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Introduction

• Structured and unstructured meshes in real-world simulations.

• Parallel applications – Not straightforward to partition unstructured
meshes.

• Load balance directly related to mesh partitioning quality.

• Data exchange between processes through partition ghost or halo regions.
• Two key parallelization challenges:

• Load imbalance across processes – mesh partitioning.
• Unstructured data access patterns – data organization.
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Ocean Modeling with MPAS-Ocean

• MPAS = Model for Prediction Across Scales. [Los Alamos]

• A multiscale method.

• Voronoi tessellation-based variable resolution mesh (SCVT).
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Ocean Modeling with MPAS-Ocean

• Major advantages of such unstructured mesh:
• Offers variable resolutions. User defined density functions.

• Focus on area of interest with high resolution.
• Avoid unnecessary high-resolution computations in unwanted areas.

• Smooth resolution transition regions.
• Locally homogeneous/quasi-uniform coverage of spherical surfaces.
• Preserve symmetry/isotropic nature of a spherical surface.
• Naturally allows for discontinuities in the mesh.
• Straightforward distortion-free mapping to 2D.

• A vertical quantization adds 3rd dimension, representing ocean depths.
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Ocean Modeling with MPAS-Ocean

SCVT Cells and computed quantities.
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Unstructured mesh partitioning ...
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Mesh Partitioning and Load Imbalance

• Using a straight-forward graph partitioner, such as Metis.

Computational imbalance across partitions/processes
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Mesh Partitioning and Load Imbalance

• High computation-communication imbalance across processes in a run
with naive partitioning:
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Mesh Partitioning and Load Imbalance

• Need for a better mesh partitioner.

• Hypergraph representations are known to model communication more
accurately than graphs.

• Available partitioners generate a partitioning by,
1 balancing the number of cells (or weights) across partitions, and
2 minimizing the total number of edge cuts.

• Problem:
• Cost due to halo cells is not considered.
• Unstructured nature makes halo region costs highly variable across

partitions.
• Deep halo regions magnify the effects, making them an important factor for

load balancing.
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Mesh Partitioning and Load Imbalance

• Input mesh ...
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Mesh Partitioning and Load Imbalance

• A partition ...
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Mesh Partitioning and Load Imbalance

• 1-Halo region ...
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Mesh Partitioning and Load Imbalance

• 2-Halo region ...
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Mesh Partitioning and Load Imbalance

• 3-Halo region ...
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Partitioning-Based Cost Modeling

In a partitioning, for a partition k,

computation cost, Cα = 1
F(p)

(
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Partitioning-Based Cost Modeling
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A Halo-Aware Partitioning Approach

1: procedure HALOAWAREPARTITION(G)
2: Construct sparse matrix A representing G
3: Compute A2, · · ·Al, and A1···l =

∑l Ai

4: Construct hypergraphH0 for A1···l

5: while not converged do
6: Compute partitioning Pi ofHi; construct halos for each partition in Pi

7: Compute cost prediction for each partition k
8: Assign weights to the cells, distributing halo cost equally among partition cells
9: Compute total partition weights Wk

10: Compute imbalance measure, fi =
(

1− mink(Wk)
maxk(Wk)

)
11: Accept Pi with probability m = min

(
1, e

(
fi−1−fi

)
/2

)
12: if Pi is accepted then
13: UpdateHi with the new cell weights to constructH(i+1)

14: else
15: Reject Pi by setting Pi = Pi−1 and fi = fi−1

16: end if
17: end while
18: Output last accepted partitioning as the result
19: end procedure
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Performance Improvements with Better Partitioning
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Unstructured data organization ...
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Data Locality with Data Ordering

A complete random organization Original/Reverse Cuthill-McKee
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Ordering Unstructured Data with Space Filling Curves

Hilbert SFC Morton/Z-SFC
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Performance Improvements with Data Re-ordering: Cache Usage
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Performance Improvements with Data Re-ordering
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End Notes

• Overall improved performance by up to 2.2×.

• Improved scaling.

• Enable increased resolution and throughput of high resolution meshes.

• Achieve high SYPD (Simulated Year Per Day.)

• Enable higher accuracy with high resolution.

• Partitioning and ordering methods are generic to apply to other
unstructured meshes.

• Collaborations ... ?
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Thank you!
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