
Mark Adams (LBNL)
Jed Brown (ANL,CU)

John Shalf (LBNL)
Brian Van Straalen (LBNL)
Erich Strohmaier (LBNL)

Sam Williams (LBNL)

 Birds of a Feather:
High performance geometric multigrid (HPGMG)

proposal for a new Top500 benchmark

SC14 HPGMG BoF – November 19 2014 12:15PM!

2

!  Introduction – HPGMG benchmark (10 min)
!  HPGMG-FV, Sam Williams (10 min)
!  HPGMG-FE, Jed Brown (10 min)
!  Users

•  Mitsuhisa Sato, Tsukuba/RIKEN (5 min)
•  Muthu M Baskaran, Reservoir Labs (5 min)

!  Panel discussion (20 min)
!  Please fill out short survey: hpgmg.org/survey

HPGMG Birds of a Feather Outline

SC14 HPGMG BoF!

3

!  HPL not relevant metric for contemporary computation
•  Applications now exploit structure - O(1) work / word
- HPL poor match contemporary computation (but good some)

!  Addition of new metric – HPCG – Top500 list, demonstrates
•  Recognition of this fact and a willingness to address it
•  HPCG: Conjugant gradient solver with stored matrix
- Stored matrix solves ran at 25% of peak 20+ years (RS6000)
- Now run at < 2% of peak (BGQ)
- This trend likely to continue – very unlikely to reverse

!  High Performance Geometric MultiGrid – HPGMG
•  Matrix free kernels, ~10-20% theoretical peak
- Complements HPL (~90% peak) & HPCG (~1% peak)

•  Global solve with optimal algorithm & fast kernels
- Stresses network – leading cause application lack scalability

Motivation & Proposal for new Top500 metric

SC14 HPGMG BoF!

4

!  High Performance (Full) Geometric MultiGrid
•  Solve of discretized Laplacian logically regular grid
•  Non-iterative, asymptotically exact solver O(N) work complexity
- One FMG iteration reduces error scale discretization err

•  Built-in verification that is oblivious to floating point
!  Metric: Q = number of equations solved per second

•  Map to flops, like HPL’s 2N3 flops/eq (w/o Strassen, etc.)
•  Perhaps functional of Q for dynamic range (pressure network)

!  Unlike HPL, HPGMG can fill whole machine and run in < 1 minute
•  Community wants benchmark to run for few hours
•  Collect auxiliary data (eg, speedup studies) research & analysis

HPGMG Benchmark definition

SC14 HPGMG BoF!

5

Parallel full multigrid – 2 processes

!  Start at coarsest grid, accurate solve
•  usually “local” – little parallelism available

!  Refine grid, split, and populate processes
•  Exponentially increasing parallelism

!  Two types of inter-grid comm: Restriction & Prolongation
!  Intra-grid comm, nearest neighbor comm.
!  FMG: for all levels C to F:

•  new grid, High Order Proj.; V-cycle

SC14 HPGMG BoF!

The classic multigrid V-cycle!

6

Parallel full multigrid – 2 processes

!  Continue to: refine, split, populate (not shown)
•  Build a “fuzzy” tree

!  Continue with local refinement (one more level shown)
!  O(N) work/data algorithm - time & energy efficient
!  O(log2(N)) PRAM complexity, computational depth, …
!  MG hierarchy representative many algorithms

•  Trees efficient global communication

SC14 HPGMG BoF!

The classic multigrid V-cycle!

7

!  Stick to HPL formula: Conceptually simple linear equation solve
•  Conceptually simple but parallel multigrid codes not trivial

!  Proxy application interest to HPC (w/ minimal “complexity budget”)
•  Balanced stress of machine
- Memory system, network, floating point … more later

•  Computational pattern (fuzzy) tree – common HPC paradigm
!  Easy to administer with small staff for 500+ applications

•  Minimal legislation – low order prolongation for example
•  Easy build, few deps: C + MPI + any kernel language/libraries
•  And again a conceptually simple design: solve Ax = b

!  Users optimize: compilers, one primary kernel, secondary
kernels, … communication, …
•  as far down as new programming models (Muthu)

HPGMG design principles

SC14 HPGMG BoF!

8

!  Scale Free specification: Solution independent parallel strategy
•  Do not punish/reward fine/coarse grain parallelism mathematically
•  Do not want to adjudicate “sub domain” nor complicate spec …

!  Architecture Free specification:
•  No “cache”, “main/shared memory”, “CPU”, etc., in spec.

!  Stresses interconnect – global tree w/ non-trivial software kernels
•  Hard global problem implicitly demands good end-to-end eng.
•  “Extensive” metric (Strohmaier): not just sum of node performance

!  Remain relevant indefinitely (optimal algo & arch/scale free spec)
•  Increasingly effective proxy as more apps use efficient algorithms

!  Balanced exercise of machine:
•  Memory system, floating point, network, …
•  But still compute oriented – no I/O (that is another benchmark)

HPGMG design requirements

SC14 HPGMG BoF!

9

!  HPGMG-FV & HPGMG-FV excellent parallel multigrid impls & w/ great kernels
•  Sam and Jed are awesome.
•  Both stress memory bandwidth, network, local caches, and vectorization

!  HPGMG-FV:
•  Long vector length, lower arithmetic intensity
•  ~9.6% peak flop rate on SuperMUC
•  ~60% parallel efficiency on SuperMUC (filling ~2% of memory)
•  MPI+OpenMP optimized, runs well on x86, MIC, SPARC VIIIfx (K) & BGQ
•  Bottleneck: memory bandwidth & network

!  HPGMG-FE:
•  Short vector length, higher arithmetic intensity
•  ~15% peak flop rate on SuperMUC
•  ~78% parallel efficiency on SuperMUC (filling ~2% of memory)
•  More flops, higher flop rates, better scaling: b/c more kernel time
•  Bottleneck: local caches & vectorization

-  Add dynamic scale to metric to stress network more effectively

HPGMG-FE & HPGMG-FV

SC14 HPGMG BoF!

Sam Williams (LBNL)
SWWilliams@lbl.gov

HPGMG-FV
Performance

SC14 HPGMG BoF – November 19 2014 12:15PM!

11

!  Finite Volume Method
•  variable coefficient stencils
•  homogeneous Dirichlet boundary condition via linear interpolation
•  moderate arithmetic intensity ~ 0.25-1.0 flops/byte depending on optimizations

!  Optimized MPI+OpenMP implementation of HPGMG-FV
•  delivers nearly equal performance per core compared to flat MPI
•  Faster coarse-grid solves on multi-/manycore processors
•  Mitigates some non-scalable MPI routines

!  User defined domain decomposition with multiple
subdomains (boxes) per process
•  improves load balancing
•  improves scalability

HPGMG-FV

SC14 HPGMG BoF!

12

!  In this talk, we will examine weak scaling HPGMG-FV
performance on various systems
•  Fix the problem size to 2M DOF/NUMA node* (= 1283)
•  This provides apples-to-apples comparisons as at a given scale, all machines will

solve the same problem in the same way
•  Allows us to quantify HPGMG performance as function of…

-  Processor performance
-  DRAM bandwidth
-  Network topology (Torus, Tree, Dragonfly, etc…)
-  etc…

!  We plot time-to-solution as a function of concurrency
•  Flat curve is perfect scaling (better networks)
•  Lower curves show better performance (faster nodes)

HPGMG-FV

SC14 HPGMG BoF!

*Note, the cost and power per NUMA node will vary by perhaps a factor of 2x!

13

!  Consider Hopper (Cray XE6)
•  single process multigrid solve time is

fast (250ms)
•  performance degrades at scale
•  larger problem sizes mitigate this lack

of scalability

3D Torus (Gemini)

SC14 HPGMG BoF!

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

1# 10# 100# 1,000# 10,000# 100,000#

H
PG

M
G
%F
V
(S
ol
ve
(T
im

e(
(s
ec
on

ds
)(

NUMA(Nodes((2M(DOF/NUMA(Node)(

HPGMG%FV(Solve(Time(Hopper#

14

!  Consider Hopper (Cray XE6)
•  single process multigrid solve time is

fast (250ms)
•  performance degrades at scale
•  larger problem sizes mitigate this lack

of scalability

!  Titan (Cray XK7)
•  use only CPUs (same MPI+OpenMP)
•  delivered 50% better performance per

socket and ~2x better overall
performance

•  However, as Hopper and Titan both
use Gemini, the network impeded
performance at scale

3D Torus (Gemini)

SC14 HPGMG BoF!

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

1# 10# 100# 1,000# 10,000# 100,000#

H
PG

M
G
%F
V
(S
ol
ve
(T
im

e(
(s
ec
on

ds
)(

NUMA(Nodes((2M(DOF/NUMA(Node)(

HPGMG%FV(Solve(Time(
Hopper#

Titan(CPU8only)#

15

!  Mira (Blue Gene/Q)
•  custom processor enabled better

performance per socket
•  custom network (5D torus) enabled

better scalability

Blue Gene/Q

SC14 HPGMG BoF!

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

1# 10# 100# 1,000# 10,000# 100,000#

H
PG

M
G
%F
V
(S
ol
ve
(T
im

e(
(s
ec
on

ds
)(

NUMA(Nodes((2M(DOF/NUMA(Node)(

HPGMG%FV(Solve(Time(
Hopper#

Titan(CPU8only)#

Mira#

16

!  K (Sparc VIIIfx) at RIKEN
•  less flops per proc than BGQ
•  more bandwidth per proc than BGQ

 = deliver better HPGMG-FV
performance per node.

•  TOFU (6D) delivered similar (but
smoother) scalability to BGQ

K (6D Torus/Mesh)

SC14 HPGMG BoF!

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

1# 10# 100# 1,000# 10,000# 100,000#

H
PG

M
G
%F
V
(S
ol
ve
(T
im

e(
(s
ec
on

ds
)(

NUMA(Nodes((2M(DOF/NUMA(Node)(

HPGMG%FV(Solve(Time(Hopper#

Titan(CPU8only)#

Mira#

K#

17

!  Xeon processors (IVB, SNB,
NHM) are common on the
Top500 today

!  Xeon performance defined by
#cores, processor frequency, and
memory frequency

!  Fat Trees saw degraded
scaling beyond 1K sockets

!  XC30/Aries (Dragonfly), K (6D),
and BGQ (5D) continued to
scale well from 1K-48K sockets

Fat Trees and Dragonfly

SC14 HPGMG BoF!

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

1# 10# 100# 1,000# 10,000# 100,000#

H
PG

M
G
%F
V
(S
ol
ve
(T
im

e(
(s
ec
on

ds
)(

NUMA(Nodes((2M(DOF/NUMA(Node)(

HPGMG%FV(Solve(Time(Hopper#

Titan(CPU8only)#

Carver#

Mira#

K#

SuperMUC#

Stampede(CPU8only)#

Edison#

18

!  Thus far, we have completely
ignored accelerators like the
Xeon Phi.

!  Consider Stampede…
•  Xeon (SNB)
•  Fat Tree
•  Scaled reasonably well for this mid-

sized problem
•  Each Stampede node also has a MIC

!  How does HPGMG-FV on MIC
(Xeon Phi) perform/scale?
•  using Stampede for CPU or MIC runs

removes the network as a variable

Accelerators?

SC14 HPGMG BoF!

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

1# 10# 100# 1,000# 10,000# 100,000#

H
PG

M
G
%F
V
(S
ol
ve
(T
im

e(
(s
ec
on

ds
)(

NUMA(Nodes((2M(DOF/NUMA(Node)(

HPGMG%FV(Solve(Time(
Stampede(CPU5only)#

19

!  MIC can run HPGMG-FV without
modification
•  we tuned BLOCKCOPY_TILE_*
•  MIC delivers the best single node

performance of any architecture

MIC Scaling

SC14 HPGMG BoF!

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

1# 10# 100# 1,000# 10,000# 100,000#

H
PG

M
G
%F
V
(S
ol
ve
(T
im

e(
(s
ec
on

ds
)(

NUMA(Nodes((2M(DOF/NUMA(Node)(

HPGMG%FV(Solve(Time(
Stampede(CPU5only)#

Stampede(MIC5only)#

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

1# 10# 100# 1,000# 10,000# 100,000#

H
PG

M
G
%F
V
(S
ol
ve
(T
im

e(
(s
ec
on

ds
)(

NUMA(Nodes((2M(DOF/NUMA(Node)(

HPGMG%FV(Solve(Time(
Stampede(CPU5only)#

Stampede(MIC5only)#

!  However, with 2M DOF/proc, MIC did
not weak scale well…
•  very surprising as MIC used the same

network as the CPU runs

•  Messaging overheads
•  FMG sends O(log2(M*P)) messages
•  nominally overhead is small compared to

data movement.
•  However, overheads for MPI messaging on

MIC can be >10x the overhead on CPUs

20

0.00#

0.10#

0.20#

0.30#

0.40#

0.50#

0.60#

1# 10# 100# 1,000# 10,000# 100,000#

H
PG

M
G
%F
V
(S
ol
ve
(T
im

e(
(s
ec
on

ds
)(

NUMA(Nodes((2M(DOF/NUMA(Node)(

HPGMG%FV(Solve(Time(Stampede(CPU,2M)#

Stampede(MIC,2M)#

Stampede(MIC,16M)#

SC14 HPGMG BoF!

!  When running on 512 MIC’s,
increasing the problem size by 8x
increases performance by 3x

!  Thus, larger problem sizes
helped, but didn’t rectify the issue!

MIC Scaling

21

!  We can increase the problem size on all machines to obtain maximum
performance…

Maximum Performance

SC14 HPGMG BoF!

NOTES…
!  We did not have the opportunity to run on >64K nodes or with >2M DOF on K.
!  FV jobs >2744 nodes failed to launch on SuperMUC.
!  Without a GPU implementation, GPU-accelerated machines were ranked lower.

HPGMG-FV Fraction of DOF per Top500
Rank System Site Eq/s System MPI OMP Process Rank

1 Mira Argonne 7.21E+11 100% 49152 64 16M 5
2 K RIKEN 7.12E+11 73% 64000 8 2M 4
3 Edison NERSC 3.85E+11 100% 131072 1 4M 18
4 Titan (CPU-only) Oak Ridge 2.53E+11 88% 32768 8 16M 2
5 Stampede (CPU-only) TACC 1.49E+11 64% 8192 8 2M 7
6 Hopper NERSC 1.21E+11 86% 21952 6 2M 34
7 Piz Daint (CPU-only) CSCS 1.02E+11 78% 4096 8 18M 6
8 SuperMUC LRZ 7.13E+10 15% 2744 8 16M 12
9 Stampede (MIC-only) TACC 2.16E+10 8% 512 180 16M 7
10 Peregrine (IVB-only) NREL 1.08E+10 18% 512 12 2M -
11 Carver NERSC 1.35E+09 5% 125 4 2M -
12 Babbage (MIC-only) NERSC 8.24E+08 30% 27 180 16M -

Parallelization

22

!  MIC implementations / systems?
•  No data on TH2 (IVB-only and/or MIC-only)
•  No XC30’s w/KNC (are Cray’s overheads as high as Intel’s?)
•  HPGMG-FV should be able to run in Symmetric Mode on Stampede (2CPU+1MIC)
•  One could write an offload version of HPGMG-FV for MIC that would sidestep some

of the current communication inefficiencies.

!  GPU implementations?
•  Will require a CUDA, OpenCL, or OpenACC port
•  Like MIC, HPGMG will challenge all aspects of GPU-accelerated systems.
•  However, there is the opportunity for truly heterogeneous implementations code is

selectively run on either host or GPU

!  Clouds?
•  Amazon EC2, Microsoft Azure, etc…
•  HPGMG would stress Cloud performance far more than other benchmarks.

What’s Missing?

SC14 HPGMG BoF!

23

!  In the last 6 months…
•  We wrote HPGMG-FV from scratch
•  Produced a high-performance, portable MPI+OpenMP implementation
•  Evaluated on a variety of systems (addressing a number of issues)
•  Demonstrated scalability to 64K nodes on K and 48K nodes on Mira

!  In this talk, we examined systems which varied…
•  DRAM bandwidth
•  Processor Performance
•  Network Bandwidth/Topology
•  MPI overheads

!  We demonstrated…
•  Improving any one aspect of the system showed limited performance benefits.
•  In order to significantly improve HPGMG-FV performance, one must improve

multiple/all aspects of the system.

HPGMG-FV

SC14 HPGMG BoF!

Jed Brown (ANL)
jedbrown@mcs.anl.gov

HPGMG-FE
Performance

SC14 HPGMG BoF – November 19 2014 12:15PM!

Acknowledgments

SC14 HPGMG BoF – November 19 2014 12:15PM!

26

!  Mitsuhisa Sato, Takenori Shimosaka (RIKEN)
!  Muthu Baskaran (Reservoir Labs)
!  Bill Barth, Dan Stanzione (TACC)
!  Nick Wright, Katie Antypas, Helen He (NERSC)
!  Ray Grout (NREL)
!  Thomas Schulthess, Benjamin Cumming (CSCS)

Acknowledgments

SC14 HPGMG BoF!

All authors from Lawrence Berkeley National Laboratory were supported by the DOE Office of Advanced Scientific
Computing Research under contract number DE-AC02-05CH11231.
This research used resources of the National Energy Research Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.
This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

27

!  Please visit http://hpgmg.org
!  Fill out the Survey http://hpgmg.org/survey

!  Please download and evaluate HPGMG
!  Send us feedback

!  Remember to sign up and post questions to the mailing
list: HPGMG-Forum@hpgmg.org

Thank You !

SC14 HPGMG BoF!

28

!  Visit us on the web: hpgmg.org
!  Download the code
!  Take the short survey: hpgmg.org/survey
!  Thanks to speakers

-  Mitsuhisa Sato
-  Muthu Baskaran

!  Thank you for your attention
•  the HPGMG team

-  Mark Adams (LBNL)
-  Jed Brown (ANL,CU)
-  John Shalf (LBNL)
-  Brian Van Straalen (LBNL)
-  Erich Strohmaier (LBNL)
-  Sam Williams (LBNL)

Thank you

SC14 HPGMG BoF!

29

Multigrid Tree++ & Nearest Neighbor
Communication Patterns

FMG starts with accurate solve on coarsest grid!
Usually local (ie, no message passing)!

Very little parallelism!
Still an O(N) algorithm with polylog computational depth!

Parallelism exponentially increases !

30

Multigrid Tree++ & Nearest Neighbor
Communication Patterns

Nearest neighbor
intra-grid comm.! Inter grid tree++ comm.!

Refine grid split processes, building tree!
Two types of inter-grid transfers: restriction & prolongation!

 intra-grid communication, nearest neighbor exchange!

31

Multigrid Tree++ & Nearest Neighbor
Communication Patterns

FMG goes back to coarse grid after each new level!
Results in O(log2(N)) computational depth or PRAM complexity!

theoretical minimum is O(log(N))!
O(N) work and memory movement – time & energy efficient!

32

Multigrid Tree++ & Nearest Neighbor
Communication Patterns

Nearest neighbor
intra grid comm.! Inter grid tree++ comm.!

refine & populate procs !

Down, make new grid, up, down, building up a tree …!

33

Multigrid Tree++ & Nearest Neighbor
Communication Patterns

Nearest neighbor
intra grid comm.! Inter grid tree++ comm.!

Populate & refine!

ISC '14, June 26, Leipzig Germany!

Processes fully populated – continue local refinement!

34

Multigrid Tree+ & Nearest Neighbor
Communication Patterns

Nearest neighbor
intra grid comm.! Inter grid tree+ comm.!

Populate & refine!

35

Parallel full multigrid – 1D, 2 processes

!  Start at coarsest grid
•  Exact solve on small grid
•  Usually local
•  Little parallelism

!  Refine grid & populate
processes
•  Exponentially increasing

parallelism
!  Two types of inter-grid

communication
•  Restriction & prolongation

!  Intra-grid communication,
nearest neighbor
exchange

SC14 HPGMG BoF!

36

Parallel full multigrid – 2 processes

!  Continue populating processes
!  Until desired local grid size

•  Continue with local refinement
!  Results in O(N) work/data algo

•  Time & energy efficient
!  O(log2(N)) PRAM complexity

•  computational depth, calls to kernels,
communication steps, …

!  FFT provably better PRAM
•  O(log(N)) PRAM complexity
•  O(log(N)) work – tiny constant
•  Not just asymptotically exact
•  Lots of data movement
•  FFT not like anything else

!  Multigrid hierarchy more
representative many apps & algos

SC14 HPGMG BoF!

37

Parallel full multigrid – 2 processes

SC14 HPGMG BoF!

