Parallel Performance Optimizations on Unstructured Mesh-Based Simulations

Abhinav Sarje asarje @ lbl.gov

02 June 2015 International Conference on Computational Science 2015 Reykjavík Iceland

▲口> ▲圖> ▲理> ▲理> 三語…

Abhinav Sarje Sukhyun Song Douglas Jacobsen Kevin Huck Jeffrey Hollingsworth Allen Malony Samuel Willaims Leonid Oliker

Lawrence Berkeley National Laboratory University of Maryland College Park Los Alamos National Laboratory University of Oregon University of Maryland College Park University of Oregon Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

Introduction	Mesh Partitioning	Data Locality	Conclusions
00000	00000000000000000	0000	000

Introduction

Introd

- Structured and unstructured meshes in real-world simulations. ٠
- Parallel applications Not straightforward to partition unstructured

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~)

roduction	Mesh Partitioning	Data Locality	Conclusions
0000	00000000000000000	0000	000

Introduction

In

- Structured and unstructured meshes in real-world simulations.
- Parallel applications Not straightforward to partition unstructured meshes.
- Load balance directly related to mesh partitioning quality.
- Data exchange between processes through partition *ghost* or *halo* regions.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Two key parallelization challenges:
 - Load imbalance across processes mesh partitioning.
 - Unstructured data access patterns data organization.

000000000000000000000000000000000000000	
	000

Introduction

- Structured and unstructured meshes in real-world simulations.
- Parallel applications Not straightforward to partition unstructured meshes.
- Load balance directly related to mesh partitioning quality.
- Data exchange between processes through partition *ghost* or *halo* regions.

- Two key parallelization challenges:
 - Load imbalance across processes mesh partitioning.
 - Unstructured data access patterns data organization.

Introduction	Mesh Partitioning	Data Locality	Conclusions
00000	00000000000000000	0000	000

Ocean Modeling with MPAS-Ocean

- MPAS = Model for Prediction Across Scales. [Los Alamos]
- A multiscale method.
- Voronoi tessellation-based variable resolution mesh (SCVT).

Data Locality 0000 Conclusions 000

Ocean Modeling with MPAS-Ocean

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Data Locality 0000

イロト 不得 トイヨト イヨト ニヨー

Ocean Modeling with MPAS-Ocean

- Major advantages of such unstructured mesh:
 - Offers variable resolutions. User defined density functions.
 - Focus on area of interest with high resolution.
 - Avoid unnecessary high-resolution computations in unwanted areas.
 - Smooth resolution transition regions.
 - Locally homogeneous/quasi-uniform coverage of spherical surfaces.
 - Preserve symmetry/isotropic nature of a spherical surface.
 - Naturally allows for discontinuities in the mesh.
 - Straightforward distortion-free mapping to 2D.
- A vertical quantization adds 3rd dimension, representing ocean depths.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Ocean Modeling with MPAS-Ocean

- Major advantages of such unstructured mesh:
 - Offers variable resolutions. User defined density functions.
 - Focus on area of interest with high resolution.
 - Avoid unnecessary high-resolution computations in unwanted areas.
 - Smooth resolution transition regions.
 - Locally homogeneous/quasi-uniform coverage of spherical surfaces.
 - Preserve symmetry/isotropic nature of a spherical surface.
 - Naturally allows for discontinuities in the mesh.
 - Straightforward distortion-free mapping to 2D.
- A vertical quantization adds 3rd dimension, representing ocean depths.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Ocean Modeling with MPAS-Ocean

- Major advantages of such unstructured mesh:
 - Offers variable resolutions. User defined density functions.
 - Focus on area of interest with high resolution.
 - Avoid unnecessary high-resolution computations in unwanted areas.
 - Smooth resolution transition regions.
 - Locally homogeneous/quasi-uniform coverage of spherical surfaces.
 - Preserve symmetry/isotropic nature of a spherical surface.
 - Naturally allows for discontinuities in the mesh.
 - Straightforward distortion-free mapping to 2D.

• A vertical quantization adds 3rd dimension, representing ocean depths.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Ocean Modeling with MPAS-Ocean

- Major advantages of such unstructured mesh:
 - Offers variable resolutions. User defined density functions.
 - Focus on area of interest with high resolution.
 - Avoid unnecessary high-resolution computations in unwanted areas.
 - Smooth resolution transition regions.
 - Locally homogeneous/quasi-uniform coverage of spherical surfaces.
 - Preserve symmetry/isotropic nature of a spherical surface.
 - Naturally allows for discontinuities in the mesh.
 - Straightforward distortion-free mapping to 2D.
- A vertical quantization adds 3rd dimension, representing ocean depths.

Data Locality

Conclusions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Ocean Modeling with MPAS-Ocean

SCVT Cells and computed quantities.

Data Locality 0000 Conclusions 000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Unstructured mesh partitioning ...

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

• Using a straight-forward graph partitioner, such as Metis.

Computational imbalance across partitions/processes

(日)

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

 High computation-communication imbalance across processes in a run with naive partitioning:

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

• Need for a better mesh partitioner.

- *Hypergraph* representations are known to model communication more accurately than graphs.
- Available partitioners generate a partitioning by,
 - balancing the number of cells (or weights) across partitions, and
 - 2 minimizing the total number of edge cuts.
- Problem:
 - Cost due to halo cells is not considered.
 - Unstructured nature makes halo region costs highly variable across partitions.
 - Deep halo regions magnify the effects, making them an important factor for load balancing.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

- Need for a better mesh partitioner.
- *Hypergraph* representations are known to model communication more accurately than graphs.
- Available partitioners generate a partitioning by,
 - balancing the number of cells (or weights) across partitions, and
 - 2 minimizing the total number of edge cuts.
- Problem:
 - Cost due to halo cells is not considered.
 - Unstructured nature makes halo region costs highly variable across partitions.
 - *Deep* halo regions magnify the effects, making them an important factor for load balancing.

- Need for a better mesh partitioner.
- *Hypergraph* representations are known to model communication more accurately than graphs.
- Available partitioners generate a partitioning by,
 - balancing the number of cells (or weights) across partitions, and
 - minimizing the total number of edge cuts.
- Problem:
 - Cost due to halo cells is not considered.
 - Unstructured nature makes halo region costs highly variable across partitions.
 - *Deep* halo regions magnify the effects, making them an important factor for load balancing.

- Need for a better mesh partitioner.
- *Hypergraph* representations are known to model communication more accurately than graphs.
- Available partitioners generate a partitioning by,
 - 1 balancing the number of cells (or weights) across partitions, and
 - 2 minimizing the total number of edge cuts.
- Problem:
 - Cost due to halo cells is not considered.
 - Unstructured nature makes halo region costs highly variable across partitions.
 - *Deep* halo regions magnify the effects, making them an important factor for load balancing.

Data Locality 0000

Mesh Partitioning and Load Imbalance

• Input mesh ...

Data Locality 0000

Mesh Partitioning and Load Imbalance

• A partition ...

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 = のへで

Introduction	
000000	

Data Locality 0000

Mesh Partitioning and Load Imbalance

• 1-Halo region ...

Introduction	
000000	

Data Locality 0000

Mesh Partitioning and Load Imbalance

• 2-Halo region ...

Introduction	
000000	

Data Locality 0000

Mesh Partitioning and Load Imbalance

• 3-Halo region ...

Partitioning-Based Cost Modeling

In a partitioning, for a partition *k*,

computation cost,
$$C_{\alpha} = \frac{1}{F(p)} \left(\sum_{i}^{i \in N_k} w_i + a \sum_{i}^{i \in H_k} w_i \right)$$

communication cost, $C_{\beta} = \frac{1}{F(p)} \frac{h_k}{b_k} + \left(\max_{i \in [1,p]} (c_i) - c_k \right)$

ヘロト 人間 ト 人 ヨト 人 ヨトー

€ 990

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

Partitioning-Based Cost Modeling

In a partitioning, for a partition *k*,

computation cost,
$$C_{\alpha} = \frac{1}{F(p)} \left(\sum_{i}^{i \in N_k} w_i + a \sum_{i}^{i \in H_k} w_i \right)$$

communication cost, $C_{\beta} = \frac{1}{F(\alpha)} \frac{h_k}{h_k} + \left(\max_{i \in I \times \alpha} (c_i) - c_k \right)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Partitioning-Based Cost Modeling

In a partitioning, for a partition *k*,

computation cost,
$$C_{\alpha} = \frac{1}{F(p)} \left(\sum_{i}^{i \in N_k} w_i + a \sum_{i}^{i \in H_k} w_i \right)$$

communication cost, $C_{\beta} = \frac{1}{F(p)} \frac{h_k}{b_k} + \left(\max_{i \in [1,p]} (c_i) - c_k \right)$

Data Locality 0000

ヘロマス 雪マス 切り 人口 マン

Э

Conclusions 000

Partitioning-Based Cost Modeling

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

- 1: procedure HALOAWAREPARTITION(G)
- 2: Construct sparse matrix A representing G
- 3: Compute $A^2, \cdots A^l$, and $A_{1\cdots l} = \sum^l A^l$
- 4: Construct hypergraph \mathcal{H}_0 for $A_{1...l}$
- 5: while not converged do
- 6: Compute partitioning P_i of \mathcal{H}_i ; construct halos for each partition in P_i
- 7: Compute cost prediction for each partition *k*
- 8: Assign weights to the cells, distributing halo cost equally among partition cells

9: Compute total partition weights *W_k*

10: Compute imbalance measure,
$$f_i = \left(1 - \frac{\min_k(W_k)}{\max_k(W_k)}\right)$$

11: Accept
$$P_i$$
 with probability $m = \min \left(1, e^{\int_{t-1}^{t-1} dt} \right)$

12: **if** *P_i* is accepted **then**

13: Update \mathcal{H}_i with the new cell weights to construct $\mathcal{H}_{(i+1)}$

14: else

15: Reject
$$P_i$$
 by setting $P_i = P_{i-1}$ and $f_i = f_{i-1}$

- 16: end if
- 17: end while
- 18: Output last accepted partitioning as the result
- 19: end procedure

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

- 1: procedure HALOAWAREPARTITION(\mathcal{G})
- 2: Construct sparse matrix A representing G
- 3: Compute $A^2, \dots A^l$, and $A_{1\dots l} = \sum^l A^l$
- 4: Construct hypergraph \mathcal{H}_0 for $A_{1...l}$
- 5: while not converged do
- 6: Compute partitioning P_i of \mathcal{H}_i ; construct halos for each partition in P_i
- 7: Compute cost prediction for each partition *k*
- 8: Assign weights to the cells, distributing halo cost equally among partition cells

9: Compute total partition weights *W*_k

10: Compute imbalance measure,
$$f_i = \left(1 - \frac{\min_k(W_k)}{\max_k(W_k)}\right)$$

11: Accept
$$P_i$$
 with probability $m = \min\left(1, e^{\left(f_{i-1} - f_i\right)}\right)$

12: **if** *P_i* is accepted **then**

Update \mathcal{H}_i with the new cell weights to construct $\mathcal{H}_{(i+1)}$

14: els

15: Reject
$$P_i$$
 by setting $P_i = P_{i-1}$ and $f_i = f_{i-1}$

- 16: end if
- 17: end while
- 18: Output last accepted partitioning as the result
- 19: end procedure

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

- 1: procedure HALOAWAREPARTITION(\mathcal{G})
- 2: Construct sparse matrix A representing G
- 3: Compute $A^2, \dots A^l$, and $A_{1\dots l} = \sum^l A^l$
- 4: Construct hypergraph \mathcal{H}_0 for $A_{1...l}$
- 5: while not converged do

6: Compute partitioning P_i of \mathcal{H}_i ; construct halos for each partition in P_i

7: Compute cost prediction for each partition *k*

8: Assign weights to the cells, distributing halo cost equally among partition cells

イロト 不得 トイヨト イヨト

э

9: Compute total partition weights W₁

10: Compute imbalance measure,
$$f_i = \left(1 - \frac{\min_k(W_k)}{\max_k(W_k)}\right)$$

11: Accept
$$P_i$$
 with probability $m = \min\left(1, e^{\left(f_{i-1} - f_i\right)}\right)$

12: **if** P_i is accepted **then**

Update \mathcal{H}_i with the new cell weights to construct $\mathcal{H}_{(i+1)}$

14: els

5: Reject
$$P_i$$
 by setting $P_i = P_{i-1}$ and $f_i = f_{i-1}$

l6: end if

17: end while

- 18: Output last accepted partitioning as the result
- 19: end procedure

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

- 1: procedure HALOAWAREPARTITION(G)
- 2: Construct sparse matrix A representing G
- 3: Compute $A^2, \dots A^l$, and $A_{1\dots l} = \sum^l A^l$
- 4: Construct hypergraph \mathcal{H}_0 for $A_{1...l}$
- 5: while not converged do
- 6: Compute partitioning P_i of \mathcal{H}_i ; construct halos for each partition in P_i
- 7: Compute cost prediction for each partition k
- 8: Assign weights to the cells, distributing halo cost equally among partition cells

イロト 不得 トイヨト イヨト ニヨー

- 9: Compute total partition weights *W_k*
- 10: Compute imbalance measure, $f_i = \left(1 \frac{\min_k(W_k)}{\max_k(W_k)}\right)$

11: Accept
$$P_i$$
 with probability $m = \min \left(1, e^{\int_{i-1}^{t} dt} \right)$

12: **if** P_i is accepted **then**

: Update \mathcal{H}_i with the new cell weights to construct $\mathcal{H}_{(i+1)}$

14: els

15: Reject
$$P_i$$
 by setting $P_i = P_{i-1}$ and $f_i = f_{i-1}$

- l6: end if
- 17: end while
- 18: Output last accepted partitioning as the result
- 19: end procedure

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

- 1: procedure HALOAWAREPARTITION(G)
- 2: Construct sparse matrix A representing G
- 3: Compute $A^2, \dots A^l$, and $A_{1\dots l} = \sum^l A^l$
- 4: Construct hypergraph \mathcal{H}_0 for $A_{1...l}$
- 5: while not converged do
- 6: Compute partitioning P_i of \mathcal{H}_i ; construct halos for each partition in P_i
- 7: Compute cost prediction for each partition k
- 8: Assign weights to the cells, distributing halo cost equally among partition cells

(日) (日) (日) (日) (日) (日) (日) (日)

9: Compute total partition weights *W_k*

10: Compute imbalance measure,
$$f_i = \left(1 - \frac{\min_k(W_k)}{\max_k(W_k)}\right)$$

11: Accept
$$P_i$$
 with probability $m = \min\left(1, e^{\binom{j_i-1-j_i}{j_i}}\right)^{j_i}$

- 12: **if** P_i is accepted **then**
- 13: Update \mathcal{H}_i with the new cell weights to construct $\mathcal{H}_{(i+1)}$
- 14: else
- 15: Reject P_i by setting $P_i = P_{i-1}$ and $f_i = f_{i-1}$
- 16: end if
- 17: end while
- 18: Output last accepted partitioning as the result
- 19: end procedure

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

- 1: procedure HALOAWAREPARTITION(G)
- 2: Construct sparse matrix A representing G
- 3: Compute $A^2, \dots A^l$, and $A_{1\dots l} = \sum^l A^l$
- 4: Construct hypergraph \mathcal{H}_0 for $A_{1...l}$
- 5: while not converged do
- 6: Compute partitioning P_i of \mathcal{H}_i ; construct halos for each partition in P_i
- 7: Compute cost prediction for each partition k
- 8: Assign weights to the cells, distributing halo cost equally among partition cells

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

9: Compute total partition weights *W_k*

10: Compute imbalance measure,
$$f_i = \left(1 - \frac{\min_k(W_k)}{\max_k(W_k)}\right)$$

11: Accept
$$P_i$$
 with probability $m = \min\left(1, e^{\binom{j_i-1-j_i}{j}}\right)^{j_i}$

- 12: **if** P_i is accepted **then**
- 13: Update \mathcal{H}_i with the new cell weights to construct $\mathcal{H}_{(i+1)}$
- 14: else

15: Reject
$$P_i$$
 by setting $P_i = P_{i-1}$ and $f_i = f_{i-1}$

- 16: end if
- 17: end while
- 18: Output last accepted partitioning as the result
- 19: end procedure

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と ○ 免 ○ ○

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

◆ロト→掃ト→注下→注下→ 注 の々で

00000 000000 00000 000000 0000 0000	Introduction	Mesh Partitioning	Data Locality	Conclusions
	000000	000000000000000000000000000000000000000	0000	000

◆ロト→■ト→国ト→国ト→国・ ○○○

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

◆ロト→掃ト→注下→注下→ 注 の々で

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

イロト イ理ト イヨト イヨト

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000	0000	000

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000	0000	000

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - の々で

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000	0000	000

э

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

ヘロト ヘ躍ト ヘヨト ヘヨト

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

э

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	000000000000000000000000000000000000000	0000	000

000000 00000000000000000 0000 000 000	Introduction	Mesh Partitioning	Data Locality	Conclusions
	000000	000000000000000000000000000000000000000	0000	000

ヘロト ヘ躍ト ヘヨト ヘヨト

Introduction Me	sh raruuoning	Data Locality	Conclusions
000000 00	000000000000000000000000000000000000000	0000	000

ヘロト 人間 とくほ とくほとう

Introduction	lesn Partitioning	Data Locality	Conclusions
000000 0	••••••••••	0000	000

ヘロト 人間 とくほ とくほとう

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Unstructured data organization ...

Data Locality •000 Conclusions 000

Data Locality with Data Ordering

A complete random organization

Original/Reverse Cuthill-McKee

▲ロト▲母ト▲目ト▲目ト 目 のへで

Data Locality ○●○○

ヘロト 人間 とくほ とくほとう

Conclusions 000

Ordering Unstructured Data with Space Filling Curves

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	00000000000000000	0000	000

Performance Improvements with Data Re-ordering: Cache Usage

イロト イ理ト イヨト イヨト

э

 Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	00000000000000000	0000	000

Performance Improvements with Data Re-ordering

ntroduction	Mesh Partitioning	Data Locality	Conclusions
00000	00000000000000000	0000	•00

End Notes

- Overall improved performance by up to 2.2×.
- Improved scaling.
- Enable increased resolution and throughput of high resolution meshes.

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~)

- Achieve high SYPD (Simulated Year Per Day.)
- Enable higher accuracy with high resolution.
- Partitioning and ordering methods are generic to apply to other unstructured meshes.
- Collaborations ... ?

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	00000000000000000	0000	000

Acknowledgements

- Thanks to Aydin Buluc and Umit Catalyurek for discussions on mesh partitioning.
- Authors from LBNL were supported by DOE ASCR under contract number DE-AC02-05CH11231.
- Authors from University of Oregon were supported by DOE SciDAC grant DE-SC0006723.
- D. Jacobsen was supported by DOE Office of BER.
- Resources at NERSC were used, supported by DOE Office of Science under Contract No. DE-AC02-05CH11231.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Introduction	Mesh Partitioning	Data Locality	Conclusions
000000	00000000000000000	0000	000

Thank you!

