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Observations of the 2nd order HPGMG-FV 

!  ‘Order’ describes the relationship between grid spacing and error. 
!  <=v0.2 implemented a 2nd order Finite Volume method. 
!  We found this method did not sufficiently stress HPC systems… 

•  The 7pt operator and interpolation routines were heavily memory-bound on 
most machines (STREAM-proxy on a single node) 

•  The Chebyshev smoother did not stress most compilers 
•  On DDR-based architectures, the memory capacity:bandwidth balance allowed 

for huge problem sizes that hid network communication. 
•  The simple 1st order boundary conditions could easily be fused with the 

operator and thus sidestepped the desire to benchmark irregular 
parallelism and memory access. 
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4th order <∇•β∇u> 

!  Finite volume method expresses the average value of an 
operator over a cell’s volume (<∇•β∇u>) as an integral over the 
cell’s surface (<β∇u•N>). 

!  For 3D structured grids, each h3 cell has 6 faces and we must 
calculate this term on each face…. 
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Lu = <∇•β∇u> =  + + + + + 



4th Order Operator <∇•β∇u> 
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!  For 4th order, additional 
terms are required… 

≈ 

+ + 

!  25-point stencil… 
•  18 x 4-point stencils 
•  4x the floating-point operations 
•  no extra DRAM data movement 
•  3x the neighbors (faces+edges) 
•  2-deep ghost zones 

!  Hence, in 3D, 6 such terms 
form a 7-point variable-
coefficient stencil. 

≈ 

!  To 2nd order, we can 
approximate each of these 
flux terms as a 2-point 
weighted stencil… 



Choice of Smoother 

!  Whereas Chebyhev and Jacobi are easily SIMDized by most 
compilers today, we wanted a smoother to challenge the 
compiler/ISA without sacrificing parallelism. 

!  Out-of-place Gauss Seidel Red Black (GSRB) iteration… 
•  Ping pong between two arrays (u and unew) like Jacobi 
•  Unlike Jacobi, only apply the stencil if the cell and iteration color match. 

 Otherwise simply copy the old value to the new array. 
•  Generally performs well mathematically and is insensitive to parallelism implementation 

choices (reproducible when threaded/vectorized) 
•  Reference implementation includes stride-2, conditional, and vector variants 
•  Two-pass wavefront (calculate fluxes, smooth) implementation is viable 
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4th Order Boundary Conditions 

!  In HPGMG-FV, as the boundary exists on cell faces, the 
boundary condition must be enforced prior to every application 
of a stencil. 

!  v0.2 and earlier used a simple, linear approximation for the zero 
Dirichlet boundary condition. 
•  It was possible to fuse these boundary condition stencils into the operator itself 
•  As such, one could eliminate both reduced parallelism and irregular memory access as 

one traverses the boundary. 
•  This optimization is atypical of many real codes and undermines the benchmark’s ability to 

evaluate the ISA/architecture/compiler/runtime response to challenging sub problems. 
•  As such, it was eliminated in v0.3 and replaced with a 4th order boundary condition… 
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4th Order Boundary Conditions 

!  The 4th order boundary condition is realized by filling in ghost 
zone values extrapolated using interior values. 

!  Produces three basic families of boundary condition stencils… 
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Faces 

2 ghost zones x 6 symmetries 
= 12 different stencil types 

Edges 

4 ghost zones x 12 symmetries 
= 48 different stencil types 

Corners 

8 ghost zones x 8 symmetries 
= 64 different stencils 
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High Order Interpolation 
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!  For 2nd order, we used … 
•  Piecewise Constant interpolation 

 (1pt stencil) in the V-Cycles 
•  Piecewise Linear interpolation 

 (8pt stencil) for FMG’s F-Cycle. 
!  These operations … 

•  were strongly memory-bound 
•  stressed neither core architecture nor 

the compiler. 

!  For 4th order, we now use … 
•  Quadratic interpolation (27pt stencil) in 

the V-Cycles 
•  Quartic interpolation (125pt stencil) in 

FMG’s F-Cycle 

!  These operations … 
•  Require communication and BCs 
•  Are potentially compute-bound 
•  Exercise architecture and compilers 

 (complex symmetries can be exploited) 



MPI Communication 

!  The operator requires communicating with face and edge 
neighbors 
•  3x the messages per applyOp( ) 
•  2x the message size (2-deep ghost zone) 

!  Moreover, all interpolations now require communication with 
face, edge, and corner neighbors (at least 26 neighbors)  

!  process0 still performs O( log2(P) ) ghost zone exchanges. 
!  As such, at large scale, communication and coarse grid 

operations are relatively expensive. 
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Overall Performance Implications 

!  The new 4th order HPGMG 
should … 
•  perform 4x the FP operations 
•  send 3x the MPI messages 
•  double the MPI message size 
•  move no more data from DRAM 
•  attain 4th order accuracy 
•  attain lower relative residual (~10-9) 
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!  As a result, HPGMG should 
be more sensitive to… 
•  core/cache architectural parameters 
•  compiler optimizations 
•  messaging overheads and network 

latencies 
•  network injection and bisection 

bandwidths 



Mathematical Performance 

!  Examine error and relative residual 
as a function of 1/h (e.g. problem 
dimension of up to 2K3)… 
•  Error is strongly 4th order with 3 GSRB 

presmooths + 3 GSRB postsmooths. 
•  Residual is quickly reduced (<10-9 in one F-

Cycle) 

!  Mathematical properties are 
independent of parallelism choices 
(processes, threads, box size, etc…) 
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Initial 4th Order HPGMG-FV Results 

Notes: 
!  v0.3 was made available only 3 months ago 
!  Mira and Babbage used optimized implementations (alignment intrinsics, loop fission to reduce prefetcher contention, OMP4 SIMD pragmas, …) 
!  Only 22% of SUPER MUC was available 
!  Babbage (KNC): 4 MPI per MIC.  MPI performance was poor.  Network scalability was very poor.  Very Sensitive to coarse grid operations. 
!  Each solve performs approximately 1200 FP operations per DOF. 
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HPGMG 
Rank!

System 
Name! Site!

DOF/s 
(h)!

DOF/s 
(2h)!

DOF/s 
(4h)! MPI!OMP! Acc!

DOF per 
Process!

Top500 
Rank!

1 Mira ALCF 5.00e+11 3.13e+11 1.07e+11 49152  64 0 36M 5 
3.95e+11 2.86e+11 1.07e+11 

2 Edison NERSC 2.96e+11 2.46e+11 1.27e+11 10648  12 0 128M 34 
3 Titan 

(CPU-only) 
OLCF 1.61e+11 8.25e+10 2.37e+10 36864 8 0 48M 2 

4 Hopper NERSC 7.26e+10 5.45e+10 2.74e+10 21952  6 0 16M 62 
5 SuperMUC LRZ 7.25e+10 5.25e+10 2.80e+10 4096 8 0 54M 20 
6 Hazel Hen HLRS 1.82e+10 8.73e+09 2.02e+09 1024 12 0 16M - 
7 SX-ACE HLRS 3.24e+09 1.77e+09 7.51e+08 256 1 0 32M - 
8 Babbage  

(MIC-only) 
NERSC 7.62e+08 3.16e+08 9.93e+07 256 45 0 8M - 
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Rank!
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Name! Site!

DOF/s 
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DOF/s 
(4h)! MPI!OMP! Acc!

DOF per 
Process!

Top500 
Rank!

1 Mira ALCF 5.00e+11 3.13e+11 1.07e+11 49152  64 0 36M 5 
3.95e+11 2.86e+11 1.07e+11 

2 Edison NERSC 2.96e+11 2.46e+11 1.27e+11 10648  12 0 128M 34 
3 Titan 

(CPU-only) 
OLCF 1.61e+11 8.25e+10 2.37e+10 36864 8 0 48M 2 

4 Hopper NERSC 7.26e+10 5.45e+10 2.74e+10 21952  6 0 16M 62 
5 SuperMUC LRZ 7.25e+10 5.25e+10 2.80e+10 4096 8 0 54M 20 
6 Hazel Hen HLRS 1.82e+10 8.73e+09 2.02e+09 1024 12 0 16M - 
7 SX-ACE HLRS 3.24e+09 1.77e+09 7.51e+08 256 1 0 32M - 
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~355 TF/s 
(14% of peak) 

4K nodes is only 
22% of the system 

512 nodes is only 
6% of the system 

~3.9 TF/s 
(24% of peak) 

3 problem sizes (N,N/8,N/64) ~600 TF/s 
(6% of peak) 



Coarse Grid Operations (<83) 

Fine Grid Operations 

FMG Weak Scaling Challenge 
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!  As one weak scales HPGMG-FV, coarse grid operations become an increasingly dominate 
fraction of the execution… 

global: 323 

local: 323 



Agglomeration Stages (local problems are 83) 

Coarse Grid Operations (very limited concurrency, <83) 

Distributed Fine Grid Operations 

FMG Weak Scaling Challenge 
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!  As one weak scales HPGMG-FV, coarse grid operations become an increasingly dominate 
fraction of the execution… 

global: 643 

local: 323 



Agglomeration Stages (local problems are 83) 

Coarse Grid Operations (very limited concurrency, <83) 

Distributed Fine Grid Operations 

FMG Weak Scaling Challenge 
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!  As one weak scales HPGMG-FV, coarse grid operations become an increasingly dominate 
fraction of the execution… 

global: 1283 

local: 323 



Agglomeration Stages (local problems are 83) 

Coarse Grid Operations (very limited concurrency, <83) 

Distributed Fine Grid Operations 

FMG Weak Scaling Challenge 
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!  As one weak scales HPGMG-FV, coarse grid operations become an increasingly dominate 
fraction of the execution… 

!  Petascale machines can have 13+ levels ! 

global: 2563 

local: 323 



Observations on Dynamic Range 
!  Dynamic Range gauges performance as a 

function of problem size (memory/node) 
•  ‘h’ is the largest problem 
•  ‘4h’ is a problem 64x (43) smaller 

!  Titan (Gemini) was found to be particularly 
sensitive to problem size 
•  CPU-only data (apples-to-apples) 

•  7x lower performance at 4h 

!  Conversely, Edison (Aries) saw only a 
 2.3x loss in performance at 4h 

!  Suggests systems are now sensitive to 
network architecture and memory usage 

!  We eagerly await HBM and GDDR-based 
results (lower capacity / more bandwidth) 
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Questions? 
HPGMG-FV is available for download: 

 https://bitbucket.org/hpgmg/hpgmg/ 

Submission Guidelines: 

 http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/submission/ 
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