
Parallel Performance Optimizations on
Unstructured Mesh-Based Simulations

Abhinav Sarje
asarje @ lbl.gov

02 June 2015
International Conference on Computational Science 2015

Reykjavík Iceland



Abhinav Sarje Lawrence Berkeley National Laboratory

Sukhyun Song University of Maryland College Park

Douglas Jacobsen Los Alamos National Laboratory

Kevin Huck University of Oregon

Jeffrey Hollingsworth University of Maryland College Park

Allen Malony University of Oregon

Samuel Willaims Lawrence Berkeley National Laboratory

Leonid Oliker Lawrence Berkeley National Laboratory



Introduction Mesh Partitioning Data Locality Conclusions

Introduction

• Structured and unstructured meshes in real-world simulations.

• Parallel applications – Not straightforward to partition unstructured
meshes.

• Load balance directly related to mesh partitioning quality.

• Data exchange between processes through partition ghost or halo regions.
• Two key parallelization challenges:

• Load imbalance across processes – mesh partitioning.
• Unstructured data access patterns – data organization.



Introduction Mesh Partitioning Data Locality Conclusions

Introduction

• Structured and unstructured meshes in real-world simulations.

• Parallel applications – Not straightforward to partition unstructured
meshes.

• Load balance directly related to mesh partitioning quality.

• Data exchange between processes through partition ghost or halo regions.
• Two key parallelization challenges:

• Load imbalance across processes – mesh partitioning.
• Unstructured data access patterns – data organization.



Introduction Mesh Partitioning Data Locality Conclusions

Introduction

• Structured and unstructured meshes in real-world simulations.

• Parallel applications – Not straightforward to partition unstructured
meshes.

• Load balance directly related to mesh partitioning quality.

• Data exchange between processes through partition ghost or halo regions.
• Two key parallelization challenges:

• Load imbalance across processes – mesh partitioning.
• Unstructured data access patterns – data organization.



Introduction Mesh Partitioning Data Locality Conclusions

Ocean Modeling with MPAS-Ocean

• MPAS = Model for Prediction Across Scales. [Los Alamos]

• A multiscale method.

• Voronoi tessellation-based variable resolution mesh (SCVT).



Introduction Mesh Partitioning Data Locality Conclusions

Ocean Modeling with MPAS-Ocean



Introduction Mesh Partitioning Data Locality Conclusions

Ocean Modeling with MPAS-Ocean

• Major advantages of such unstructured mesh:
• Offers variable resolutions. User defined density functions.

• Focus on area of interest with high resolution.
• Avoid unnecessary high-resolution computations in unwanted areas.

• Smooth resolution transition regions.
• Locally homogeneous/quasi-uniform coverage of spherical surfaces.
• Preserve symmetry/isotropic nature of a spherical surface.
• Naturally allows for discontinuities in the mesh.
• Straightforward distortion-free mapping to 2D.

• A vertical quantization adds 3rd dimension, representing ocean depths.



Introduction Mesh Partitioning Data Locality Conclusions

Ocean Modeling with MPAS-Ocean

• Major advantages of such unstructured mesh:
• Offers variable resolutions. User defined density functions.

• Focus on area of interest with high resolution.
• Avoid unnecessary high-resolution computations in unwanted areas.

• Smooth resolution transition regions.
• Locally homogeneous/quasi-uniform coverage of spherical surfaces.
• Preserve symmetry/isotropic nature of a spherical surface.
• Naturally allows for discontinuities in the mesh.
• Straightforward distortion-free mapping to 2D.

• A vertical quantization adds 3rd dimension, representing ocean depths.



Introduction Mesh Partitioning Data Locality Conclusions

Ocean Modeling with MPAS-Ocean

• Major advantages of such unstructured mesh:
• Offers variable resolutions. User defined density functions.

• Focus on area of interest with high resolution.
• Avoid unnecessary high-resolution computations in unwanted areas.

• Smooth resolution transition regions.
• Locally homogeneous/quasi-uniform coverage of spherical surfaces.
• Preserve symmetry/isotropic nature of a spherical surface.
• Naturally allows for discontinuities in the mesh.
• Straightforward distortion-free mapping to 2D.

• A vertical quantization adds 3rd dimension, representing ocean depths.



Introduction Mesh Partitioning Data Locality Conclusions

Ocean Modeling with MPAS-Ocean

• Major advantages of such unstructured mesh:
• Offers variable resolutions. User defined density functions.

• Focus on area of interest with high resolution.
• Avoid unnecessary high-resolution computations in unwanted areas.

• Smooth resolution transition regions.
• Locally homogeneous/quasi-uniform coverage of spherical surfaces.
• Preserve symmetry/isotropic nature of a spherical surface.
• Naturally allows for discontinuities in the mesh.
• Straightforward distortion-free mapping to 2D.

• A vertical quantization adds 3rd dimension, representing ocean depths.



Introduction Mesh Partitioning Data Locality Conclusions

Ocean Modeling with MPAS-Ocean

SCVT Cells and computed quantities.



Introduction Mesh Partitioning Data Locality Conclusions

Unstructured mesh partitioning ...



Introduction Mesh Partitioning Data Locality Conclusions

Mesh Partitioning and Load Imbalance

• Using a straight-forward graph partitioner, such as Metis.

Computational imbalance across partitions/processes



Introduction Mesh Partitioning Data Locality Conclusions

Mesh Partitioning and Load Imbalance

• High computation-communication imbalance across processes in a run
with naive partitioning:

300 350 400 450 500 550 600 650 700 750
Communication Time [s]

100

150

200

250

300

350

400

450

500
C

o
m

p
u
ta

ti
o
n
 T

im
e
 [

s]



Introduction Mesh Partitioning Data Locality Conclusions

Mesh Partitioning and Load Imbalance

• Need for a better mesh partitioner.

• Hypergraph representations are known to model communication more
accurately than graphs.

• Available partitioners generate a partitioning by,
1 balancing the number of cells (or weights) across partitions, and
2 minimizing the total number of edge cuts.

• Problem:
• Cost due to halo cells is not considered.
• Unstructured nature makes halo region costs highly variable across

partitions.
• Deep halo regions magnify the effects, making them an important factor for

load balancing.



Introduction Mesh Partitioning Data Locality Conclusions

Mesh Partitioning and Load Imbalance

• Need for a better mesh partitioner.

• Hypergraph representations are known to model communication more
accurately than graphs.

• Available partitioners generate a partitioning by,
1 balancing the number of cells (or weights) across partitions, and
2 minimizing the total number of edge cuts.

• Problem:
• Cost due to halo cells is not considered.
• Unstructured nature makes halo region costs highly variable across

partitions.
• Deep halo regions magnify the effects, making them an important factor for

load balancing.



Introduction Mesh Partitioning Data Locality Conclusions

Mesh Partitioning and Load Imbalance

• Need for a better mesh partitioner.

• Hypergraph representations are known to model communication more
accurately than graphs.

• Available partitioners generate a partitioning by,
1 balancing the number of cells (or weights) across partitions, and
2 minimizing the total number of edge cuts.

• Problem:
• Cost due to halo cells is not considered.
• Unstructured nature makes halo region costs highly variable across

partitions.
• Deep halo regions magnify the effects, making them an important factor for

load balancing.



Introduction Mesh Partitioning Data Locality Conclusions

Mesh Partitioning and Load Imbalance

• Need for a better mesh partitioner.

• Hypergraph representations are known to model communication more
accurately than graphs.

• Available partitioners generate a partitioning by,
1 balancing the number of cells (or weights) across partitions, and
2 minimizing the total number of edge cuts.

• Problem:
• Cost due to halo cells is not considered.
• Unstructured nature makes halo region costs highly variable across

partitions.
• Deep halo regions magnify the effects, making them an important factor for

load balancing.



Introduction Mesh Partitioning Data Locality Conclusions

Mesh Partitioning and Load Imbalance

• Input mesh ...



Introduction Mesh Partitioning Data Locality Conclusions

Mesh Partitioning and Load Imbalance

• A partition ...



Introduction Mesh Partitioning Data Locality Conclusions

Mesh Partitioning and Load Imbalance

• 1-Halo region ...



Introduction Mesh Partitioning Data Locality Conclusions

Mesh Partitioning and Load Imbalance

• 2-Halo region ...



Introduction Mesh Partitioning Data Locality Conclusions

Mesh Partitioning and Load Imbalance

• 3-Halo region ...



Introduction Mesh Partitioning Data Locality Conclusions

Partitioning-Based Cost Modeling

In a partitioning, for a partition k,

computation cost, Cα = 1
F(p)

(
i∈Nk∑

i

wi + a
i∈Hk∑

i

wi

)

communication cost, Cβ = 1
F(p)

hk

bk
+
(

max
i∈[1,p]

(ci) − ck

)



Introduction Mesh Partitioning Data Locality Conclusions

Partitioning-Based Cost Modeling

In a partitioning, for a partition k,

computation cost, Cα = 1
F(p)

(
i∈Nk∑

i

wi + a
i∈Hk∑

i

wi

)

communication cost, Cβ = 1
F(p)

hk

bk
+
(

max
i∈[1,p]

(ci) − ck

)



Introduction Mesh Partitioning Data Locality Conclusions

Partitioning-Based Cost Modeling

In a partitioning, for a partition k,

computation cost, Cα = 1
F(p)

(
i∈Nk∑

i

wi + a
i∈Hk∑

i

wi

)

communication cost, Cβ = 1
F(p)

hk

bk
+
(

max
i∈[1,p]

(ci) − ck

)



Introduction Mesh Partitioning Data Locality Conclusions

Partitioning-Based Cost Modeling

0 100 200 300 400 500 600
Partitioning Instance

105

C
o
st

model
actual



Introduction Mesh Partitioning Data Locality Conclusions

A Halo-Aware Partitioning Approach

1: procedure HALOAWAREPARTITION(G)
2: Construct sparse matrix A representing G
3: Compute A2, · · ·Al, and A1···l =

∑l Ai

4: Construct hypergraphH0 for A1···l

5: while not converged do
6: Compute partitioning Pi ofHi; construct halos for each partition in Pi

7: Compute cost prediction for each partition k
8: Assign weights to the cells, distributing halo cost equally among partition cells
9: Compute total partition weights Wk

10: Compute imbalance measure, fi =
(

1− mink(Wk)
maxk(Wk)

)
11: Accept Pi with probability m = min

(
1, e

(
fi−1−fi

)
/2

)
12: if Pi is accepted then
13: UpdateHi with the new cell weights to constructH(i+1)

14: else
15: Reject Pi by setting Pi = Pi−1 and fi = fi−1

16: end if
17: end while
18: Output last accepted partitioning as the result
19: end procedure



Introduction Mesh Partitioning Data Locality Conclusions

A Halo-Aware Partitioning Approach

1: procedure HALOAWAREPARTITION(G)
2: Construct sparse matrix A representing G
3: Compute A2, · · ·Al, and A1···l =

∑l Ai

4: Construct hypergraphH0 for A1···l

5: while not converged do
6: Compute partitioning Pi ofHi; construct halos for each partition in Pi

7: Compute cost prediction for each partition k
8: Assign weights to the cells, distributing halo cost equally among partition cells
9: Compute total partition weights Wk

10: Compute imbalance measure, fi =
(

1− mink(Wk)
maxk(Wk)

)
11: Accept Pi with probability m = min

(
1, e

(
fi−1−fi

)
/2

)
12: if Pi is accepted then
13: UpdateHi with the new cell weights to constructH(i+1)

14: else
15: Reject Pi by setting Pi = Pi−1 and fi = fi−1

16: end if
17: end while
18: Output last accepted partitioning as the result
19: end procedure



Introduction Mesh Partitioning Data Locality Conclusions

A Halo-Aware Partitioning Approach

1: procedure HALOAWAREPARTITION(G)
2: Construct sparse matrix A representing G
3: Compute A2, · · ·Al, and A1···l =

∑l Ai

4: Construct hypergraphH0 for A1···l

5: while not converged do
6: Compute partitioning Pi ofHi; construct halos for each partition in Pi

7: Compute cost prediction for each partition k
8: Assign weights to the cells, distributing halo cost equally among partition cells
9: Compute total partition weights Wk

10: Compute imbalance measure, fi =
(

1− mink(Wk)
maxk(Wk)

)
11: Accept Pi with probability m = min

(
1, e

(
fi−1−fi

)
/2

)
12: if Pi is accepted then
13: UpdateHi with the new cell weights to constructH(i+1)

14: else
15: Reject Pi by setting Pi = Pi−1 and fi = fi−1

16: end if
17: end while
18: Output last accepted partitioning as the result
19: end procedure



Introduction Mesh Partitioning Data Locality Conclusions

A Halo-Aware Partitioning Approach

1: procedure HALOAWAREPARTITION(G)
2: Construct sparse matrix A representing G
3: Compute A2, · · ·Al, and A1···l =

∑l Ai

4: Construct hypergraphH0 for A1···l

5: while not converged do
6: Compute partitioning Pi ofHi; construct halos for each partition in Pi

7: Compute cost prediction for each partition k
8: Assign weights to the cells, distributing halo cost equally among partition cells
9: Compute total partition weights Wk

10: Compute imbalance measure, fi =
(

1− mink(Wk)
maxk(Wk)

)
11: Accept Pi with probability m = min

(
1, e

(
fi−1−fi

)
/2

)
12: if Pi is accepted then
13: UpdateHi with the new cell weights to constructH(i+1)

14: else
15: Reject Pi by setting Pi = Pi−1 and fi = fi−1

16: end if
17: end while
18: Output last accepted partitioning as the result
19: end procedure



Introduction Mesh Partitioning Data Locality Conclusions

A Halo-Aware Partitioning Approach

1: procedure HALOAWAREPARTITION(G)
2: Construct sparse matrix A representing G
3: Compute A2, · · ·Al, and A1···l =

∑l Ai

4: Construct hypergraphH0 for A1···l

5: while not converged do
6: Compute partitioning Pi ofHi; construct halos for each partition in Pi

7: Compute cost prediction for each partition k
8: Assign weights to the cells, distributing halo cost equally among partition cells
9: Compute total partition weights Wk

10: Compute imbalance measure, fi =
(

1− mink(Wk)
maxk(Wk)

)
11: Accept Pi with probability m = min

(
1, e

(
fi−1−fi

)
/2

)
12: if Pi is accepted then
13: UpdateHi with the new cell weights to constructH(i+1)

14: else
15: Reject Pi by setting Pi = Pi−1 and fi = fi−1

16: end if
17: end while
18: Output last accepted partitioning as the result
19: end procedure



Introduction Mesh Partitioning Data Locality Conclusions

A Halo-Aware Partitioning Approach

1: procedure HALOAWAREPARTITION(G)
2: Construct sparse matrix A representing G
3: Compute A2, · · ·Al, and A1···l =

∑l Ai

4: Construct hypergraphH0 for A1···l

5: while not converged do
6: Compute partitioning Pi ofHi; construct halos for each partition in Pi

7: Compute cost prediction for each partition k
8: Assign weights to the cells, distributing halo cost equally among partition cells
9: Compute total partition weights Wk

10: Compute imbalance measure, fi =
(

1− mink(Wk)
maxk(Wk)

)
11: Accept Pi with probability m = min

(
1, e

(
fi−1−fi

)
/2

)
12: if Pi is accepted then
13: UpdateHi with the new cell weights to constructH(i+1)

14: else
15: Reject Pi by setting Pi = Pi−1 and fi = fi−1

16: end if
17: end while
18: Output last accepted partitioning as the result
19: end procedure



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

m
u
n
ic

a
ti

o
n
 T

im
e
 [

s]
Original



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

m
u
n
ic

a
ti

o
n
 T

im
e
 [

s]
Original



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

m
u
n
ic

a
ti

o
n
 T

im
e
 [

s]
Original
Hypergraph



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

m
u
n
ic

a
ti

o
n
 T

im
e
 [

s]
Original
Hypergraph
Halo-aware



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

m
u
n
ic

a
ti

o
n
 T

im
e
 [

s]
Original
Hypergraph
Halo-aware
Depth-Halo-aware



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

m
u
n
ic

a
ti

o
n
 T

im
e
 [

s]
Original
Hypergraph
Halo-aware
Depth-Halo-aware



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

s]
Original



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

s]
Original
Hypergraph



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

s]
Original
Hypergraph
Halo-aware



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

s]
Original
Hypergraph
Halo-aware
Depth-Halo-aware



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

105
T
im

e
 [

s]
Original total



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

105
T
im

e
 [

s]
Original total
Hypergraph total



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

105
T
im

e
 [

s]
Original total
Hypergraph total
Halo-aware total



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

105
T
im

e
 [

s]
Original total
Hypergraph total
Halo-aware total
Depth-Halo-aware total



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Better Partitioning

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

105
T
im

e
 [

s]
Original total
Hypergraph total
Halo-aware total
Depth-Halo-aware total



Introduction Mesh Partitioning Data Locality Conclusions

Unstructured data organization ...



Introduction Mesh Partitioning Data Locality Conclusions

Data Locality with Data Ordering

A complete random organization Original/Reverse Cuthill-McKee



Introduction Mesh Partitioning Data Locality Conclusions

Ordering Unstructured Data with Space Filling Curves

Hilbert SFC Morton/Z-SFC



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Data Re-ordering: Cache Usage

96 192 384 768
1536

3072
6144

Num. Processes

108

109

1010

1011

1012

N
u
m

. 
M

is
se

s

L3 - Random

L3 - Original

L3 - Morton

L3 - Hilbert

TLB - Random

TLB - Original

TLB - Morton

TLB - Hilbert



Introduction Mesh Partitioning Data Locality Conclusions

Performance Improvements with Data Re-ordering

96 192 384 768
1536

3072
6144

Num. Processes

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

S
p
e
e
d
u
p
 R

e
la

ti
v
e
 t

o
 O

ri
g
in

a
l

Random

Original

Morton

Hilbert



Introduction Mesh Partitioning Data Locality Conclusions

End Notes

• Overall improved performance by up to 2.2×.

• Improved scaling.

• Enable increased resolution and throughput of high resolution meshes.

• Achieve high SYPD (Simulated Year Per Day.)

• Enable higher accuracy with high resolution.

• Partitioning and ordering methods are generic to apply to other
unstructured meshes.

• Collaborations ... ?



Introduction Mesh Partitioning Data Locality Conclusions

Acknowledgements

• Thanks to Aydin Buluc and Umit Catalyurek for discussions on mesh
partitioning.

• Authors from LBNL were supported by DOE ASCR under contract
number DE-AC02-05CH11231.

• Authors from University of Oregon were supported by DOE SciDAC
grant DE-SC0006723.

• D. Jacobsen was supported by DOE Office of BER.

• Resources at NERSC were used, supported by DOE Office of Science
under Contract No. DE-AC02-05CH11231.



Introduction Mesh Partitioning Data Locality Conclusions

Thank you!


	Introduction
	Author List
	Introduction
	MPAS-Ocean

	Mesh Partitioning
	Load Imbalance
	Load Imbalance
	Mesh Partitioning
	Cost Modeling
	Performance
	Performance
	Performance

	Data Locality
	Data Locality
	Space Filling Curves
	Performance
	Performance

	Conclusions
	Conclusions
	Acknowledgements
	Thanks


