL). We analyze simulations including
ANT and NAT (ALL) separately to those omitting the
natural forcings. Some GCMs do not include indirect
effects of aerosols, so we may expect the response to
SUL forcing to be smaller in their simulations (Table
1). Some GCMs also include other forcings, such as
land surface changes and stratospheric ozone depletion,
but we ignore these factors because they have a smaller
net effect on the global mean surface forcing (Rama-
swamy et al. 2001).

Figure 1a shows the global annual mean evolution of
the four main radiative forcings from 1891 to the
present provided by the Program for Climate Model
Diagnosis and Intercomparison (PCMDI) to the vari-
ous modeling groups for the IPCC AR4 simulations.
The SUL forcing is derived from the burden estimates
of Boucher and Pham (2002), the VOL forcing follows
C. M. Ammann et al. (2006, personal communication),
and the SOL forcing follows Lean et al. (1995). Some
modeling groups use different estimates, particularly
for the natural forcings, reflecting some of the uncer-
tainty in our knowledge. In addition, the radiative forc-
ing estimates used here may not be identical to those
seen by the GCM, depending, for instance, on how it
converts emissions data into radiative forcings. The
SUL forcing has been interpreted to include both the
direct and indirect effects, even though some GCMs
only include the direct effect. Forcing information has
been converted to radiative forcing estimates as in
Stone et al. (2007).

We analyze data over the 1901–2005 period. Some
historical simulations finish before 2005, so in order to
allow for comparison with observations from the past
several years, we also include the first several years of
the IPCC Special Report on Emission Scenarios
(SRES) A1B scenario simulations of future climate
with these GCMs where possible. The A1B scenario is
selected because it is the most commonly simulated
scenario in the IPCC AR4 database. ANT emissions
have closely followed this scenario and no major vol-
canic eruptions have occurred; however, the constant
SOL forcing usually applied for these few years may
lead to a slight underestimate of the effect of solar forc-
ing. This inclusion of the SRES A1B scenario cannot be
applied to all GCMs and so some finish earlier than
2005 (Table 1). Deseasonalized monthly SAT anoma-
lies from the GCM simulations are interpolated to the
monthly 5° � 5° gridded observational dataset of
deseasonalized monthly SAT anomalies of Jones and
Moberg (2003) and Rayner et al. (2003) according to
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TABLE 1. GCMs included in the analysis. ANT refers to the inclusion of changing GHG and SUL forcing, while NAT refers to the
inclusion of changing VOL and SOL forcing. Some GCMs with SUL forcing include the indirect effect as noted as ISU under the
“Other ANT” heading, and some GCMs with ANT forcing include other anthropogenic forcings listed under “Other ANT,” which are
ignored in this study. BCA, OZO, and LAN denote the inclusion of changes in black carbon emissions, stratospheric ozone, and land
cover, respectively; brackets imply only some of the simulations include these. The last year of the simulations varies between 1999 and
2005, depending on the GCM.

GCM Group Sims Period Forcings Other ANT

CCSM3 National Center for Atmospheric
Research (NCAR) (United States)

6 1901–2005 ANT, NAT ISU, BCA, OZO

Coupled General Circulation
Model version 3.1 (CGCM3.1)
(T47)

Canadian Centre for Climate
Modelling and Analysis (CCCma)
(Canada)

5 1901–2005 ANT

CGCM3.1 (T63) CCCma (Canada) 1 1901–2005 ANT
CNRM-Coupled Global Climate

Model version 3 (CM3)
Centre National de Recherches

Météorologiques (CNRM)
(France)

1 1901–2005 ANT

CSIRO-Mark version 2 (Mk2) Commonwealth Scientific and
Industrial Research Organisation
(CSIRO) (Australia)

1 1901–2005 ANT

ECHAM4-Ocean Isopycnal
Model (OPYC3)

Max Planck Institut (MPI),
Deutsches Klimarechenzentrum
(DKRZ) (Germany)

1 1901–2000 ANT, NAT ISU, LAN

2 1901–2005 ANT
ECHAM5/MPI-Ocean Model

(OM)
MPI (Germany) 3 1901–2005 ANT ISU, OZO

ECHAM-Hamburg Ocean
Primitive Equation-Global
(ECHO-G)

University of Bonn (Ubonn)
(Germany), Korea Meteorological
Administration (KMA) (South
Korea)

3 1901–2005 ANT, NAT ISU

GFDL-CM2.0 GFDL, National Oceanic and
Atmospheric Administration
(NOAA) (United States)

3 1901–2000 ANT, NAT BCA, OZO, LAN

GFDL-CM2.1 GFDL, NOAA (United States) 3 1901–2000 ANT, NAT BCA, OZO, LAN
GFDL-R15a GFDL, NOAA (United States) 1 1901–2005 ANT
GFDL-R30 GFDL, NOAA (United States) 3 1901–98 ANT, NAT

3 1901–2005 ANT
GISS-Atmosphere–Ocean Model

(AOM)
Goddard Institute for Space Studies

(GISS), National Aeronautics and
Space Administration (NASA)
(United States)

2 1901–2005 ANT

GISS-EH GISS, NASA (United States) 5 1901–99 ANT, NAT ISU, BCA, OZO
GISS-Model E–R (ER) GISS, NASA (United States) 9 1901–2003 ANT, NAT ISU, BCA, OZO
INM-Coupled Model version 3.0

(CM3.0)
Institute of Numerical Mathematics

(INM) (Russia)
1 1901–2005 ANT, NAT

IPSL-Coupled Model version 4
(CM4)

L’Institut Pierre-Simon Laplace
(IPSL) (France)

1 1901–2000 ANT ISU

Model for Interdisciplinary
Research on Climate 3.2,
medium-resolution version
[MIROC3.2 (medres)]

Japan Agency for Marine-Earth
Science and Technology
(JAMSTEC) (Japan)

3 1901–2005 ANT, NAT ISU, BCA, OZO,
LAN

MRI-CGCM2.3.2 MRI (Japan) 5 1901–2005 ANT, NAT
Parallel Climate Model (PCM) NCAR (United States) 4 1901–99 ANT, NAT OZO

12 1901–99 ANT (OZO)
Met Office Second Hadley

Centre Coupled Ocean–
Atmosphere GCM
(UKMO-HadCM2)

Hadley Centre, Met Office (United
Kingdom)

4 1901–2005 ANT

Met Office Third Hadley Centre
Coupled Ocean–Atmosphere
GCM (UKMO-HadCM3)

Hadley Centre, Met Office (United
Kingdom)

4 1901–2002 ANT, NAT ISU, OZO

4 1901–99 ANT ISU, OZO
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the availability of observations. Annual global means
are calculated for both datasets and are used in the
subsequent analysis. Preindustrial and present-day con-
trol simulations are also used in this study for estimat-
ing the internally generated variability of the climate
system. Altogether, these simulations are divided into
96 segments of 105-yr length and are masked onto the
observations in the same manner as the historical simu-
lations.

3. Method

Because we lack ensembles of simulations, including
subsets of the forcings used in the historical simulations
with each GCM, we apply the method of Stone et al.
(2007) to extract the GCM responses to the individual
forcings. This involves fitting a sum of n different en-
ergy balance models (EBMs) corresponding to the n
forcings. These EBMs are of the form

ci

�Ti�t, z�

�t
� Fi�t� � �iTi�t, z� � ki

�2Ti�t, z�

�z2 . �1�

Here Ti(t, z) is the global annual mean temperature
response as a function of depth in the ocean mixed
layer to the evolving forcing Fi(t) shown in Fig. 1a; ci is

the heat capacity of the mixed layer, (1/�i) is the climate
sensitivity, and ki is the vertical diffusion parameter in
the mixed layer for the forcing i. These parameters are
tuned to reproduce the ensemble mean SAT response
of the GCM, Ti � Ti(t, 0). Supposing the responses add
linearly, that is, T � �n

i�1Ti, the parameters are tuned to
minimize the squared difference between the total
EBM time series T and the mean response TGCM from
the GCM ensemble. Uncertainty in this fit arises from
the finite GCM ensemble size and the accuracy of the
parameter-fitting algorithm. The EBMs are spun up
with 10 yr of varying forcings before the start of the
comparison in 1901.

The estimated individual EBM responses (Ti) are
then used in the standard multiple regression method-
ology (Allen and Tett 1999). Under this, we express
observed temperature changes Tobs as a linear sum of
the simulated responses determined for each forcing
(Ti) plus a residual (�0),

Tobs � �
i�1

n

Ti�i 	 �0. �2�

The 
is are scaling factors for the response to forcing i
estimated in the regression that minimize the variance

FIG. 1. (a) Global radiative forcing time series estimated from data compiled by PCMDI for use by modeling groups for the IPCC
“20C3M” (historical) and “SRES A1B” (future) climate simulations covering 1891 through 2100. (b) Plot of global annual mean SAT
time series from 1901 to 2005 for the 13 GCMs with ALL simulations. The ensemble mean is plotted for each GCM. The total EBM
fits are shown in thick gray. The observed variations are in black. (c) As in (b), but for the 13 GCMs with ANT simulations.
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of the residual term �0 The regression analysis assumes
that the GCMs correctly represent the temporal re-
sponse patterns to the forcings, and that the EBMs ad-
equately reproduce these patterns. However, these
model responses may be incorrect in their estimate of
the amplitude of that pattern. The regression is per-
formed on the full masked global annual time series.
While it would be nice to include spatial information as
well, it is not clear how appropriate the EBM approxi-
mation would be at nonglobal scales. This is a limitation
of this study because spatial information can be impor-
tant for detecting climate response signals (CR06; Stott
et al. 2006). No optimization or data reduction is used
because this is of limited applicability to the temporal
data used here.

A control simulation is needed both to estimate the
covariance of the residual term �0 and to estimate the
uncertainty of the 
i scaling parameters. Because of the
limited size of the control simulations of each GCM, we
aggregate all of the control simulations from all of the
GCMs to produce a single large ensemble of control
simulations used throughout the analysis. All possible
control simulation data are used, and while this implies
that GCMs with longer control simulations are given
higher weighting, Gillett et al. (2002) find this prefer-
able to using a more limited equal portion from each
GCM. Each control is divided into 105-yr-long seg-
ments, with each segment being treated identically to
the ALL and ANT simulations (e.g., being masked to
the observations). Fifty-two of these control segments
are used to estimate the covariance of �0, while 44 oth-
ers are used for an independent estimate of the covari-
ance that is used in estimating the distributions of the

is (Allen and Tett 1999). Each of these two sets in-
cludes at least one member from each GCM. The re-
gression formulation used here, often referred to as
ordinary least squares, does not include any error in the
estimate of the simulated responses arising from the
finite ensemble size or model deficiencies. Because the
EBM does not simulate internally generated variability,
the uncertainty from the finite sample size cannot be
readily included in an analytical regression framework.
However, both of these extra sources of uncertainty can
be accounted for through a Monte Carlo approach,
which is conducted in section 7.

4. The EBM fits

The time series of ensemble and global mean SAT
for each of the GCMs is shown in Figs. 1b,c. The ob-
served SAT is well within the range covered by the
GCMs with ALL simulations. The observed record
shows a warming to 1940, followed by a stable period,

and then further warming after 1970. The GCM simu-
lations show a similar evolution, although the initial
warming event continues past 1940 until the early
1960s, with an abrupt cooling occurring with the erup-
tion of Agung, and then the general warming continu-
ing after that eruption. Responses to the eruptions of
Santa María (1902), Agung (1963), El Chichón (1982),
and Pinatubo (1991) (see Fig. 1a) are clearly visible in
the simulations. The especially good agreement during
the 1961–90 interval arises from the use of this period in
defining the anomalies. Altogether, the spread of the
GCMs with ANT simulations tends to cover the ob-
served SAT record, but individual models clearly do
not get the combination of the early century warming
and midcentury cooling, as noted previously (Stott et al.
2000).

The total EBM fit for each GCM is also shown in
Figs. 1b,c. Despite the lack of labeling on the EBM fits
in the figure, the correspondence between fit and GCM
ensemble is generally clear in areas where the GCMs
diverge. The fits to the GCMs with ALL simulations
show distinct responses to several large volcanic erup-
tions, which are absent in the fits to the ANT simula-
tions.

The EBM parameter values estimated for each
model are shown in Fig. 2. In general, the spread of
parameter values is rather large (with some minuscule
values outside the plotting range). Such a spread is also
found in Stone et al. (2007) using a single GCM, im-
plying that the spread arises more from problems with
the fitting than with differences in GCM properties.
The large range of heat capacities may partly reflect
model differences but also clearly indicates some un-
certainty in the EBM fit procedure, because it seems
improbable that such a large range would actually exist
across GCMs. The estimated values of the vertical dif-
fusion parameter ki show a similarly large spread as
that for ci. There are some consistent differences in
climate sensitivity estimates, with SUL and VOL values
always smaller than corresponding GHG values. The
estimated values of the climate sensitivity (estimated
from unmasked data, unlike in Fig. 2) are compared
against diagnosed values for each of the GCMs in Table
2. Diagnosed values tend to center around 0.9 K W�1

m2, while estimated EBM values tend to center around
0.7 K W�1 m2 for ALL simulations and 1.0 K W�1 m2

for ANT simulations. The correspondence for indi-
vidual GCMs is not as good, indicating that results for
parameter values from this study should be interpreted
in a general sense rather than on an individual basis.

Ultimately the quantity we most want to estimate
accurately in the context of modeling transient climates
is the transient climate response (TCR; Allen et al.
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2005). This is the temperature change after an increase
in forcing equal to a doubling of CO2 at a rate of in-
crease in emissions of 1% yr�1 (over 70 yr). An esti-
mate of the TCR is also shown in Figs. 2d and 2h. This
quantity is more tightly constrained for some individual
forcings than the other parameters, as expected (Allen
et al. 2005; Stone et al. 2007). The GHG and VOL
forcings have been strongest historically, and so we may
expect these to have the most accurately determined
parameters. While estimated parameters for these two

forcings vary widely, the estimates of the TCR vary by
only about a factor of 4 and 2, respectively, between
GCMs. The results of Stone et al. (2007) suggest that,
unlike the EBM parameters, much of the spread in the
TCR values may be due to actual differences in GCM
properties. The ALL GCMs all have lower TCR esti-
mates for VOL forcing than for GHG forcing, with
SUL estimates also being lower than GHG for all but
one GCM. The GHG parameter estimates from the
ANT simulations are quite similar to those from the

FIG. 2. (a)–(d) The EBM parameter values for each of the forcings and GCMs with ALL ensembles, which provide the best fit to the
observed record: (a) ci, the heat capacity of the ocean mixed layer for forcing i; (b) (1/�i), the climate sensitivity; (c) ki, the parameter
for vertical diffusion in the mixed layer; and (d) the TCRs resulting from these parameter sets. (e),(f) As in (a)–(d) but for GCMs with
ANT ensembles.
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ALL simulations. The comparison of the SUL param-
eters is messier though, suggesting that this method
works best with simulations including more forcings. A
comparison of diagnosed TCR values for GHG forcing
and values estimated from the EBMs is shown in Table
2 (both diagnosed estimates and estimates from the
EBMs in the table are from unmasked data). Despite
the fact that both estimates of TCRGHG have similar
and relatively small ranges, there is still little correspon-
dence between individual estimated EBM values and
diagnosed estimates from GCM simulations. Such dis-
crepancies may result from differences in the radiative
forcings used for the EBMs and GCMs or in the diffi-
culty in finding the 12 (or 6) -dimensional best-fit pa-
rameter set with only 105 temporal data points. In any
case, it appears that results from this application of this
methodology are better interpreted in a general sense
rather than on an individual basis.

The EBM surrogates estimated here exhibit a wide
range of properties that do not always individually
match with diagnosed values. The primary aim of this

paper is an overall attribution statement encompassing
many plausible responses as encapsulated by many
GCMs rather than attribution statements for individual
GCMs. Thus, because properties of the surrogate mod-
els and the diagnosed properties of the GCMs agree in
a general sense, these surrogate models appear to be
adequate for this study.

5. The detection

With these estimates of the response components to
each of the forcings, we can now proceed with the stan-
dard optimal detection methodology (Allen and Tett
1999). The estimates of the 90% confidence intervals
on the scalings (
i) required to fit the observations are
shown in Figs. 3a–b. These confidence intervals account
for uncertainty in the observations but not in the esti-
mated GCM responses.

The scaling factor for GHG is inconsistent with zero
for all of the ALL GCMs, and is consistent with one for
all but one of them. This indicates that this forcing is

TABLE 2. Diagnosed values for various GCMs of the climate sensitivity and TCR to GHG forcing and corresponding estimates from
EBM surrogates for ensembles of simulations including ALL or ANT forcings. All diagnosed values of the climate sensitivity are from
information supplied by the modeling groups to the IPCC Fourth Assessment Model Output database, except those marked with a *,
which are from Cubasch et al. (2001). Diagnosed values of the climate sensitivity (1/�GHG) marked with a † are supplied by the modeling
groups for a doubling of CO2 and are converted to unit forcing assuming a CO2 doubling forcing of 3.97 W m�2 (Ramaswamy et al.
2001). The diagnosed effective climate sensitivity is shown for ECHAM4 � OPYC3. All diagnosed values of the TCR are estimated
from simulations in the IPCC AR4 database, which include a 1% yr�1 increase in GHG forcing from preindustrial levels to a doubling,
except those marked with a *, which are from Cubasch et al. (2001). Estimates from EBM surrogates and diagnosed TCR estimates
apply to unmasked data (unlike in the rest of the paper).

GCM

1
�GHG

�K W m�2�
TCRGHG (K)

Diagnosed ALL ANT Diagnosed ALL ANT

CCSM3 0.8 1.1 — 1.4 1.6 —
CGCM3.1 (T47) — — 0.7 2.0 — 2.4
CGCM3.1 (T63) — — 0.8 — — 3.0
CNRM-CM3 — — 0.6 1.6 — 2.3
CSIRO-Mk2 *†1.1 — 0.8 *2.0 — 1.8
ECHAM4-OPYC3 *†0.7 0.6 1.2 *1.4 1.9 2.3
ECHAM5/MPI-OM 1.2 — 0.9 2.2 — 1.8
ECHO-G †0.8 0.7 — 2.1 1.3 —
GFDL-CM2.0 †0.7 1.1 — 1.5 2.4 —
GFDL-CM2.1 †0.7 1.0 — 1.5 2.4 —
GFDL-R15a *†0.9 — 1.3 2.3 — 2.7
GFDL-R30 *†0.9 0.7 1.5 *2.0 1.9 2.3
GISS-AOM — — 0.7 — — 1.3
GISS-EH †0.7 0.5 — 1.6 1.8 —
GISS-ER †0.7 0.6 — 0.4 1.9 —
INM-CM3.0 0.5 0.3 — 1.7 0.9 —
IPSL-CM4 1.3 — 1.3 2.1 — 2.0
MIROC3.2 (medres) 1.3 0.4 — 2.1 1.4 —
MRI-CGCM2.3.2 0.9 0.4 — 2.3 1.4 —
PCM *†0.5 0.7 1.0 1.4 2.9 1.7
UKMO-HadCM2 *†1.0 — 0.9 *1.7 — 1.8
UKMO-HadCM3 *†0.8 0.8 1.0 2.2 2.2 3.9
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necessary to reproduce observed changes and that the
amplitude of the response in the GCM simulations is
generally consistent with what has been observed. The
scaling factor for VOL is also generally inconsistent
with zero and generally consistent with one, but there
does appear to be a general tendency of the GCMs to
overestimate the response amplitude. The uncertainty
is much larger on the SUL scalings, and so most are
consistent both with zero and one, meaning that no
detection is possible. This larger uncertainty is not sur-
prising because the SUL response is partly degenerate
with the GHG response in the temporal output exam-
ined here. The scaling factors for SOL are usually more
uncertain but nevertheless two-thirds are inconsistent
with zero. It is difficult to draw any conclusions about
the SOL response, a situation that probably arises in
part because it is the smallest-amplitude forcing exam-
ined here and in part because it is the forcing most
likely to have been included in the GCM simulations
with a different historical scenario than that which is
assumed here (Fig. 1a). Nevertheless, two of the four
GCMs that use the Lean et al. (1995) forcing scenario
[Geophysical Fluid Dynamics Laboratory (GFDL) Cli-

mate Model version 2.0 (CM2.0), GFDL CM version
2.1 (CM2.1), Meteorological Research Institute (MRI)
Coupled Atmosphere–Ocean General Circulation
Model version 2.3.2 (CGCM2.3.2), Community Climate
System Model version 3 (CCSM3)] have no detectable
SOL response.

All of the ANT GCMs have a detectable GHG re-
sponse, that is, they have scalings inconsistent with
zero. While many of the GHG scalings are consistent
with one, many ANT GCMs appear to be overestimat-
ing the GHG response, and some significantly so. The
amplitudes of the SUL scalings, on the other hand, are
very poorly constrained. As noted above when exam-
ining parameters, the performance of this methodology
appears more robust when more forcings are included
in the simulations.

With these scaling factors, we can now estimate the
amount of SAT change occurring over the historical
record that is attributable to the various forcings (Figs.
3c–d). Because the responses generally do not follow a
linear trend through time, we estimate these attribut-
able warmings as the difference between the last 10 yr
of the EBM responses (1996–2005) and the first 10 yr

FIG. 3. (a) The 90% confidence intervals of the amplitude scalings (
i) derived from the regression of observed SAT changes onto
the EBM estimates of the GCM response patterns to each of the forcings. Results are shown for the GCMs with ALL simulations. (b)
The resulting 90% confidence intervals of the estimated SAT difference over the 1996–2005 period relative to the 1901–10 period that
is attributable to each of the forcings. (c)–(d) As in (a)–(b), but for the GCMs with ANT simulations.
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(1901–10), scaled by the appropriate scaling factors. All
of the ALL and ANT GCMs attribute some warming
to GHG forcing, with an average best guess of about
0.8 K. The ALL GCMs also attribute somewhat less
warming to SOL, around 0.3 K. Because of the 1902
eruption of Santa María, a small warming of about
0.1 K is attributable to the VOL forcing. Both the
ALL and ANT GCMs tend to attribute some cooling
(�0.4 K) to SUL forcing, but they are generally also
consistent with no SUL response.

The residual variability in the observed SAT (�0) is
consistent at the 10% level with the internally gener-
ated variability in the control simulations for all of the
ALL GCMs. With the ANT GCMs the residuals are
also all consistent with the internal variability but are
all only just so, apparently because of their failure to
remove NAT responses. We can also examine the vari-
ance of the simulation output and of the residuals at
various frequencies, as shown in Fig. 4. At interdecadal
time scales, the variability in the ALL GCM simula-
tions is generally consistent with the observed variabil-
ity. This is the case with fewer of the ANT GCMs,
however. This total variability includes both externally
forced and internally generated components. We have
estimated the externally forced component above, so
by subtracting the best guess of this externally forced
response (i.e., EBM fits for the simulations, and EBM
fits scaled according to the best guess of 
i for the ob-
servations) from the total variability we can get esti-
mates of the internally generated variability corre-
sponding to each GCM and in the real world. This in-
terdecadal residual is usually consistent between the
observations and ALL GCMs, with exceptions related
to an overestimate or underestimate of the centennial-
scale trend. Exceptions with the ANT GCMs appear to
be more due to the absence of the NAT forcings, be-
cause the major discrepancies at the 10- and 30-yr time
scales correspond to the general time scale between
volcanic eruptions during the twentieth century.

6. Constrained predictions of future climate

Allen et al. (2000) note that the scalings estimated
through detection and attribution studies effectively
provide observational constraints on GCM predictions
of future climate change. A major assumption in this
standard attribution methodology is that the response
of a GCM to a change in a given forcing is independent
of the climate state. Thus, the scalings correct for over-
estimates or underestimates in the response amplitudes
but assume that the GCM has the correct response pat-
tern. If we extend this assumption to future forcing
values then effectively the estimated scaling factors

provide an observationally based correction to GCM
predictions of future climate change. The 90% confi-
dence interval on the adjusted estimates of past and
future climate change is shown in Fig. 5a,b. The espe-
cially tight intervals over the 1961–90 period arise from
its use as the climatological base period.

Over the historical period the scaled ALL GCM pre-
dictions overlap very closely. This indicates that the
temporal response pattern is similar across models and
so suggests that this pattern is robust and that its am-
plitude is being effectively constrained by the observa-
tions. The ANT GCMs similarly closely agree on past
changes. In the future all predictions using both the
ALL and ANT GCMs continue to follow each other
fairly closely, in comparison with their own uncertain-
ties, under the IPCC A1B scenario, although not sur-
prisingly more divergence occurs between GCMs. We
choose to assume this scenario because it tends to be
favored by the IPCC AR4 modeling groups. This agree-
ment continues through 2100 at which time the lower
bound on the 90% confidence range is about 1.0–2.0 K
while the upper bound is about 3.5–5.0 K. The general
agreement between GCM predictions is expected and
supports the GCM independence of recent predictions
of future climate using the observational constraints
(Allen et al. 2000; Stott and Kettleborough 2002; Stone
et al. 2007; Stott et al. 2006). This arises because the
GCMs are only needed for determining the response
pattern; as long as this pattern is robust, the amplitude
is constrained directly by the observed past response
and is thus independent of the GCM used.

7. Results from a superensemble across GCMs

The analysis carried out so far ignores three poten-
tially important sources of uncertainty. First, it does not
account for uncertainty arising from the use of a finite
number of GCM simulations to characterize the GCM
response. It also does not account for uncertainty aris-
ing from inaccuracies in the EBM fitting procedure.
Finally, by assuming for each GCM that the GCM re-
sponse pattern is identical to the response pattern in the
real world, the results also assume that this pattern is
identical across models even though we are in fact using
different patterns for different models. In this section
we attempt to characterize these additional sources of
uncertainty by using a Monte Carlo technique similar to
that used by Stone et al. (2007). Stone et al. (2007) use
output from a single GCM; thus, the application of the
methodology here differs in that it is also taking into
account so-called structural uncertainty in the GCMs
and the arising differences in their response patterns.

All of the ALL simulations are pooled together to
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FIG. 4. (a),(b) The spectra of annual global mean SAT from the observed record and the ensemble mean spectra of the individual
GCM ALL simulations: (a) without and (b) with removal of the externally forced signal. The signal removed in the estimation of each
GCM spectrum is the total EBM response estimated for that GCM, while the signal removed from the observations is the EBM
response scaled according to the best-guess scalings estimated in Fig. 3b for that GCM. GCMs marked by asterisks significantly
overestimate or underestimate the variability at time scales of 10 yr and longer at the 10% level, as estimated using an F test on the
variability integrated over these low frequencies. All spectra are estimated using a Hanning filter of width 97 yr. (c),(d) As in (a),(b),
but for the GCMs with ANT simulations.
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create a superensemble. We arbitrarily decide to treat
all GCMs equally, so some simulations have a higher
likelihood of being included. Ensembles of 117 mem-
bers of these 50 simulations are selected with replace-
ment and are used as input into the analysis as carried
out in the previous sections. The ensemble size of 117 is
used, because this is the number required to ensure that
all simulations could be included once while preserving
the even weighting across GCMs. This selection of en-
sembles is repeated 100 times, allowing the estimation
of probability distributions for the various quantities
examined that account for the additional sources of un-
certainty.

The resulting histograms of EBM parameters and of
the TCR are shown in Figs. 5c–f. As in the earlier fig-
ure, in general, the VOL and GHG quantities are bet-
ter constrained than those for the other forcings. The
VOL and GHG histograms also tend to differ with very
little overlap. The tendency in Fig. 2 for the climate
sensitivity and TCR for VOL forcing to be smaller than
that for GHG forcing is also visible here.

The distributions of the scaling parameters in the
multiple regressions using the superensemble are
shown in Fig. 6. Results from a sensitivity analysis in
Stone et al. (2007) suggest that the detection and attri-
bution results obtained using the methodology used

FIG. 5. The estimated 90% confidence interval in the global annual mean SAT climate from 1901 to present and through to 2100
assuming the SRES A1B emissions scenario and constant NAT forcing. These estimates use the EBM fits and scalings derived for the
GCMs with (a) ALL ensembles and (b) ANT ensembles. (c)–(f) Similar to Fig. 2, but lumping all of the ALL simulations from all of
the GCMs together and showing histograms of the EBM parameters and TCR. The histograms are estimated from 100 Monte Carlo
samples where 117 simulations are selected randomly with replacement from a pool of 50 simulations. All 13 GCMs are weighted
equally; thus, some of the 50 simulations are more likely to be selected than others.
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here are fairly insensitive to the ensemble size, and
indeed the confidence ranges on these distributions are
comparable to those in Fig. 3. Responses to all four
forcings are inconsistent with zero amplitude at the 5%
significance level. All responses are consistent with a
scaling amplitude of one, and the residual variability is
consistent with that in the control simulations. As ex-
pected, the attributable warmings obtained from using
these scalings are similar to those obtained in Fig. 3.
The GHG attributable warming estimate tends to be a
little larger, and the SUL estimate correspondingly
smaller, than those obtained in the earlier section, but
the differences are not significant. While this and the
earlier estimates are complementary, the earlier esti-
mates have the advantage that it makes more sense
fitting an EBM to an ensemble from a single GCM
rather than to an ensemble from multiple GCMs with
differing representations of physical processes.

As in section 6 we can use the above scaling estimates
to provide constraints on past and future climate
change. This is shown in Fig. 7, once again with the
assumption of the SRES A1B scenario in the future.

The evolution of the SAT changes is similar to but
tighter than that in Fig. 5a, with the 90% confidence
range for 2100 being 2.5–5.0 K. This is at the higher
range of Fig. 5a, consistent with the attributable warm-
ing values, which are also on the higher side.

8. Conclusions

This paper provides an update on the multisignal de-
tection and attribution of climate change, using annual
data, more recent observations, more advanced GCMs,
separated forcings, and a new technique that allows the
inclusion of GCMs in the analysis even when multisce-
nario ensembles of simulations have not been per-
formed. While there is some spread in the GCM prop-
erties (as expressed in the corresponding EBM param-
eters), they generally show similar response patterns
and amplitudes to the four major forcings examined.
The responses to GHG and VOL forcing are consis-
tently detected in the comparison with the observa-
tions, while the uncertainty is larger with the SUL and
SOL responses and so the comparisons are more am-
biguous. The observational constraints provided by this
analysis indicate that GHG forcing contributed to
about a 0.8-K warming over the 1901–2005 period,
while the SOL/SUL forcing contributed a smaller
warming/cooling and little warming from VOL forcing.
These constraints permit a prediction of a �1.5–4.5 K
warming by 2100 under the SRES A1B emissions sce-
nario.

FIG. 6. Similar to Fig. 3, but lumping all of the ALL simulations
from all of the GCMs together: (top) The distributions of the
amplitude scalings (
i) derived from the regression of observed
SAT changes onto the EBM estimates of the GCM response pat-
terns to each of the four forcings included in the simulations. The
distributions are the average distributions across 100 Monte Carlo
bootstrap samples. (bottom) The resulting distributions of the
estimated change in SAT in the 1996–2005 decade relative to the
1901–10 decade attributable to each of the forcings.

FIG. 7. Similar to Fig. 5a, but lumping all of the ALL simulations
from all of the GCMs together. The shading shows the probability
density function (PDF) of the global annual mean SAT climate
from 1901 to present and through to 2100 assuming the SRES
A1B emissions scenario. The lines show the 90% confidence in-
tervals on this evolving PDF. The evolving distributions are the
averages across 100 Monte Carlo bootstrap samples and are nor-
malized to a standard peak value for visibility.
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The purpose of the EBM fits used here is simply to
emulate GCM responses. Therefore, the exact values of
the parameters used in the EBMs are not important
inasmuch as the output of the EBM is satisfactory.
While consistency of results between GCMs suggests
that satisfactory output across GCMs has been ob-
tained, the “black box” component of the analysis is
highlighted by the large spread in some EBM param-
eters. Nevertheless, the estimates for the attributable
warming and future changes are remarkably consistent
across models. Thus, despite the large spread of EBM
parameter values, the overall characteristics of the
EBM performance are similar across models and this
allows the observations to provide similar constraints
across models. Still, the implication is that the results of
this study should be taken in a broad sense, rather than
specifically for each GCM. Thus, while the methodol-
ogy used here allows the inclusion of many more GCMs
and simulations in the study of detection and attribu-
tion, it should not be considered a replacement to the
traditional method of examining multiple ensembles of
simulations with different forcing scenarios.

Two other techniques are being applied to the detec-
tion and attribution of global SAT changes with the
IPCC AR4 ALL simulations. One uses an approach on
the global mean SAT changes in which a Bayesian de-
cision method is used as a tool for classifying observa-
tions into given scenarios (Min and Hense 2006b). Min
and Hense (2006b) find “decisive” evidence in favor of
the ALL simulations versus the preindustrial control
simulations in terms of their representation of 1900–99
SAT changes. Min and Hense (2006a) find that all of
the ensembles of ALL simulations reproduce historical
changes well, while more than half of the ensembles of
ANT simulations cannot reproduce the observed
changes. The other study uses a space–time separable
approach to extract response patterns to the four forc-
ings examined here (CR06). Using their approach, the
response to GHG forcing is consistently detected, as is
the case here. However, in part because of smaller un-
certainties in the scaling parameters, responses to SUL
and SOL forcing are also consistently detected in their
analysis. On the other hand, VOL forcing is often not
detected; CR06 hypothesize that this is due to the use of
forcing time series, rather than the time series of re-
sponses to the forcings, in their method, which could be
expected to have a stronger effect for VOL than for the
other forcings. These scalings estimates lead to attrib-
utable warming best-guess estimates of about 1.0, �0.5,
0.0, and 0.1 K for the GHG, SUL, VOL, and SOL
forcings, respectively, which are comparable to the val-
ues found here. We plan to incorporate the EBM fitting
technique used here into the method of CR06 in order

to achieve a more comprehensive spatiotemporal de-
tection and attribution analysis.

This paper has demonstrated consistency in the na-
ture of responses to forcings across many GCMs. Fur-
thermore, results are broadly consistent with those
from other current studies. This consistency suggests
emerging constraints in the past surface temperature
changes attributable to the various forcings and to pre-
dictions of future temperature changes conditional on a
given forcing scenario. While some discrepancies re-
main and the constraints remain broad, the results ap-
pear to be robust enough to make observationally con-
strained predictions of future warming.
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