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Abstract-Parallel computing systems are becoming
widespread and grow in sophistication. Besides simulation,
rapid system prototyping becomes important in designing and
evaluating their architecture. We present an efficient FPGA-
based platform that we developed and use for research and
experimentation on high speed interprocessor communication,
network interfaces and interconnects. Our platform supports
advanced communication capabilities such as Remote DMA,
Remote Queues, zero-copy data delivery and flexible notification
mechanisms, as well as link bundling for increased performance.
We report on the platform architecture, its design cost,
complexity and performance (latency and throughput). We
also report our experiences from implementing benchmarking
kernels and a user-level benchmark application, and show how
software can take advantage of the provided features, but also
expose the weaknesses of the system.

I. INTRODUCTION

Chip and cluster multiprocessor systems are becoming
widespread, while also growing in sophistication. To achieve
efficiency, they strive for a tight coupling of computation and
communication, and even propose customization of Network
Interface (NI) features to meet particular application domain
demands. Advanced features in the NI influence the design
of, or require support from, the underlying interconnection
network. Thus, our goal is the integrated design of network
interface and interconnect features.

Evaluating an entire system architecture before it is built
is very complex and requires approximations. Simulation and
rapid prototyping are the available tools, each with its pros and
cons. Rapid prototyping is becoming increasingly important,
owing to the availability of large field-programmable gate
arrays (FPGA), which enable the design and operation of
systems that approximate the actual ASIC designs with very
high accuracy compared to simulators. This ability is even
more important as the software-hardware interactions are only
crudely (if at all) modeled in simulators.

In the context of our research and experimentation in high-
speed processor-network interfaces and interconnects we have
developed and FPGA-based prototyping system. Our prototyp-
ing platform consists of multiple (currently 8) workstations
(PC's) linked through our custom interconnect. An FPGA
development board plugs into the PCI-X bus of each PC, and

is configured as its NI. A number of additional FPGA boards
are configured as network switches. The key features of this
platform are:

. Remote Access Primitives: For efficient communication
we use Remote Direct Memory Access (RDMA) and
Remote Queues for short messages.

. Efficient Event Notification: We support flexible arrival
and departure notification mechanisms (selective, collec-
tive interrupts or flag setting).

. High Throughput Network: Each link offers 2.5 Gbits/s
of net throughput per direction. Bundling 4 such physical
links together (byte-by-byte or packet-by-packet) enables
the creation of 10 Gb/s connections.

. Efficient Network Operation: Lossless communication via
credit-based flow control; per-destination virtual output
queues (VOQ) for flow isolation; large valency switch (up
to 16 x 16). Bundling up to 4 switches in parallel offers
up to 160 Gbits/s of full-duplex network throughput.

We are using this prototyping platform to study system-level
aspects of network interface, efficient interprocessor commu-
nication primitives, and switch design, as well as evaluate their
overhead and scalability for future multi-core and multi-node
parallel systems. Colleagues from our Institute have used it for
research in storage area networks [1]. In this paper, we report
on the system architecture and performance, as well as the
design cost and development experience. Our contributions are
twofold: (i) we present the design and implementation details
of an efficient, high-performance communication platform
supporting advanced capabilities. (ii) we describe experiences
and evaluation of the platform with (a) benchmarking kernels
and (b) a user-level, interprocessor communication benchmark
application. The evaluation gives valuable insight about the use
and efficiency of the supported features and reveals bottlenecks
that must be addressed in future systems.

In the rest of the paper, Section II discusses interprocessor
communication primitives and Section III and IV describe
in detail the NI and switch architectures. Section V presents
implementation details, experimental results and discusses the
efficient use of NI features. Finally, Section VI discusses
related work and Section VII summarizes our conclusions.
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Fig. 1. Remote DMA: the receiver allocates separate buffer space per sender

II. EFFICIENT INTERPROCESSOR COMMUNICATION
PRIMITIVES

To support efficient interprocessor communication, we need
a set of simple, yet powerful communication primitives to be
supported in hardware. This set must be as small as possible
in order to reduce implementation cost, and as versatile and
composable as possible, in order to maximize utility for the
software. In our research we focus and base all NI functionality
on just two primitives: Remote DMA and Remote Queues.

A. Remote Direct Memory Access

The Remote Direct Memory Access (RDMA) is the basic
data transfer operation needed to enable zero-copy protocols.
Zero-copy protocols deliver data in-place, so as to avoid the
receiver having to copy them from one memory location to
another. This is an important factor in overhead reduction,
since data copying introduces major costs in latency, memory
throughput, and energy consumption. With RDMA operation,
every network packet carries the destination address where
its data should be written, thus the receiving NI avoids to
place the data in a temporary buffer, and then rely on protocol
software to copy these data to their final location. The basic
challenge in implementing RDMA is dealing with virtual-to-
physical address translation and protection. Fig. 1 illustrates
the RDMA operation, in the presence of multiple parallel
transfers, and when packets of each transfer may be routed
through different paths ("adaptive" or "multipath" routing).
Multiple senders, PI and P2, are sending to the same receiver,
P3, in separate memory areas; otherwise the synchronization
overhead would be excessive.

Multipath (adaptive) routing is desirable because it greatly
improves network performance; however, multipath routing
causes out-of-order delivery - a complex and expensive prob-
lem that many architects want to avoid. RDMA matches
well with multipath routing: each packet specifies its own
destination address, and it is placed in the correct place
regardless of arrival order. The only problem that remains is to
detect when all packets belonging to a same RDMA "session"
have arrived (subsection III-E).

B. Remote Queues

Remote DMA is well suited to pair-wise (one sender,
one receiver) producer-consumer type bulk communication:
the transmitter controls the write pointer, while the receiver
controls the read pointer. RDMA is not optimal for small
transfers: it incurs some overhead to specify the source and
destination addresses, initiate the DMA and then the transfer

Multiple Senders R3
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Fig. 2. Remote Enqueue: multiple senders on a single queue

takes place; notice that a small transfer may be comparable
in size to the RDMA descriptor. Also, if multiple senders
exist, they must each be allocated a separate memory area,
at the cost of additional memory usage, and also increased
cost of monitoring arrival in these multiple memory buffers.
Remote Queues (RQ) [2], [3] offer an effective alternative for
these cases. A remote enqueue operation specifies the ID of
the queue where its data will be placed. The receiving NI
maintains the queue and atomically accepts messages upon
arrival, Fig. 2; this property makes remote queues a valu-
able synchronization primitive. One important use of queues
that we target in our research is to collect notifications for
multiple concurrent transfers. If a receiver is expecting data
from many potential sources via RDMA, and data arrival is
signaled conventionally, by writing a flag at the last address
of each transfer, then the receiver has to circularly poll many
flag locations; this introduces latency and consumes memory
bandwidth 1. Alternatively, if arrival notifications are all placed
in a single queue, the receiver can simply wait for that queue
to become non-empty, and then read from that queue the
information of a transfer that got recently completed.

III. NI PROTOTYPE

Our prototype NI is designed as a 64-bit PCI-X 100
MHz peripheral based on a Xilinx Virtex II Pro FPGA and
uses up to 4 RocketIO multigigabit transceivers [4] for the
network transport. The NI architecture is depicted in Fig. 3.
We briefly describe the main modules of the system in the
paragraphs below and we focus on the components supporting
interprocessor communication in the next subsections.
The PCI-X module fully implements initiator, target and

interrupt functions and exposes memory-mapped regions to
the system. It supports 32 and 64-bit accesses in burst or
non-burst mode to the target interface, while the initiator
provides the DMA capabilities to read/write from/to the host's
memory, supporting 32 and 64-bit wide bursts using physical
PCI addresses.
The Link interface uses the RocketlOs (each capable of 2.5

Gbps) to transmit the packets through high speed serial links.
It injects control delimiters using in-band signaling, transmits
the raw packet data and appends CRC checksums for error
detection. Moreover, it uses a QFC-like credit-based flow-
control [5] protocol to achieve lossless network transmission.

'If notification is done through the use of interrupts there is no need for
this mechanism; however, the cost of per-transfer interrupt is excessive in high
speed communications and they should be avoided whenever possible.
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The DMA Engine is the heart of both the outgoing and in-
coming portion of the NJ which arbitrates between and serves
transfers from (i) Request Queues that generate outgoing traffic
and (ii) Incoming Network Queues that serve all the traffic that
arrives from the network.

A. RDMA Support
Our prototyping approach allows the host processor to post

transfer descriptors for RDMAs to memory-mapped regions
which are exposed by the NJ. We have chosen to support only
RDMA-Write in hardware since it is the basis for RDMA
communication; RDMA-Read can be implemented via system
software using a rendezvous protocol. The descriptors arrive
at NJ's target interface, stored in RDMA Request Queues and
served by the central DMA engine.
A transfer descriptor consists of two 64-bit words which

contain all the information needed to initiate and transmit
an RDMA packet. The first word specifies the PCi-X source
address for the local data and the second word contains:

- a 32-bit remote host destination physical address; where
the data will be transfered to,

- the size of the transfer, in 64-bit words (the maximum
supported size is 512 words or 4096 bytes),

- the ID of the destination host (current support for 128
hosts) and

- an "opcode" field that controls the notification options for
the transfer, as described shortly.

The RDMA Request Queues keep the transfer descriptors for
the pending remote writes and are organized per-destination
to prevent head-of-line blocking and ensure flow isolation. We
currently have 8 queues, one per-destination in the network,
that allow up to 128 pending transfer descriptors each.

Besides decoupling the operation of the DMA engine from
the processor, these request queues support clustering of
requests to the NJ: the host processor can write multiple
transfer requests to the queue (and even write them in non-
sequential order), while holding their processing back until a
speiae"statla" bitg is stitheolastrof the clustefre

requests; at that time, all clustered requests are released to
the DMA engine for processing. One example for such use
would be to prepare a scatter operation before the actual data
are computed, then release the entire scatter when the data
become available.

B. Remote Queues Support

Although RDMA mechanisms could support remote en-
queues, we followed a different approach. An RDMA-write
requires a transfer descriptor to be written in a request queue
and then a local read DMA to be performed. This series of
events entails significant latency overhead since the system
bus is traversed twice. Our approach allows messages to be
written directly into NJs memory - Outgoing Message Queues
- and avoid the double traversal of the system bus.
The Outgoing Message Queues are organized per-

destination and allow the processor to implement low-latency
remote enqueue operations without posting a transfer descrip-
tor. The processor forms the actual short messages (header and
body) into these queues and the central DMA engine forwards
them to the network. Moreover, processor's programmed-JO
can exploit the write-combining buffers and greatly improve
performance by transferring the packet data into bursts. We
currently have 8 queues, one per-destination host in the
network, of 2KByte each, implemented as a circular buffer
in a statically partitioned 16KByte memory.
The outgoing messages contain a QueueID, instead of a

destination address, which should be translated into a phys-
ical address at the receiver. This translation is dynamic and
provides the physical addresses in a cyclic manner in order
to form circular queues into the receivers host memory. The
mechanism that handles these messages at the receiver uses a
lookup table - Queues Translation Table - which keeps 128-
bits per entry:

. a 64-bit base physical address which is bound with the
queue ID

. queue's head pointer offset

. queue's wrap around offset
During an enqueue operation, the head pointer of the

associated Queue advances and when it reaches the wrap
around offset it returns to the base address. This translation
table is also memory-mapped in the system's address space
and can be configured by the system software. Our design
allows the user to configure up to 256 circular Remote Queues
of programmable size.

C. Notification Mechanisms
The NI provides three notification options: (i) local notifi-

cation, (ii) remote interrupt, (iii) remote notification.
Local Notification is used to inform the sending node that

the packet was injected into the network: when so requested by
a transfer descriptor or a short message, upon departure of the
transfer, the NI copies the tail pointer of the associated queue
to prespecified locations in host memory, using a single-word
DMA write access. Since we have per-destination queues,
we also have per-destination locations in the host memory
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Fig. 4. VOQs block and flow diagram

for these local notifications. The addresses for these memory
locations are set by software.
The processor can poll in these notification locations to

determine the state of the requested transfers i.e. how many

transfers have departed (transfers from a single queue depart
in-order), hence recycle their slots. Processor polling in the
host memory is lighter than polling the tail pointer itself - a

NI control register - in I/O space.

Remote Interrupts and Remote Notifications can be used
to inform the receiving node that a packet or message has
arrived; usually assuming in order delivery from the network.
The former are traditional PCI interrupts, while the latter are

similar to their local counterparts: they write (via single-word
DMA write) the last address of a completed DMA operation
into a prespecified address in the receiver's host memory. Since
the packets come from different hosts, we have per-source

locations in the host memory for remote notifications. The
addresses for these locations are set by software.

Local and remote notification options, in combination with
the operation clustering option, allow for a drastic reduction
in the number and overhead of interrupts [1].

D. Multiple VOQ Support

The use of a single output queue for all outgoing traffic re-

gardless of destination leads to head-of-line blocking resulting
in significant performance loss. In order to avoid head-of-line
blocking and localize the effects of congestion, multiple virtual
output queues (VOQs) - one per (potential) destination - are

implemented.
The initial architecture of the VOQ handling system is based

on previous research [6]. Fig. 4 depicts the initial VOQs
architecture where the thick arrows show the packet flow
through the various modules. Traffic is segmented in variable-
size multi-packet segments and only the first segments of each
VOQ reside in on-chip memory. When a VOQ becomes ex-

cessively large its body migrates to external memory (SRAM
and/or DRAM) which is partitioned in blocks of configurable
size and dynamically shared among the VOQs through the use

of linked-lists implemented in hardware.
The RDMA packets (max. 4 KBytes) that exceed the maxi-

mum network packet size, which is 512 bytes in our network,
are segmented into smaller independent RDMA packets by
modifying or inserting the appropriate packet headers.
The addition of multi-path support- load balancing - is

highly dependent on the VOQs implementation and led to
a very complex design, inappropriate for FPGA prototyping.
Therefore, we simplified the VOQs block by keeping only on-

chip VOQs in the current implementation and by not making

use of external memories (i.e. DRAM). The current VOQs
design is far more flexible and has lower latency since the
linked-lists are removed and packet processing is performed
in parallel with packet sorting, before packets enter the VOQs.

E. Multipath Routing and Completion Notification

Inverse multiplexing [7] is a standard technique that allows
several independent links to be combined together in order to
implement a "logical link" of multiple capacity. The load on
each link is switched (routed) to the destination independently
and the original traffic should be distributed among the links
by the transmitting NI. This technique is also suitable for
internally-non-blocking switching fabrics as long as the load is
evenly balanced among the parallel paths, on a per-destination
basis. Our multipath policy balances the traffic using Deficit
Round Robin (DRR) [8].

Such multipath routing may deliver packets out-of-order, at
the destination. Owing to the use of RDMA semantics (each
packet carries its own destination address), packet data will be
delivered in-place in the host memory even if the packets arrive
in scrambled order. If data were delivered in-order, RDMA
completion could be signaled by the last word being written
into its place, however, when packets can arrive out-of-order,
the last address in the destination block can be written into
before intermediate data have arrived. Thus, RDMA semantics
eliminate the need for reorder buffers and data copying, but
introduces the need for Completion Notification to guarantee
transfer completion.

Currently we use resequencing to provide completion noti-
fications. We economize on resequencing space by buffering
only packet headers, while packet data are written to their
destination address. After resequencing, we discard headers
in-order until we encounter a notification flag; at this point
we are sure that all packets before it have been received and
processed, hence the notification can be safely delivered.

IV. SWITCH PROTOTYPE

Our switch implements an 8 x 8 Buffered Crossbar (Com-
bined Input-Crosspoint Queuing - CICQ) architecture [9]
on the Xilinx ML325 board [10]. The switch uses small
buffers at each crosspoint and features (i) simple and efficient
scheduling, (ii) credit-based flow control [5] for lossless com-
munication, (iii) variable-size packet operation, and (iv) peak
performance without needing any internal speedup.

Figure 5 depicts the internal structure of a 4x4 buffered
crossbar switch. Incoming packets are delivered to the ap-
propriate crosspoint buffers (2 KBytes each) according to
their headers and the output scheduler (OS) is notified. If
sufficient credits exist and the outgoing link is available,
the output scheduler for that link selects, with a round-
robin policy, a non-empty crosspoint buffer for transmission.
Each OS supports cut-through operation even for minimum-
size packets and hides scheduling latency by utilizing a pre-
scheduling technique; schedules the next packet before the end
of the previous packet transmission. As packet bytes are being
transmitted to the output, the credit scheduler (CS) generates
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other packets destined to the initial source. The datapath of
the switch is 32-bit wide, the clock frequency is 78.125 MHz
as required by the RocketIO serial link interfaces, and the
maximum packet size is 512 bytes.

V. COST AND PERFORMANCE EVALUATION

This section reports the implementation cost of our FPGA
prototype and presents a performance evaluation through var-
ious benchmarks. At first we illustrate the performance of
our custom network, then we present the observed DMA
performance through the PCI-X bus and finally we report on
the efficient use of the platform by the systems software.

A. Hardware Implementation Cost

Table I presents the hardware cost of the system blocks.
The numbers refer to the implementation of the designs in a
Xilinx Virtex II PRO FPGA with the back-end tools provided
by Xilinx. The Debugging block is one of the biggest blocks
in terms of area because it contains a suite of benchmark,
performance and monitoring sub-blocks that occupy many
LUTs and BRAMs and represent approximately 33% of the
overall design. The VOQs block is also area demanding
because it involves many BRAMs to be used as packet buffers
and considerable logic for their associated state.

B. Network Per,formance Evaluation

For the evaluation of our custom network we implemented
some extra hardware functions in the NI and the Switch so as
to use them for benchmarks (latency and throughput). In this
special Benchmark Mode, the NI and Switch record cycle-
accurate timestamps and append them in the payload the
packets, as they pass through the stages of the system.

TABLE I
HARDWARE COST BREAKDOWN

Block LUTs Flip Flops BRAMs
PCI-X - DMA Engine - Queues 2500 1400 22
Link Interface 1800 400 0
Multiple VOQs 4100 2100 37
Multipath Support 2800 1200 20
Debugging Support 2900 2100 32
Totals NI 14100 7200 T 111
BufXbar Switch 8x8 15800 13300 64

In Benchmark Mode, timestamps are recorded at the follow-
ing points: (i) upon packet creation, in the request queue, when
the host processor writes a transfer descriptor; (ii) upon packet
departure from the NI to the network; (iii) upon packet arrival
at the switch port; and (iv) upon departure of the packet from
the switch. Timestamps (i) and (ii) measure the queuing delay
and the pipeline latency in the NI, whereas timestamps (iii) and
(iv) measure the delay and latency in the switch. The latencies
of the cables and the SERDES circuits of the RocketIO's are
constant, and therefore we don't have to measure them; we
simply add them to the final latency. Moreover, we bypass the
process of reading the payload of the packet from the host
memory (through a PCI-X DMA read) and simply generate
a packet payload with zero values; in this way, we factor out
the software and the PCI bus latencies.

All packets are written in the destination host memory
through DMAs in the appropriate addresses and are then
collected by a Linux kernel module which is developed inside
the device drivers of the NI. The software, after execution of
an experiment, reports the distribution of the packet latencies
and the observed throughput per source. The throughput is
measured using processor-cycle-accurate timestamps that start
upon arrival of the first packet and finish upon arrival of the
last packet, per source.

Using the special software and hardware functions, we
have performed delay and throughput experiments in order to
validate the simulation experiments of the switch performance
that appear in [9]. For the traffic patterns, we generated packet
traces with the Traffic Generator of [11]; at measurement time,
host software loads the traces and feeds NI's request queues
with descriptors at specified times. We were able to run only
small scale experiments due to the limited number of hosts
and memory resources, and therefore our figures correspond
to experiments with a 4 x 4 switch: each NI had to act as either
source or sink of packets, but not both, because if it were to
act as both then software and the PCI-X bus would be the
bottleneck, rather than being able to saturate the network. We
have run each test with 50 million packets where the first few
thousands of packets (warm-up) and the last few thousands
were not accounted in order to have as accurate measurements
as possible. The duration of these tests ranged from 1 to 14
minutes of real time traffic.

For the delay experiments we have run tests with uniformly
destined traffic and uniform packet sizes. The results of the
delay vs. load experiments are shown in Fig. 6 where the
observed curve follows closely the simulation results of [9].
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Fig. 6. Avg Delay vs. Input Load under uniform traffic. Max load is 96%.

The average end-to-end network delay of our platform under
light load is just 1.25 microseconds, where half of this (0.64
,us) is due to propagation delays (SERDES (95%) plus cables
(5%)); this figure (1.25 ,us) is from the moment a packet is
generated (by hardware) inside the source NI, to the moment
that packet enters the destination NI. In other words this
figure includes source and switch queuing, propagation, and
scheduling delays, and SERDES+cable delays from source to
switch and from switch to destination, but does not include any
PCI or software delays. Our NI and switch designs proved to
have modest latency even under 80% load, where the end-to-
end delay is lower than 3 ,us.

C. PCI-X microbechmarks

We used hardware cycle counters at the NI to examine
the behavior of the host-NI interface, namely the PCI-X
Target Interface (100 MHz). For single-word PCI-X write
transactions, on the order of 10 PCI-X cycles are required.
Therefore, initiating a single RDMA write operation (writing
a transfer descriptor) requires about 40 PCI-X cycles, or about
400 ns. Leveraging the write-combining buffer of the host
processor, we can write a burst of 64 bytes of data in 24
PCI-X cycles, which translates to 4 transfer descriptors. This
feature gives a 6x improvement over the simple case which
would need about 160 PCI-X cycles and saves a significant
number of cycles on the PCI-X bus. Notice that the use of the
write combining buffer implies weak ordering and requires the
user to regularly flush it (with an sfence instruction) in order
to avoid undesired latency of the data in the buffer.

For a write-DMA transfer of 4 KBytes (PCI-X maximum
size) to the host memory, with 64-bit data phases, we measured
a delay of 570 cycles, out of which only 512 actually transfer
data (90% utilization). The remaining 58 cycles are attributed
to arbitration, protocol phases, and the occasional disconnects.
For 4 KByte read-DMA transfers from host memory, we
measured a delay of 592 PCI-X cycles, i.e. a utilization of
87%. In every DMA read request, the PCI-X bridge issues a
split response and on the order of 50 cycles are needed until we
receive the first data word. The remaining cycles are attributed
to protocol phases and disconnects.
The theoretical maximum throughput of a 64-bit 100MHz

PCI-X bus assuming zero arbitration cycles is 762,9
MBytes/sec. We managed to achieve 662 MBytes/sec in PCI-
X read transfers and 685 MBytes/sec in PCI-X write transfers

by using a specially designed DMA engine that performs a
large series of back-to-back PCI-X accesses that employ the
bus for over a minute of real time.

D. Efficient Use of the NI by System Software

For systems software to make efficient use of the capabilities
offered by our NI, we need to closely match the abstrac-
tions exported by the hardware with corresponding software
abstractions. Specifically, we have to be careful to use the
hardware resources in a manner consistent with their design,
despite the fact that this may lead to a more complicated
software implementation. To illustrate this point, Fig. 7 shows
the throughput achieved by two alternative implementations
of a simple program that issues one-way data transfers, for
a range of transfer sizes. For transfer sizes up to 4 Kbytes
(single OS page), only one RDMA descriptor is posted. For
larger transfers (up to 512 Kbytes), several RDMA descriptors
are posted, one after the other. For each transfer size, the
benchmark programs performed 100,000 transfers and PCI-
X write-combining was enabled for the transmitting endpoint.
The alternative versions of this benchmark differ in the details
of when RDMA transfers are triggered for execution by the NI,
and under which conditions to block waiting for a notification
of transfer completion.
The first version (marked vl) treats the RDMA request

queue as a linear (non-circular) command buffer where RDMA
descriptors are posted in batches (up to 128 consecutive
descriptors for a 512 Kbyte transfer). Only the last RDMA
descriptor in the batch triggers the NI to begin transferring data
from the host memory (PCI-X DMA read). This version of the
benchmark waits for this last RDMA operation to complete,
making use of the local notification capability offered by the
NI. Since the RDMA descriptors are processed in FIFO order,
this version of the benchmark waits until all pending transfers
are completed before posting the next batch.
The second version (marked v2) treats the RDMA request

queue as a circular command buffer, explicitly checking if
there is space to post each of the RDMA descriptors. This is
done by setting each of the RDMA descriptors to trigger the
NI to begin transmission, and then checking progress toward
completion by reading the head and tail values written in
host memory as a result of local notifications. If no space
is found, this version of the benchmark busy-waits by polling
on the local notification word in host memory. Otherwise, it
immediately posts the next RDMA descriptor. Thus, the usage
pattern induced by this version more closely matches the way
that the NI hardware actually processes RDMA descriptors.
Unlike the vi implementation, v2 does not have to wait until a
large batch of RDMA transfers are completed and thus allows
overlapping transfers with posting new descriptors.

Although vl achieves a throughput level of up to 632
Mbytes/sec (around 95% of the maximum achievable for this
specific experimental setup, see subsection V-C), it suffers in
terms of latency as transfer sizes increase. By not matching
the way the NI processes pending RDMA descriptors, the
vl implementation forces even the posting of each batch
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of transfers to start after the whole of the previous batch
is transmitted. The v2 implementation pipelines the distinct
tasks of posting RDMA descriptors and processing them for
transmission and achieves comparable throughput levels even
for lower transfer sizes. For small transfer sizes (up to 4
Kbytes), v2 significantly outperforms vl.
The performance measurement experiments reported in this

section have been taken into account in the optimization of
the networked storage system described in [1]. In that system,
we follow the approach exhibited by the v2 implementation
of the one-way transfer benchmark to maintain a relatively
constant latency for posting remote I/O operations, and their
corresponding completions.

E. End-to-End Latency

Beyond the software based throughput experiments, we
have measured, using NI performance counters, the end-
to-end (memory-to-memory) latency in our system. Fig. 8
shows a breakdown of the one-way latency of a small (8-
byte) remote DMA, with and without write-combining, and an
equal-size message transmission. The overhead is divided in
the following components: send-initiation, send-DMA, send-
NIC, switch-delay, propagation-delay, recv-NIC, recv-DMA.
The send-initiation component includes the PCI-X overhead
during posting the transfer descriptor. The send-DMA, recv-
DMA components include all PCI-X overhead related to the
data transfer itself. Finally, send-NIC and recv-NIC is the
time spent in the send and receive NICs. We measured these
components using the corresponding cycle counters on the
NIC boards. The switch-delay component refers to the cut-
through packet delay in the switch and propagation-delay
refers to cumulative delay of all SERDES circuits in the
network paths plus the delay in the cables.

Write-combining significantly speeds-up operation initia-
tion. In a system that uses write-combining, the two com-
ponents where most of the time is spent are: propagation
delay (36% of the total delay, 95% in the SERDES circuits
and 5% in the cables) and the PCI-read DMA at the sending
node (33% of the total delay). The majority of the PCI-read
DMA cost is due to read latency, manifesting itself as PCI-X
split duration (50 PCI-X cycles). Hence, it becomes apparent

Fig. 8. Breakdown of end-to-end latency for (a) an 8-byte RDMA packet
with single (uncombined) PCI-X writes, (b) an 8-byte RDMA packet with
PCI-X write-combining, and (c) a single 8-byte short message with PCI-X
write-combining.

that, for short transfers, the message operation yields much
better performance than the remote DMA operation, because
it eliminates the read-DMA at the sender side, at a small
incremental cost of 1 PCI-cycle per word, for posting each
message word beyond the first two words (up to a message
size of 64 Bytes), using write-combining.

F Scalability Concerns and Challenges
In our current prototyping platform we have made sev-

eral design decisions, towards simplifying the FPGA design,
which raise important scalability concerns. Specifically, the
RDMA Request and Message Queues are implemented in stat-
ically partitioned memory, organized per-destination. Keeping
queues for every possible network destination does not scale
in an environment with thousands of nodes because it would
require excessive amounts of memory. Even dynamic memory
management of a shared memory space cannot scale beyond
a few hundreds of destinations.

Moreover, the choice of packet VOQs was required since
we needed to evaluate in a real system the variable packet
size CICQ architecture we proposed in previous work [9]. Ad-
ditionally, we consider multipath routing, in a multiprocessor
environment, to be an important feature that can boost network
performance as well as allow for scalable multistage fabrics.
We have experimented with multipath routing, out-of-order
packet delivery and completion notification and deduced that
inverse multiplexing with DRR needs O(N2) counters to be
implemented and thus does not scale.

Furthermore, the cost of resequencing, even when only
packet headers are stored, is excessive since the space required
is proportional to the number of senders (nodes), the amount
of intermediate network buffering and the number of network
paths from a source to a destination.
We are currently investigating whether the NI could share

memory with the processor in an environment where the NI
moves closer to the CPU; from the I/O bus to the memory bus
or even share processor's cache. Our ongoing work tries to
address the scalability issues mentioned above. We consider
replacing all per-destination queues with per-thread or per-
process queues towards NI virtualization. In addition adaptive
routing can provide a simple and scalable multipath solution.
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Resequencing can be avoided by associating counters only to
packet groups that require completion notification.

VI. RELATED WORK

Commodity system area networks such as Infiniband [12],
Myrinet [13], Quadrics QsNet2 [14], and PCI-Express Ad-
vanced Switching [15] have been proposed to offer scalability
and high performance switching. Many of these systems may
also offer Network Interface Cards that are programmable at
the (usually system-) software level but do not provide any
hardware customization capability. Our FPGA-based platform
offers the capability to include and experiment with user-
customizable functions at the NI.

In terms of the NI software interface, the Remote DMA
primitives have been proposed in order to provide low-latency
and high throughput communication [16], [17], [12]. These
primitives are already available in high-performance networks
[13], [14] and show up even in relatively low-cost Gigabit
Ethernet controllers that support RDMA functionality over
TCP.We also believe that the RDMA primitives are attractive
and we have added the flexible notification mechanisms that
has been shown to be very effective in improving the interrupt
processing cost [1].
On the switch side, buffered crossbar switches have become

feasible since recent technology advances allow the integration
of the memory required for crosspoint buffers. We have
extensively evaluated these advantages and proved the feasi-
bility of that support variable-size packets [9] and multipacket
segments [6]. To our knowledge, there is only one FPGA-
based buffered crossbar implementation done by Yoshigoe et
al. [18], that used older, low-end FPGA devices. Another
important difference is that our switch can operate directly
with variable-sized packets, and that we offer a complete
reconfigurable system that includes the network interface card
and the necessary (Linux-based) system software.

VII. CONCLUSIONS AND FUTURE WORK

We presented an FPGA-based, research platform for proto-
typing high-speed processor-network interfaces and intercon-
nects. This platform includes both the network interface card
and the switch card and offers built-in efficient primitives that
can be adapted to new paradigms and protocols.
We believe that an experimental evaluation of new ideas

is important and yields better accuracy and confidence as
compared to simulation. Our FPGA-based platform is open
to accommodate new features and evaluate them in an actual
experimental environment. Our experience so far is that the
system-level operation reveals component interactions that are
practically impossible to foresee and model in a simulator.
We are currently in the process of porting MPI over our NI

and we plan to measure parallel applications and benchmarks.
Moreover, we strive for architectures that offer tighter coupling
of the NI with the processor. We consider "moving" the NI
closer to the processor, as close as the cache interface.
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