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Synchrotron Light-Sources

• Electron accelerator
to generate
high-intensity
electromagnetic
radiation.

• Radiation in form
of high-intensity
beams, used for
experiments at
beamlines.
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High-energy X-ray Scattering

• X-ray scattering to measure structural properties of materials, and
• characterize macromolecules and nano-particle systems at micro and

nano-scales.
• probing the electronic structure of matter,
• semiconductors,
• 3D-biological imaging,
• protein crystallography,
• chemical reaction dynamics,
• biological process dynamics,
• optics,
• .. and so on.

• Broad variety of applications. E.g.:
• Materials: Design of energy efficient devices like solar cells, high-density

storage media
• Medicine: Design of synthetic enzymes, drugs and bio-membranes.
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High-energy X-ray Scattering

Examples:

• Small-angle X-ray Scattering (SAXS)

• Grazing Incidence SAXS (GISAXS).
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Outline

1 Motivations and the need of HPC.

2 Computational problems in structure prediction.
• Scattering pattern simulations.
• Inverse modeling/fitting.

3 GISAXS simulations.

4 HipGISAXS: an HPC solution.
• Implementation and optimizations.
• Performance analysis.

5 Conclusions and ending notes.
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Computational Problems in Structure Prediction

• An example workflow:
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Computational Problems in Structure Prediction

• An example workflow:
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Need for High-Performance Computing

Mismatch in rates of data generation and data processing:

• High measurement rates of current state-of-the-art light sources.

• Inefficient utilization of facilities due to mismatch.

• Example: 100 MB raw data per second. Up to 12 TB per week.
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Need for High-Performance Computing

High Computational and Accuracy Requirements:

• Errors are proportional to resolutions of various computational
discretization.

• Higher resolutions require greater computational power.

• Example: O(107) to O(1014) kernel computations for one experiment.
O(102) experiments per material sample.
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Need for High-Performance Computing

Science Gap:

• Beam-line scientists lack access to fast algorithms and codes.

• In-house developed codes, limited in compute capabilities and
performance.

• Also, they are slow – wait for days and weeks to obtain results.
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Fortunately ...

• Involved computations have high degree of parallelism.

• Largely independent computations.

• Perfect for "GPUization".
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Forward Simulations: Computing Scattered Light Intensities

Given:
1 a sample structure model, and

2 experimental configuration,

simulate experiments and generate scattering patterns.

Based on Distorted Wave Born Approximation (DWBA) theory.
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Forward Simulations: Computing Scattered Light Intensities

Q-grid: a 3D region grid in inverse space where scattered light intensities
are to be computed.

Intensity: is computed at each Q-grid point~q.
At a point~q, it is proportional to square of the sum of
Form Factors at~q, due to all structures in the sample:

I(~q) ∝

∣∣∣∣∣
S∑

s=1

F(~q)

∣∣∣∣∣
2
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Forward Simulations: Computing Form Factors

• Form Factor at~q is computed as an
integral over shape surface.

F(~q) = − i
|q|2

∫
S(~r)

ei~qr·~rqn(~r)d2~r

• Approximated as a discretized surface
(triangulated surface) summation:

F(~q) ≈ − i
|q|2

t∑
k=1

ei~q·~rk qn,kσk

• Complex number computations.

• Analytically for simple shapes.
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Forward Simulations: Analytic Computation Examples
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Forward Simulations: Numeric Computation Examples

Rectangular Grating with Undercut:

Organic Photovoltaics (OPV) Tomography:

Real Sample Model Scattering Pattern
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HipGISAXS: A High-Performance GISAXS Simulation Code

• Solves many limitations of previous codes.

• Implements new flexible algorithms to handle
• any complex morphology,
• multi-layered structures, and
• all sample rotation directions and beam angles.

• Implements parallelization methods:
• Deliver high-performance on massively parallel state-of-the-art clusters of

GPUs and multi-core CPUs.
• Bring computational time down to just seconds and minutes.

• Written in C++ with MPI, OpenMP and NVIDIA CUDA.

• Flexible and modularized code for future extensions.
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Computational Problem
Input: 3 arrays, qx, qy, qz of lengths nx, ny, nz, resp., representing

a Q-grid of resolution n = nx × ny × nz, and
Numeric: An array defining the triangulated shape
surface as a set of t triangles.

Output: A 3-D matrix M of size nx × ny × nz, where each
M(i, j, k) = F(qi, qj, qk) = F(~qi,j,k).

Environment: p node cluster of GPUs/multi-core CPUs.

GPU

CPU

GPU

CPU
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Computation Decomposition Hierarchy: Tiling

1. Across Multiple Nodes/Processes: Tiling

• Partition M along y and z dimensions
into grid of P = Py × Pz tiles.

• x dimension is typically small.

• Tile Mi,j is assigned to node Pi,j.

• Tile data is distributed to respective
nodes using MPI.

tile

nzp

M1,0

M0,0

M0,1

M1,1

nx

nyp

nyp

nzp
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Computation Decomposition Hierarchy: Blocking

2. Handle Memory Limitations: Blocking

• Data may not fit in device memory.

• Partition local tile along x, y, and z
into blocks of size hx × hy × hz.

• Partition triangle array into segments
of size ht.

• Represent combinations of blocks
and segments as 4D hyperblocks.

hyperblock

ht

hyperblocks corresponding
to a single block

N

hy

hx

hz
nz

nx

ny

• Process one hyperblock at a time on device.

• Hyperblocks result in partial sums. All partial sums for a block are
reduced on host.
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Computation Decomposition Hierarchy: Threading
3. Within device: threading

Phase 1 Local Computations.

• Partition along y, z and t into
thread blocks.

• Compute over a triangle at all
grid-points~q in x dimension:

Ft(~q) = ei~q·~rst

thread block

M

Ti,j,kq0...n-1,j,k map

ny

nznx

triangles

Phase 2 Reduction.

• Partition along x, y and z into
thread blocks.

• Reduce all Ft at a grid-point~q:

F(~q) ≈
ht∑

t=1

Ft(~q)
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Tuning Hyperblock Size hx × hy × hz × ht

• Crucial for high performance.

• Small size = low parallelism + large number of data transfers.

• Large size = transfer of large amounts of data.

• Find a good balance, explore the search space.

• Example heat maps of runtimes with varying hy and hz (4M q-points.)
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Tuning Thread Block Sizes

• Also crucial for high performance.

• Small size = not enough threads in warps, or small number of warps.

• Large size = small number of thread blocks (less parallelism).

• Find a balanced size, explore search space.

• Example runtime heat maps with varying thread block sizes.
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HipGISAXS Performance

• GPU Cluster: "TitanDev". Up to 930 nodes.
• NVIDIA Tesla X2050 Fermi GPUs,

• 6 GB device memory,

• 1.15 GHz CUDA core clock,

• AMD Opteron Interlagos 16 core CPU,

• 32 GB main memory,

• Gemini interconnects.

• Single precision complex number computations.
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Strong Scaling with Number of Nodes
• GPU cluster = 1 to 930 nodes.

• One MPI process per node. 16 OpenMP threads on host.

• CPU cluster = 1 to 6,000 nodes (24 to 144,000 cores).
• Four MPI processes per node. 6 OpenMP threads per MPI process.

• Q-grid size = 91M q-points.

• Expected scaling = linear, observed = linear.
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Scaling with Input Sizes n & t

• Q-grid resolution, n = 0.9M to 91M q-points (left).

• Shape resolution, t = 40 to 91K triangles (right).

• Number of nodes used = 4.

• Expected = linear, observed = linear.
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Observations & Comparisons

Comparison GPU (930 Nodes) CPU (6,000 Nodes)

Single node speedup (wrt se-
quential code)

125× 20×

Performance ratio 1 6.25

Cluster speedup (relative to
single node)

900× (96%) 5400× (90%)

Throughput (billion q-points
per second)

999.98 941.07

Code base size ratio (LOC) 1.45 1

Development time person-
hours ratio

4 1
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End Notes

• Synchrotron light-source data analysis computations are well suited for
GPUs due to high degree of parallelism.

• Developed high-performance GISAXS forward simulation code on GPU
clusters:

• Perform of much larger samples (O(106) triangles) and with higher
resolutions (O(108) q-points) than previously feasible.

• Brought down computational time from days and weeks to minutes and
seconds.

• Ongoing work ...
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Thank you!

Synchrotron Light-source Data Analysis through Massively-parallel GPU Computing Abhinav Sarje @ Berkeley Lab


	Introduction
	introduction
	outline
	simoverview

	Motivation
	motivation
	motivation
	motivation
	motivation

	GISAXS
	simulations
	simulations2
	scatterexamples

	Solution
	hipgisaxs
	ffkernel

	GPU Clusters
	gpudecomp1
	gpudecomp2
	gpudecomp3
	gpuhyperblock
	gputhreadblock

	Experiments & Performance
	exenv
	scalenodes
	scaleqgrid
	observations

	Conclusions
	ack


