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W=rsc Our Starting Point ccceed] f

BERKE

#5 To evaluate and compare application and system
performances we need a frame of reference in the
performance space.

5 Right now only peak performance and Linpack are
widely used.

=z A reference can be established by a set of
benchmarks.

& Users should be able to relate the performance of
these benchmarks to their codes.

#5 To develop such benchmarks we first need a better
understanding what the critical performance aspects
of algorithms are.
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z5 Develop a new quantitative characterization of
algorithms and codes focusing on performance
aspects.

& Avoid using any specific hardware models or
concepts for this characterization.

25 Develop synthetic performance probes and
benchmarks testing these characteristics.

# Relate benchmark performance with code
performance.

25 Our focus is initially the performance influence of
global data-access.
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BERKELEY LAaB

Performance Characterization:

zs Hardware independent.

#5 Global data access as main focus.

# Random data access as starting point.
Benchmark probe:

z Reference implementations together with a pencil
and paper description.

&5 Runtimes not tied to computational complexities of
specific algorithms.

& System and generation scalable.

&< Focus on sustainable rates using substantial
fractions of available resources.
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&5 Characterize performance behavior of applications
and algorithms independent from hardware.

= Use most general architecture model possible.

=z Based on von Neumann model we assume that the
effects of data access and instruction stream are
iIndependent (first order approximation)

2Time to solution =
f(Algorithmic Complexity) *’
( f(Data Access Characteristics),
‘+'f(Structure of Operations) )”
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Code complexities:
& Computational complexity.
&< Data access complexity.
Instruction stream:
& Computational granularity.
# Ratio of instructions to data accesses.
& Length of basic instruction blocks.
= Between branches.
2 Number of “global” operations.
=z Coupling parallel instructions streams.
s Length of local instruction blocks.
= Between global operations.
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BERKELEY LAaB

Data access pattern: What do we want to capture?

# Re-use of data by modern algorithm for improving
locality — Temporal locality.

=z Hierarchical block-structured or recursive algorithms.
=z Hard to define hardware independent.
& Limitations of “vector’-length — Granularity.
# Due to data-dependencies, communication, etc.
= Becomes particularly important in parallel context.
& Regular contiguous memory access — Reqgularity.
= stride 1 (n).
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Aersc Temporal Locality eceeey]

2 How can we quantitatively describe data re-use?

&5 Look at temporal distribution function:
= The probability distribution of how long ago I last used
a data item.

= At every access | have a f(t)% probability to hit a location
| have visited within the last t cycles.

Cumulative temporal Distribution
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BERKELEY LAaB ‘

Define a “re-use” number:
2 M be the used memory in words.

z The re-use of a specific word is the numberk of
accesses to it during a window of M successive data
accesses.

# The average re-use for the code is the average k
during this window for all accessed words.

(This assumes that all windows give me the same
answer)

& The probability at a temporal distance of M is then:

P(M) = (k-1)/k
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BERKELEY LAaB

25 Approximate the temporal distribution function of
codes by a simple generic function.

= \We try to capture the ‘main’ re-use effect by using a
generic function with only a few numeric parameters.

= For recursive algorithms the cumulative temporal
distribution function should be self-similar and scale-
iInvariant. (A recursive algorithm is self-similar.)

& Power Function Distribution
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&5 Characterized by one number.
=z Slope in log-log related to the ‘Re-use’ factor.

z5 Concept does not use hardware concepts such as ‘cache’
s Distribution function is problem size and scale invariant.

Cumulative temporal Distribution
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25 All we need now is a synthetic pseudo-random
algorithm which has a power distribution as temporal
distribution function.

& Many algorithms generate the same temporal
distribution, so we have some choices.

#5 The detalls of the chosen algorithm could produce
artifacts if not selected carefully.

5 [n particular the temporal distribution function is
iIndependent of the selected data mapping!

= Still (almost) any regularity possible!
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Limitation of “vector™length due to data-dependencies.
& The amount of “pre-computable” addresses.

=5 Access can be irregular (‘indirect’) or

= Regular (‘strided’).

=z Limits the amount of dynamic reordering such as
gather-scatter or message assembly.

# We focus on indirect as it becomes more important
and represent more of a lower-bound for achievable
performance.

zs Granularity becomes very important for parallel
version with explicit communication.

= |t (severely) limits message sizes .
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2 A mapping of the data structure to the address space
which permits stride 1 (n) access exposes regularity.

& Re-mapping during execution might be necessary for
many algorithms to expose regularity.

# This form of ‘dynamic’ regularity has associated re-
mapping costs (gather-scatter operations).

= This type of (“irregular”) data access becomes more and
more important and is usually not avoidable.

< |f irregular data access is present in a code it is likely to
become the performance bottleneck (Amdahl's Law).

& Irregular data access is “our focus”.
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BERKELEY LAaB

2 Measures sustainable rates.
=z Warm caches etc.
& Non-uniform random memory access for re-use.

= Power-function as temporal distribution function.

z Use indexed (“irregular”’) data access to measure a
lower bound for performance.

& Granularity

=z Vector length for pre-computed addresses and
organization of communication.

zs Regularity for simulating data structures.
2 We have (only) 3 parameters so far (Small enough?).
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2 Went through a few iterations with the concept.

= Still have not figured out the details of the non-uniform
random distribution necessary to generate a power
function as temporal distribution (math problem).

= Are 3 parameters too many already?

&5 Extending the concept to parallel systems.

=z Detalls of the random process — homogeneous or
Inhomogeneous memory-access?
(Do we access all words the same number or do we
allow different access numbers?)

=z Detall of data-mapping — organized or pseudo-random?
(Do we group frequent accessed words together?)
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BERKELEY LAaB

=z Implemented several (sequential) test-codes.
= \Which kernel — DAXPY (again)?
= How many different index vectors?
zImpacts also data structures and regularity.



y

W=rsc Early Kernel ccceed] f

BERKELEY LAaB

5 for (1 = O+off; | < |dxSize+off+0; I1+=8) {
tmp += data[ind[i]];
tmpl *= dataind[i+1]];
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t Test Results — IBM Power3
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BERKELEY LAaB

s Distribution: power(random(), 1/A) * (N/R -1);
e if (R==1){
for(j=0;]<G;J++){
res[j] += weight[j] * data[ind][j]];
}
}
else {
for =0;j<G/R; j++) {
pos =ind[j] * R;
for(k=0; k<R; k++) { unroll?
res[j] += weight[j*R+k] * data[pos + K];
}

}
}
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BERKELEY LAaB

& Finish concept and benchmarking probe (parallel).

&5 Determine the re-use factors and granularities for
actual codes ( with paper and pencil) for making
some meaningful choices.

& ‘FIX’ some values for parameters to be used as
“The Benchmark”.

2 Need to test the correlation between benchmark
probe performance and code performance for the
same re-use factors, granularities, and regularities.




