-~y

r ' A
N ERSC r:}l

BERKELEY LAaB ‘

Performance Characterization and
Benchmarking for High Performance
Systems and Applications

Erich Strohmaier
NERSC/LBNL
Estrohmaier@lbl.gov

y

W=rsc Our Starting Point ccceed] f

BERKE

#5 To evaluate and compare application and system
performances we need a frame of reference in the
performance space.

5 Right now only peak performance and Linpack are
widely used.

=z A reference can be established by a set of
benchmarks.

& Users should be able to relate the performance of
these benchmarks to their codes.

#5 To develop such benchmarks we first need a better
understanding what the critical performance aspects
of algorithms are.

y

W=rsc General Approach ccceed] f

z5 Develop a new quantitative characterization of
algorithms and codes focusing on performance
aspects.

& Avoid using any specific hardware models or
concepts for this characterization.

25 Develop synthetic performance probes and
benchmarks testing these characteristics.

Relate benchmark performance with code
performance.

25 Our focus is initially the performance influence of
global data-access.

y

W= rsc) Design Ideas ccceed] f

BERKELEY LAaB

Performance Characterization:

zs Hardware independent.

#5 Global data access as main focus.

Random data access as starting point.
Benchmark probe:

z Reference implementations together with a pencil
and paper description.

&5 Runtimes not tied to computational complexities of
specific algorithms.

& System and generation scalable.

&< Focus on sustainable rates using substantial
fractions of available resources.

y

wzzxa Characterizing Performance ey i

&5 Characterize performance behavior of applications
and algorithms independent from hardware.

= Use most general architecture model possible.

=z Based on von Neumann model we assume that the
effects of data access and instruction stream are
iIndependent (first order approximation)

2Time to solution =
f(Algorithmic Complexity) *’
(f(Data Access Characteristics),
‘+'f(Structure of Operations))”

vazxm Concepts for Performance Ch. "{

Code complexities:
& Computational complexity.
&< Data access complexity.
Instruction stream:
& Computational granularity.
Ratio of instructions to data accesses.
& Length of basic instruction blocks.
= Between branches.
2 Number of “global” operations.
=z Coupling parallel instructions streams.
s Length of local instruction blocks.
= Between global operations.

y

wzzxa Data Access Characteristics ey i

BERKELEY LAaB

Data access pattern: What do we want to capture?

Re-use of data by modern algorithm for improving
locality — Temporal locality.

=z Hierarchical block-structured or recursive algorithms.
=z Hard to define hardware independent.
& Limitations of “vector’-length — Granularity.
Due to data-dependencies, communication, etc.
= Becomes particularly important in parallel context.
& Regular contiguous memory access — Reqgularity.
= stride 1 (n).

y

Aersc Temporal Locality eceeey]

2 How can we quantitatively describe data re-use?

&5 Look at temporal distribution function:
= The probability distribution of how long ago I last used
a data item.

= At every access | have a f(t)% probability to hit a location
| have visited within the last t cycles.

Cumulative temporal Distribution

100%; —
4/

80%]

60%] /‘
40%]
]
20%:

_—

Probability

0%+t Temporal distance is similar to
0 500 1000 1500 ~ 2000 ~ 2500 ~ 3000 3500 reuse distance, stack distribution,

i stack distance).

y

A= s c Re-use Number ccceed] f

BERKELEY LAaB ‘

Define a “re-use” number:
2 M be the used memory in words.

z The re-use of a specific word is the numberk of
accesses to it during a window of M successive data
accesses.

The average re-use for the code is the average k
during this window for all accessed words.

(This assumes that all windows give me the same
answer)

& The probability at a temporal distance of M is then:

P(M) = (k-1)/k

y

W= rsc) Temporal Distribution ccceed] f

BERKELEY LAaB

25 Approximate the temporal distribution function of
codes by a simple generic function.

= \We try to capture the ‘main’ re-use effect by using a
generic function with only a few numeric parameters.

= For recursive algorithms the cumulative temporal
distribution function should be self-similar and scale-
iInvariant. (A recursive algorithm is self-similar.)

& Power Function Distribution

y

W=rsc Power Distribution crecerd]

&5 Characterized by one number.
=z Slope in log-log related to the ‘Re-use’ factor.

z5 Concept does not use hardware concepts such as ‘cache’
s Distribution function is problem size and scale invariant.

Cumulative temporal Distribution

1.0000 —
/
/,

e

-

1 10 100 1000 10000

Probability

0.1000

y

A= s c Power Distribution ccceed] f

25 All we need now is a synthetic pseudo-random
algorithm which has a power distribution as temporal
distribution function.

& Many algorithms generate the same temporal
distribution, so we have some choices.

#5 The detalls of the chosen algorithm could produce
artifacts if not selected carefully.

5 [n particular the temporal distribution function is
iIndependent of the selected data mapping!

= Still (almost) any regularity possible!

y

W=rsc Granularity ccceed] f

Limitation of “vector™length due to data-dependencies.
& The amount of “pre-computable” addresses.

=5 Access can be irregular (‘indirect’) or

= Regular (‘strided’).

=z Limits the amount of dynamic reordering such as
gather-scatter or message assembly.

We focus on indirect as it becomes more important
and represent more of a lower-bound for achievable
performance.

zs Granularity becomes very important for parallel
version with explicit communication.

= |t (severely) limits message sizes .

y

A=rsc Regularity ccceed] f

2 A mapping of the data structure to the address space
which permits stride 1 (n) access exposes regularity.

& Re-mapping during execution might be necessary for
many algorithms to expose regularity.

This form of ‘dynamic’ regularity has associated re-
mapping costs (gather-scatter operations).

= This type of (“irregular”) data access becomes more and
more important and is usually not avoidable.

< |f irregular data access is present in a code it is likely to
become the performance bottleneck (Amdahl's Law).

& Irregular data access is “our focus”.

y

waxa Synthetic Benchmark Probe ey i

BERKELEY LAaB

2 Measures sustainable rates.
=z Warm caches etc.
& Non-uniform random memory access for re-use.

= Power-function as temporal distribution function.

z Use indexed (“irregular”’) data access to measure a
lower bound for performance.

& Granularity

=z Vector length for pre-computed addresses and
organization of communication.

zs Regularity for simulating data structures.
2 We have (only) 3 parameters so far (Small enough?).

y

A=rsc Status: Concept ccceed] f

2 Went through a few iterations with the concept.

= Still have not figured out the details of the non-uniform
random distribution necessary to generate a power
function as temporal distribution (math problem).

= Are 3 parameters too many already?

&5 Extending the concept to parallel systems.

=z Detalls of the random process — homogeneous or
Inhomogeneous memory-access?
(Do we access all words the same number or do we
allow different access numbers?)

=z Detall of data-mapping — organized or pseudo-random?
(Do we group frequent accessed words together?)

y

waxa Status: Benchmark Probe ey

BERKELEY LAaB

=z Implemented several (sequential) test-codes.
= \Which kernel — DAXPY (again)?
= How many different index vectors?
zImpacts also data structures and regularity.

y

W=rsc Early Kernel ccceed] f

BERKELEY LAaB

5 for (1 = O+off; | < |dxSize+off+0; I1+=8) {
tmp += data[ind[i]];
tmpl *= dataind[i+1]];

=

t Test Results — IBM Power3

R=1; no re-use (k=1)

¥ Lag

1000.0

100.0

10.0 =

time [cycles]

1.0

0.1
1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

M=G (4B words)

y

A= s c Current Kernel ccceed] f

BERKELEY LAaB

s Distribution: power(random(), 1/A) * (N/R -1);
e if (R==1){
for(j=0;]<G;J++){
res[j] += weight[j] * data[ind][j]];
}
}
else {
for =0;j<G/R; j++) {
pos =ind[j] * R;
for(k=0; k<R; k++) { unroll?
res[j] += weight[j*R+k] * data[pos + K];
}

}
}

vz 1 est Results — IBM Power3

time [ns]

900
800
700
600
500
400
300
200
100

R=1; 64 MWord (8B)

\

iy
rrrererer ﬂ
Eﬁm;;;;;ﬁ\

0.3

0.1

0.03
~0.01

G

ﬂr**~fg—o *>— —+
HS—K 7 4
0 200 400 600 800 1000

vz 1 est Results — IBM Power3

time [ns]

900
800
700
600
500
400
300
200
100

G=1024; 64 MWord (8B)

el

15

20

Ny
' A
rererrrerr 1l

0.3

0.1

0.03
~+-0.01

y

A= rsc Future ccceed] f

BERKELEY LAaB

& Finish concept and benchmarking probe (parallel).

&5 Determine the re-use factors and granularities for
actual codes (with paper and pencil) for making
some meaningful choices.

& ‘FIX’ some values for parameters to be used as
“The Benchmark”.

2 Need to test the correlation between benchmark
probe performance and code performance for the
same re-use factors, granularities, and regularities.

