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Attribution of global surface warming without dynamical models
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[1] Detection and attribution studies of observed surface
temperature changes have served to consolidate our
understanding of the climate system and its past and
future behaviour. Most recent studies analysing up-to-date
observations have relied on general circulation models
(GCMs) to provide estimates of the responses to various
external forcings. Here we revisit a methodology which
instead estimates the responses using a simple model tuned
directly to the observed record, paralleling a technique
currently used with GCM output. The effects of greenhouse
gases, tropospheric sulphate aerosols, and volcanic aerosols
are all detected in the observed record, while the effects of
solar irradiance are unclear. These results provide further
observational constraints on past and future warming
estimates consistent with those from recent studies with
GCMs, supporting the notion that current estimates are
robust against the modelling system used. Citation: Stone,
D. A., and M. R. Allen (2005), Attribution of global surface
warming without dynamical models, Geophys. Res. Lett., 32,
L18711, doi:10.1029/2005GL023682.

1. Introduction

[2] The detection and attribution of climate change plays
a central role in climate change research, both because of its
role in connecting the many other research branches in the
field [Intergovernmental Panel on Climate Change, 2001]
and because of its ultimate implications for individual
stakeholders [Allen, 2003; Allen and Lord, 2004]. A decade
has passed since studies comparing estimated climate
responses to external forcings against the observed surface
air temperature (SAT) record started to find a detectable
anthropogenic contribution [Santer et al., 1995; Hegerl et
al., 1996; North and Stevens, 1998]. More recent studies
reinforce and elaborate upon these results [Mitchell et al.,
2001] (see also P. A. Stott et al., Robustness of estimates of
greenhouse attribution and observationally constrained pre-
dictions of global warming, submitted to Journal of Climate,
2005, and D. A. Stone et al., A multi-model update on the
detection and attribution of global surface warming, sub-
mitted to Journal of Climate, 2005) (the latter hereinafter
referred to as Stone et al., submitted manuscript, 2005b).

[3] Many of these analyses require estimates of spatio-
temporal response patterns from general circulation models
(GCMs) and so rely on the assumption that these models are
correctly reproducing the climate system. However, a var-
iant to the standard detection and attribution procedure
[North and Kim, 1995; North and Wu, 2001] (see also D.
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A. Stone, The detection and attribution of climate change
using an ensemble of opportunity, submitted to Journal of
Climate, 2005) (hereinafter referred to as Stone et al.,
submitted manuscript, 2005a) does not require GCM esti-
mates of the response patterns. Instead, they can be esti-
mated directly from the observed record using a simple zero
dimensional climate model. Assuming such a model ade-
quately represents the climate system at the global scale, the
advantage is that the model can be objectively tuned to the
observational record. This paper applies this methodology
to the current observed SAT record and so provides an
estimate of the detection and attribution of the response of
the climate system to external forcings that is entirely
independent of GCM estimates of the response. While
studies using GCMs can be preferable for a number of
reasons, the intention here is to investigate whether results
are robust against the use of climate modelling systems of
varying complexity.

2. Data and Method

[4] We analyse the data set of Jones and Moberg [2003]
containing monthly mean SAT from station observations
amalgamated onto a 5° x 5° grid. Data from a given month
and grid cell are retained provided that at least half of that
year has data and at least 10 years of the base climatological
period of 1961-1990 has data. Global annual means are
calculated and used in the analysis.

[s] Figure 1 shows the estimates of the evolution of the
four main radiative forcings over the 1891-2100 period
used in this analysis. These are the forcing estimates for
greenhouse gases (GHQG), tropospheric sulphate aerosols
(SUL), stratospheric volcanic aerosols (VOL), and solar
irradiance (SOL) compiled by PCMDI for use by modelling
groups for their simulations submitted for analysis to the
IPCC’s 4th Assessment Report. The SUL forcing is derived
from the burden estimates of Boucher and Pham [2002] and
accounts for both the direct and indirect effects, the VOL
forcing follows C. M. Ammann et al. (Coupled simulations
of the Twentieth Century including external forcing, sub-
mitted to Journal of Climate, 2005), and the SOL forcing
follows Lean et al. [1995]. Forcing information, such as
greenhouse gas concentrations, has been converted to radi-
ative forcing estimates according to the formulae used by
Stone et al. (submitted manuscript, 2005a). The forcings
estimates are extended to 2100 according to the IPCC SRES
A1B scenario, with VOL and SOL forcings held constant
through the future; this scenario is arbitrarily chosen on
account of its popularity in other studies. We do not consider
uncertainties in past or future forcing scenarios in this study.

[e] We apply a methodology of detecting and attributing
changes similar to that employed in a number of other
studies [Hegerl et al., 1996; Jones and Hegerl, 1998; North

1 of 4



L18711
8 — GHG
—~ 6F | — su
é afb | sar
o 2
£
3
B e ——
L ofF E
-4
1900 1950 2000 2050 2100
Year
Figure 1. Characteristic global forcing time series used for

the IPCC “20c3m™ (historical) and “SRES A1B” (future)
climate simulations covering 1891 through 2100.

and Stevens, 1998; North and Wu, 2001]. The details of the
variant used here are described in detail by Stone et al.
(submitted manuscript, 2005a). The first step involves
extracting the response signals to the individual forcings.
This involves fitting a sum of n different energy balance
models (EBMs) corresponding to the n forcings. These
EBMs are of the form

dT
“Car T

(1)

where ¢; is the heat capacity, + N is the climate sensitivity, and
k; is the vertical diffusivity for the forcing i. The ¢;, \;, and k;
parameters are tuned such that the total SAT response, T=
> T, to the forcmgs most closely resembles the observed
mean SAT time series. .

[7] The estimated individual EBM responses 7’; to forc-
ing i are then used in the standard multiple regression
methodology used in many detection and attribution studies
[Allen and Tett, 1999]. Under this, we express observed
temperature changes 7', as a linear sum of the simulated
responses determined for each forcing (T) plus a residual

(Vo):
- n —
Tobs = Z TtB[ + D‘0- (2)
i=1

The (3;’s are scaling factors estimated in the regression to
minimize the variance of the residual term v,. Estimates of
the covariance of the residual term are needed both for this
minimisation and for estimating the distributions of the 3;
scaling parameters. We estimate the covariance of the
residual term using control simulations provided by the
various modelling centres around the world to the IPCC 4th
Assessment Model Output database (https:/esg.lInl.
gov:8443/index.jsp) in the same manner as Stone et al.
(submitted manuscript, 2005b). Additional uncertainty
arises from the overfitting error involved in fitting a 12
parameter EBM to 104 data points; this factor is not
included in our estimates of the distributions of the (3;
scalings but tests by Stone et al. (submitted manuscript,
2005b) suggest that this can lead to an underestimate of up
to a factor of 1.5 in the total uncertainty. While the two step
nature of the analysis is not absolutely necessary in the
present context, the intention is to parallel recent studies
performed using GCM output.

3. Results

[8] The combined EBM fit to the observed SAT record is
shown in Figure 2. Like the observed record, the EBM
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Figure 2. Plot of global annual mean SAT time series from
1901 to 2004. The combined EBM fit is shown with the
thick line.

surrogate rises gradually over the first 40—50 years of the
record, then levels off until ~1970, and finally rises more
steeply over the most recent thirty years. Small but visible
dips occur during the years following volcanic eruptions.
The only notable discrepancy between the fit and the
observed record occurs around 1940, when for about 10
years the EBM fit underestimates the observed values.

[o] The EBM parameters that provide this best fit are
shown in Figure 3. Values of the heat capacity parameter
correspond to mixed layer depths of about 20 m (GHG) to
110 m (SOL), with the diffusivity parameter corresponding
to vertical diffusivity values ranging over approximately 5 x
107° m?s™' (SOL) to 5 x 107® m*s~' (VOL). The
estimates of the parameters across forcmgs vary more
widely than would be expected on physical grounds (for
instance due to the time scale of the forcing impulse),
indicating that they are poorly constrained, as noted else-
where (Stone et al., submitted manuscript, 2005a, 2005b).
Of course, the purpose of these EBMs is to provide
surrogates of the actual responses to the individual forcings,
so accurate parameter estimation is secondary insofar as the
estimated parameter sets produce realistic output through
the EBM. A relevant quantity for characterising transient
climates is the transient climate response (TCR) (D. J.
Frame et al., Challenging climate sensitivity, manuscript
in preparation, 2005). This is the temperature change after a
linear increase in forcing equal to a doubling of CO, at a
rate of 1% per year (over 70 years). Estimates of the TCR
Figure 3 are more similar across forcings than are the EBM
parameters, suggesting that the TCR is better constrained
than are individual EBM parameters. The lower SOL and
VOL values are consistent with results when the same
analysis is applied to output from GCMs (Stone et al.,
submitted manuscript, 2005b), although the coincidence of
El Nifio and volcanic events in the observational record
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Figure 3. The EBM parameters for each of the forcings
that provide the best fit to the observations; c¢;, the heat
capacity, is in units of W - year - m B (G . the climate
sensnwity 1s in K -m?- W'; k, the vertical d1ffus1v1ty is
in W - K™ '; the transient cllmate response, TCR, is in K.
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Figure 4. (top) The 90% confidence intervals of the
amplitude scalings (8;) derived from the regression of
observed SAT changes onto the EBM estimates of the
response patterns to each of the forcings. (bottom) The
resulting 90% confidence intervals of the estimated SAT
change over the 1901-2004 period attributable to each of
the forcings.

could imply an underestimate of the VOL response [Santer
et al., 2001].

[10] With these estimates of the EBM parameters, we
now have estimates for the responses of the real climate
system to the separate forcings. Therefore, we can now
proceed with the traditional multiple regression approach to
detection and attribution using these response estimates.
The resulting estimated values of the scaling parameters are
shown in Figure 4. These scalings are the factors with which
we must multiply the EBM temporal response patterns in
order to achieve a best fit with the observed record. The
estimates of the 90% confidence intervals on the scaling
parameters are derived from covariance estimates from the
control simulations of the GCMs and represent the only use
of GCM data in this analysis. It should be remembered that
these estimates of the confidence intervals do not take
account of uncertainty arising from the EBM fitting step
of the analysis.

[11] The effects of GHG, SUL, and VOL forcing are all
detected at the 5% level because a scaling of zero, i.e. their
absence, is inconsistent with the observed record. On the
other hand, the effects of SOL are poorly constrained and so
are not detected. The scalings for all forcings are consistent
with one, i.e. our estimated responses: because our estimates
of the responses are derived from the observations them-
selves, we expect the scalings to be near a value of one in
this analysis. These results generally hold when a version of
the EBM with &; = 0 is used (not shown); the exception is
the VOL response, which we would expect to depend more
strongly on the diffusivity because of the shorter time scale
of the VOL forcing.

[12] By combining our EBM estimates of the temporal
response patterns and the observational constraints on their
amplitude, we now have observationally constrained esti-
mates of the contributions of the various forcings to past
climate variations. This means that we can, for example,
determine the degree to which the various forcings contrib-
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uted to the SAT difference between 2004 and 1901 [Allen et
al., 2000]. These attributable warmings are shown in
Figure 4. The dominant contribution has been a warming
from GHG, with a best guess of about 1.5 K, which has
been accompanied by a cooling due to SUL of probably
about two thirds that magnitude. Any SOL or VOL contri-
bution to the warming is small, with VOL restricted by the
lack of volcanic eruptions immediately preceding either
1901 or 2004.

[13] The observationally constrained estimates of global
SAT change over the past century are shown in Figure 5.
The tighter constraints during the 1961—1990 interval arise
from its use as the climatological base period. The warming
periods in the early and late parts of the twentieth century
are visible, as is the stable interval in between. Also shown
are the estimates of future warming under the IPCC SRES
A1B emissions scenario. Under traditional detection and
attribution studies with GCMs, such estimates of future
warming are important because the response amplitudes are
constrained by the observed record of past changes, with
only the response patterns determined from the GCM [A/len
et al., 2000; Stott and Kettleborough, 2002]. However, here
we derived the response patterns directly from the observa-
tions without recourse to GCM simulations. Therefore this
estimate represents a more fully observationally constrained
estimate of future climate, with only the quantification of
the uncertainty requiring the use of GCMs. The predicted
warming of 2—7 K is comparable to the predictions of Stone
et al. (submitted manuscript, 2005b) for this scenario using
GCM estimates of the response patterns, indicating that the
results are robust against model complexity.

4. Summary and Discussion

[14] While GCM output was not used for the estimation
of the temporal response patterns to the various forcings,
GCM control simulations were still necessary in order to
estimate the magnitude of the internal variability of the
climate system and thus the uncertainty in our attribution
results. Furthermore, simple climate models, in the form of
EBMs, were also necessary in order to convert forcing
information into temperature responses. In the EBM all
types of response processes are lumped together as a single
simple radiative-thermodynamic process and cannot evolve
separately. While this may be a fair approximation on an
annual global mean scale, it nevertheless represents a major
deficiency. However, the advantage of the EBMs is that
they can be tuned to the observational record, and so
inasmuch as the climate system is constrained by these
radiative constraints on global climate scales, it is possible
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Figure 5. The estimated 90% confidence interval of global
annual mean SAT climate from 1901 to present and through
to 2100 assuming the SRES A1B scenario.
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in practice for us to obtain an objectively calibrated version
of the model. The results are qualitatively similar when a
version of the EBM with k; set to zero is used (with the
exception of VOL with its high frequency forcing), support-
ing the robustness of the results.

[15] This analysis followed the methodology of Stone et
al. (submitted manuscript, 2005a), which is designed to
adapt climate information that is otherwise inappropriate for
detection and attribution studies into a format that can be
used in traditional methods. While it is designed for use
with GCM output, it has also proved useful here when
applied directly to the observational record. However, by
first extracting responses from the observational record and
them comparing them back to the observations again, this
procedure performs in two steps what should properly be
performed in one. The circularity of this methodology is a
general problem with attribution studies because the scien-
tific community is a long way from producing realistic
climate models based solely on first principles with no
tuning of the output. In this study the circularity is high-
lighted because the model development and tuning is
performed within the study itself, rather than externally.
Developing a less circular methodology is a direction of
future research but the intention of this study was to apply
detection and attribution techniques currently applied with
GCMs more directly to the observations. Thus, for now
these results present further complementary evidence that
recent results from detection and attribution studies are
robust to the climate modelling system used.

[16] This paper presents a further study detecting the
effects of various forcings on the observed SAT changes
that does not require GCM simulations for estimation of the
response patterns to those forcings. The effects of GHG,
SUL, and VOL forcing are detected, as in previous studies,
although the SUL and VOL detection is probably sensitive
to some sources of uncertainty that are not considered in this
analysis. These results provide observational constraints
with which to make quantifiable statements concerning past
and future temperature changes. Altogether, these attribu-
tion and prediction results are consistent with those obtained
when the same methodology is applied to GCM output
(Stone et al., submitted manuscript, 2005b) or when a more
simple EBM is used, indicating robustness of current results
against model complexity.
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