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Sparse Matrix-Matrix Multiplication (SpGEMM)

: : o0 X ’ : o=..’ o:o
A B C

0 A, B and C are sparse.
0O Why sparse matrix-matrix multiplication?
— Algebraic multigrid (AMG),
— Graph clustering,
— Betweenness centrality,
— Graph contraction,
— Subgraph extraction
— Quantum chemistry
— Triangle counting/enumeration
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Outline of the talk

Q3D SpGEMM [A. Azad et al. Exploiting multiple levels of
parallelism 1n sparse matrix-matrix multiplication. arXiv preprint
arXiv:1510.00844. ]

— Scalable shared-memory SpGEMM
— Distributed-memory 3D SpGEMM

0 Parallel triangle counting and enumeration using

SpGEMM [A.Azad, A. Buluc, J. Gilbert. Parallel Triangle Counting
and Enumeration using Matrix Algebra. IPDPS Workshops, 2015]

— Masked SpGEMM to reduce communication
— 1D parallel implementation
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Shared-Memory SpGEMM
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 Heap-based column-by-column algorithm [Buluc and Gilbert, 2008]

« Easy to parallelize in shared-memory via multithreading

 Memory efficient and scalable (i.e. temporary per-thread
storage 1s asymptotically negligible)
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Performance of Shared-Memory SpGEMM

Faster than Intel’s MKL (mkl_csrmultcsr)
(when we keep output sorted by indices)

4 . = 64 Y H H
[ MKL aok e [2=MmKkL |
: :| =0— HeapSpGEMM

—O— HeapSpGEMM
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(a) cagel2 x cagel2 (b) Scale 16 G500 x G500

A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, S. Williams. Exploiting multiple levels of
parallelism in sparse matrix-matrix multiplication. arXiv preprint arXiv:1510.00844.
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Variants of Distributed-Memory SpGEMM

Matrix multiplication:  V(@j)enxn,  CGj) =3, AGLk)B(k)),

Sparsity independent algorithms:

_ assigning grid-points to processors is
independent of sparsity structure.

e [Ballard et al., SPAA 2013]

1D algorithms 2D algorithms 3D algorithms
Communicate A or B Communicate Aand B Communicate A, B and C
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2D Algorithm: Sparse SUMMA

\P X+A/P Processor Grid Cij += LocalSpGEMM(Arecv, Brec)
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« 2D Sparse SUMMA (Scalable Universal Matrix Multiplication Algorithm)
was the previous state of the art. It becomes communication
bound on high concurrency [Buluc & Gilbert, 2012]
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3D Parallel So GEMM in a Nutshell
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A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, S. Williams. Exploiting multiple levels of
parallelism in sparse matrix-matrix multiplication. arXiv preprint arXiv:1510.00844.
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3D Parallel So GEMM in a Nutshell
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Communication Cost

Broadcast ~
Communication (ro:v(;iolctflrim) Most expensive step
#broadcasts targeted to each process A 4
(synchronization points / SUMMA stages) Vplc

layers
threads

#processes participating in each broadcasts
(communicator size) Jplc

\ 4
Total data received in all broadcasts (process) | nnz/+/pc \

n/ Jpe e S, Threading decreases |
A 7 y Network card contention
W g\ X vj. = -~ > /
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< Yy 4 Processor Grid
A 1 %\. X = r» > y 4

A B cintermediate cﬁnal
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How do 3D algorithms gain performance?

On 8,192 cores of Titan when multiplying two scale 26 G500 matrices.

10 - r
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For fixed #layers (c) [ ] AlltoAll
8 Increased #threads (t) |l Local Multiply |
reduces runtime [ IMerge Layer
B Merge Fiber
S 6 I:I Other
(D)
2
()
-
= 4
2
0 c=1 Cc= c=8 c=16
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How do 3D algorithms gain performance?

On 8,192 cores of Titan when multiplying two scale 26 G500 matrices.
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3D SpGEMM performance (matrix squaring)

Squaring nlpkkt160 on Edison: 1.2 billion nonzeros in the A?

nlpkkt160 x nlpkkt160 (on Edison)

2D (non-threaded) _.-~"16
is the previous
state-of-the art
5 4
8 2D
GEJ .#threac_is
= Increasing
o =" |[—2p =)
3D (threaded) — first 1H —O— 2D (t=3) D
—_— =
presented here — beats e gg (=6 #layers &
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it by 8X at large — gg Ezfg t":’; increasing
concurrencies —— 3D (0=8. 1=6)
—— 3D (c=16, t=6) : : _
0.25 L L L L
64 256 1024 4096 16384

Number of Cores
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3D SpGEMM performance (matrix squaring)

3D SpGEMM with ¢c=16, t=6 on Edison

32

Time (sec)
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3D SpGEMM performance (AMG coarsening)

* Galerkin triple product in Algebraic Multigrid (AMG)
e A, ..sc = RTAg . R where R is the restriction matrix
* R constructed via distance-2 maximal independent set (MIS)

R'A with NaluR3 (on Edison)
16 L] L] L]

3D is
16x faster
than 2D

Time (sec)

v

0.25

51 2 1 024 2048 4096 8192 16384 32768
Number of Cores

Only showing the first product (RTA)
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3D SpGEMM performance (AMG coarsening)

Comparing performance with EpetraExt package of Trilinos

AR computation with nlpkkt160 on Edison

64 T T T
: —O— EpetraExt
_ _ - |=a—2D (t=1) Notes:
: : 5 - |——3D (c=8, t=6
16f A N I TR LT NS * HKpetralkxt runs up to 3x

faster when computing AR,
3D 1s less sensitive

1D decomposition used by
: : : : 5 EpetraExt performs better
L B R o R on matrices with good

l, I separators.
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Application of SpGEMM
Triangle Counting/Enumeration

[A.Azad, A. Buluc, J. Gilbert. Parallel Triangle Counting and
Enumeration using Matrix Algebra. IPDPS Workshops, 2015]
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Counting Triangles

Clustering coefficient:

 Pr (wedge i-j-k makes a triangle with edge i-k)
« 3* #triangles / # wedges
e 3%2/13 =0.46 in example

* may want to compute for each vertex |
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Triangle Counting in Matrix Algebra

hiQQ Qhi

Stepl: Count wedges from a pair of vertices (u,v) by
finding a path of length 2. Avoid repetition by
counting wedges with low index of the middle vertex.

2 wedges between vertex 5 and 6

° °
A ° L U Y B
® 6 o e 06 o
o o O [ J o o 11
LI ¢ ! |Z|
e 6 0 O o 6 06 © 1.2
Adjacency matrix A=L+ U @i>lo + lo->hi) L x U = B (wedges)
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Triangle Counting in Matrix Algebra

Step2: Count wedges as triangles if there is an
edge between the selected pair of vertices.

A T B C
oo o0 #triangles
: . ';‘ 1 11* 1 1’1‘ =sum(C)/2
oo o0 o X 1 & 1 3

LxU=B (wedges) A A B=C (closed wedge)

Goal: Can we design a parallel algorithm that communicates less data
exploiting this observation?

SIAM ALA 2015



Masked SpGEMM (1D algorithm)

Special SpGEMM: The nonzero structure of the
product 1s contained in the original adjacency matrix A

Pl P2 P3 P4 Pl P2 P3 P4 Pl P2 P3 P4
1 0o 0 o0 1 e 0o 0 o0
2 @ o 2 o
3@ oo o0 0 3 |@ o000
4@ @@ ® D 4o @@ X O
500 e @ o0 5 o0 o0
6@ o O O 6 |® O o @
7@ o (I 7 @ o o0

A L U

In this example, nonzeros of Li(5,:) (marked with red color) are
not needed by P, because A,(5,:) does not contain any nonzeros.
So, we can mask rows of L by A to avoid communication.
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Benefits and Overheads of Masked SpGEMM

Q Benefit

— Reduce communication by a factor of p/d where d
1s the average degree (good for large p)

Q Overheads

— Increased index traffic for requesting subset of rows/columns.

 Partial remedy: Compress index requests using bloom filters.

— Indexing and packaging the requested rows (SpRef).

« Remedy (ongoing work): data structures/algorithms for faster
SpRef.
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Where do algorithms spend time
with increased concurrency?

CopapersDBLP on NERSC/Edison

(a) Triangle-basic (b) Triangle-masked-bloom
B Comp-Indices OComme-Indices ESpRef EComm-L BESpGEMM B Comp-Indices OComme-Indices ESpRef EComm-L BESpGEMM
100% A 100% A
80% T 80%
60% A 60%
40% - 40% 1
20% A 20% A
\
A
0% - \ 0% -
— ~ < ) © o~ < 0 © ~
— ™ [Co) ~N LN - \
— N [To} \
Number of Cores ‘\ Ptad Number of Cores
\ Pie
v L7

As expected, Masked SpGEMM reduces cost to communicate L

Expensive indexing undermines the advantage
More computation in exchange of communication. [Easy to fix]
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Strong Scaling of Triangle Counting

(a) Triangle-basic (b) Triangle-masked-bloom

256 128
=&—coPapersDBLP =&—coPapersDBLP

128 7 =>mouse-gene
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=#-cagel5

=@—curope_osm

64 | —®-cagel5
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2 21
g 1° ]
n n 8
8
A 4

1 4 16 64 256 1 4 16 64 256
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* Decent scaling to modest number of cores (p=512 in this case)
* Further scaling requires 2D/3D SpGEMM (ongoing/future work)
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What about triangle enumeration?

Data access patterns stay intact, only the scalar operations change !

B(i,k) now captures the set of wedges (indexed solely by their
middle vertex because 1 and k are already known 1implicitly), as
opposed to just the count of wedges
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Future Work

Develop data structures/algorithms for faster SpRef

Reduce the cost of communicating indices by a factor
of t (the number of threads) using in-node
multithreading

Use 3D decomposition/algorithms: The requested
index vectors would be of shorter length.

Implement triangle enumeration via good
serialization support. Larger performance gains are
expected using masked-SpGEMM
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Thanks for your attention
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Supporting slides
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0 How do dense and sparse GEMM compare?
Dense: Sparse:
Lower bounds match algorithms.  Significant gap
Allows extensive data reuse Inherent poor reuse?
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Communication Lower Bound

Lower bound for Erd6s-Rényi(n,d) [Ballard et al., SPAA 2013]:
min dn d’n
JP' P

 Few algorithms achieve this bound

* 1D algorithms do not scale well on high concurrency

« 2D Sparse SUMMA (Scalable Universal Matrix
Multiplication Algorithm) was the previous state of the
art. But, it still becomes communication bound on several
thousands of processors. [Buluc & Gilbert, 2013]

« 3D algorithms avoid communications

Q

(Under some technical assumptions)
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What dominates the runtime of the 3D algorithm?

Broadcast dominates on all concurrency

1.4 . .
Bl Broadcast
M O [ AlltoAll _
B Local Multiply
. __IMerge Layer |
Bl Merge Fiber
S 0al . |Other
L
o
£ 0.6
I_
0.4}
0.2

o

384 864 1,536 3,456 7,776 16,224 31,104
Number of Cores

Squaring nlpkkt160 on Edison
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How do 3D algorithms gain performance?

On 8,192 cores of Titan when multiplying two scale 26 G500 matrices.
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3D SpGEMM performance (AMG coarsening)

* Galerkin triple product in Algebraic Multigrid (AMG)

e A, ..sc = RTAg . R where R is the restriction matrix

* R constructed via distance-2 maximal independent set (MIS)

R'A with NaluR3 (on Edison)

to— Limited scalability of
e 3D in computing RTA

NaluR3
3D is nnz(A) | 474 million

16x faster nnz(A2) | 2.1 billion
than 2D nnz(RTA) | 77 million

Time (sec)

| , , , |V Not enough work on
512 1024 zlgjt?nber?)?%%res 8192 16384 32768 hlgh Concurrency

0.25

Only showing the first product (RTA)
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Communication Reduction in Masked SpGEMM

0 Communication volume per processor for receiving L
— Assume Erdés-Rényi(n,d) graphs and d<p

— Number of rows of L needed by a processor: nd/ P

— Number of columns of L needed by a processor: nd/ P

— Data received per processor: O(nd?/p?)

0 If no output masking is used (“improved 1D”)
— O(nd?/p) [Ballard, Buluc, et al. SPAA 2013]

0O reduction of a factor of p/d over “improved 1D”

— good for large p
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Experimental Evaluation

Graph nnz(A) nnz(B=L-U)| | nnz(A.xB) Triads Triangles
mouse_gene 28,922,190 138,568,561 26,959,674 25,808,000,000| | 3,619,100,000
coPaperDBLP 30,491,458 48,778,658 28,719,580 2,030,500,000 444,095,058
soc-LiveJournall 85,702,474 480,215,359 40,229,140 7,269,500,000 285,730,264
wb-edu 92,472,210 57,151,007 32,441,494 12,204,000,000 254,718,147
cagel5 94,044,692 405,169,608 48,315,646 895,671,340 36,106,416
europe_osm 108,109,320 57,983,978 121,816 66,584,124 61,710
hollywood-2009 112,751,422 1,010,100,000 104,151,320 | | 47,645,000,000| | 4,916,400,000

Higher nnz(B) / nnz(A.*B) ratio => more potential communication
reduction due to masked-spgemm for triangle counting
Ranges between 1.7 and 500

Higher Triads / Triangles ratio => more potential communication
reduction due to masked-spgemm for triangle enumeration
Ranges between 5 and 1000

SIAM ALA 2015



Serial Complexity

A T B C
oo o sum(C)/2
¢ oo 11 11 2 triangles
(I ) 1 23%¢
eo oo 1 29¢ 1

LxU=B (wedges) A A B=C (closed wedge)
Model: Erdds-Rényi(n,d) graphs aka G(n, p=d/n)

Observation: The multiplication B = L- U costs O(d?n) operations.
However, the ultimate matrix C has at most 2dn nonzeros.

Goal: Can we design a parallel algorithm that communicates less data
exploiting this observation?

SIAM ALA 2015



Where do algorithms spend time?

(a) Triangle-basic

On 512 cores of NERSC/Edison

(b) Triangle-masked-bloom

B Comp-Indices OComm-Indices ESpRef EComm-L BESpGEMM

B Comp-Indices OComm-Indices ESpRef B Comm-L ESpGEMM
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o o) 50("\'\ e

80% time spent in communicating L

And local multiplication.
(increased communication)
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70% time spent 1n communicating
index requests and SpRef
(expensive indexing)
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