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Figure 1: The datasets used in this paper. From left to right: the Visible Female, Richtmyer-Meshkov instability, particle density
of an n-body cosmological simulation, Viatronix abdomen CT scan.

Abstract
Ray tracing is an attractive technique for visualizing scientific data because it can produce high quality images
that faithfully represent physically-based phenomena. Its embarrassingly parallel reputation makes it a natural
candidate for visualizing large data sets on distributed memory clusters, especially for machines without special-
ized graphics hardware. Unfortunately, the traditional recursive ray tracing algorithm is exceptionally memory
inefficient on large data, especially when using a shading model that generates incoherent secondary rays. As
visualization moves through the petascale to the exascale, disk and memory efficiency will become increasingly
important for performance, and traditional methods are inadequate.
This paper presents a dynamic ray scheduling algorithm that effectively manages both ray state and data ac-
cesses. Our algorithm can render datasets that are larger than aggregate system memory, which existing statically
scheduled ray tracers cannot render. For example, using 1024 cores of a supercomputing cluster, our unoptimized
algorithm ray traces a 650GB dataset from an N-Body simulation with shadows and reflections, at about 1100
seconds per frame. For smaller problems that fit in aggregate memory, but are larger than typical shared memory,
our algorithm is competitive with the best static scheduling algorithm.

1. Introduction

Ray tracing is an important method for creating high quality
images, because it offers a broad range of physically-based
shading options, including shadows, reflections and interac-
tions with participating media. Such effects, which are often
found in movies and photo-realistic images, are increasingly

used for scientific visualization, because they help viewers
better understand spatial relationships in data [GP06]. Of
course, any method, including ray tracing, that must realis-
tically simulate global illumination will be much more com-
putationally expensive than the simpler methods that are tra-
ditionally used for real time graphics on GPUs.
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To speed up ray tracing, it is tempting to process rays in
parallel. This parallelism, however, is only efficient when it
makes effective use of the memory system. Ideally, the par-
allel tasks would operate on the same memory-resident data,
because if the working set grows larger than available mem-
ory, contention and thrashing significantly reduce overall
performance. Unfortunately, traditional recursive ray tracers
cannot bound the size of their working sets because after
the first generation of rays (“primary” or “camera” rays), di-
vergent rays in subsequent ray generations typically travel
through different regions of space accessing a large amount
of object data, leading to dramatically increased working
sets.

For small data sets, the performance impact of inco-
herent secondary rays can be masked by a shared mem-
ory system, where the working sets of all parallel tasks
can be kept resident. However, most large scientific sim-
ulations are now run on distributed memory supercomput-
ers [TOP11] and produce ever-increasing amounts of data
per timestep [JR07]. Such data are typically too large to be
relocated for analysis and are typically too large for a sin-
gle shared-memory resource. As a result, the machine used
to produce the data must be the same machine to ray trace
the data. Further, it is impractical, and sometimes impossi-
ble, to pre-compute highly-tuned acceleration structures for
these large datasets: The pre-processing would require sig-
nificant additional machine-time and disk space, and the re-
sulting acceleration structure would consume significant ad-
ditional DRAM, sometimes factors larger than the original
dataset [DGBP05]. As visualization moves to the petascale
and beyond, disk- and memory-efficient algorithms will be
essential for good performance.

To date, most parallel ray tracing research has been
limited to either ray tracing on shared-memory ma-
chines [PSL∗98, BSP06] or to ray casting (tracing
only first-generation rays) on distributed memory ar-
chitectures [CDM06, PYR∗09, HEC10]. Recent work on
distributed-memory ray tracers [RJ96, RCJ99, WSB01,
DPH∗03, DGBP05, IBH11] has demonstrated only modest
scaling and has been hampered by various system limita-
tions, including limited interconnect bandwidth and limited
disk I/O bandwidth.

In the serial realm, Pharr et al. [PKGH97] reformulate
the ray tracing solution to allow more flexible scheduling of
ray-object intersection calculations. This formulation groups
rays and data into coherent work units, known as ray queues,
which present a trade-off: They increase locality (ray coher-
ence) at the cost of increased memory state. In the parallel
realm, the tradeoffs are much more complex because of the
additional need to consider load balance. In addition, Pharr
et al.’s use0 of disk to cache excess ray state can become
intractable in a massively parallel environment due to I/O
costs, specifically file system contention from hundreds to

thousands of processes performing extra I/O for rays both
frequently and consistently throughout the rendering.

This paper extends this idea of flexible scheduling to sup-
port parallel ray tracing. The result is a novel approach
to distributed memory ray tracing that uses dynamic ray
scheduling to improve memory locality while maintaining
load balance. The basic idea is to reorder ray traversal and
intersection calculations based on the data that are resident
on each processor. By building locally coherent work units
of rays and data, our ray tracer has the flexibility to schedule
these work units across the parallel environment to achieve
better overall system performance. We show that dynamic
scheduling of rays and data can improve performance for
large datasets where disk I/O limits performance. Our al-
gorithm is able to ray trace, with shadows and reflections,
a 650GB n-body dataset on a 1024 node cluster, which a
statically scheduled ray tracer could not render at all. For
a smaller dataset that a static scheduler can complete, our
dynamic scheduler reduces data loads by 10× to 48×. Our
scheduler also exhibits better performance than static strate-
gies for volumetric ray casting

The remainder of this paper proceeds as follows. We dis-
cuss related work in Section 2. We present our approach in
Section 3. We describe our testing methodology in Section 4,
and we present our results in Section 5. We then conclude
with a discussion of future work.

2. Related Work

In this section, we place our approach in the context of prior
work and other approaches to large-scale ray tracing.

2.1. Improving Memory Access Coherence

The importance of using data coherence to improve
rendering performance has been known for over thirty
years [SSS74]. However, it was only recently discovered that
by reordering ray computations and by queueing rays with
data in a spatially localized manner, the number of accesses
to data on disk can be significantly reduced [PKGH97]. The
same principle improves memory performance [SCL05] and
cache performance [NFLM07]. Each of these works demon-
strates that the additional ray coherence is achieved at the
cost of additional state to be maintained. Ray reordering
alone can improve SIMD-instruction utilization [BWB08],
but it does not achieve the same level of spatial coherence as
reordering and queueing together, particularly for incoherent
secondary rays.

2.2. Shared-Memory Ray Tracing

Most parallel ray tracers assume a shared address space
architecture [PSL∗98, PPL∗99, RSH05, BSP06, WMG∗07,
WPS∗03]. While these systems achieve impressive render-
ing performance, the shared address space does not map to
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supercomputer clusters, and it tends to hide rather than ex-
pose load balance concerns from the programmer. Explicitly
out-of-core ray tracers [WDS04,GMG08] also target shared
memory systems, and their caching structures, if extrapo-
lated to the distributed memory case, are similar to the dis-
tributed shared memory caching techniques described below.

2.3. Distributed-Memory Ray Tracing

In distributed memory, non-queueing ray tracers face a
tradeoff between coherence—achieved by tracing ray groups
that pass through contiguous pixels—and load balance—
achieved by tracing disparate pixels in hopes of balancing
the rendering work [SG88]. These systems typically opti-
mize performance by relying on an expensive preprocessing
step that improves data coherence, such as a low-resolution
rendering pass to pre-load data on the processes [GP90],
or an expensive pre-built acceleration structure to guide on-
demand data loads [WBS03, WSB01].

DeMarle et al. [DGBP05, DGP04, DPH∗03] use dis-
tributed shared memory to hide the memory complexities
from the ray tracer. Their system achieves interactive per-
formance for simple lighting models, but disk contention ru-
ins performance if the scene does not fit in available mem-
ory. Moreover, their results rely on a preprocessing step to
distribute the initial data, a step that typically takes several
hours for a several gigabyte dataset. Ize et al. [IBH11] up-
date this approach using the Manta ray tracer [BSP06] and
modern hardware, but they experience similar memory and
scaling limitations while retaining the expensive preprocess-
ing step.

Reinhard et al. [RCJ99, RJ96] distribute data across the
cluster and assign tasks to processes based on load. This
approach keeps camera and shadow rays on the originating
process, while passing reflection and refraction rays to a pro-
cess that contains the data required to process them.

To balance load, the Kilauea system [Kat03, KS02] dis-
tributes the scene across all processes, but it replicates each
ray on each process. This system requires scene data to fit
entirely in aggregate memory, and it is unclear whether its
small, frequent ray communication will scale beyond the
few processes reported. It is also unclear whether the sys-
tem can accommodate scientific data that does not have pre-
tessellated surfaces.

To date, distributed memory ray tracers that queue and re-
order rays have only been implemented on specialized hard-
ware [DK00] and on a single workstation with GPU acceler-
ation [AL09,BBS∗09,AK10], solutions which are not feasi-
ble for the large datasets produced by supercomputing clus-
ters.

2.4. Large-Scale Direct Volume Ray Casting

Recent work in large-scale ray casting uses a fixed data de-
composition to render images across hundreds-of-thousands

of processes [CDM06, HEC10, PYR∗09]. These approaches
process the entire dataset in core using a domain decompo-
sition, rendering each sub-domain simultaneously and then
compositing the results into the final image. This approach,
which is a form of speculative execution, is effective because
there is a fixed and regular amount of work to perform in the
absence of reflections. When reflections are included, how-
ever, this fixed data approach is prone to load imbalance.
Further, the speculative rendering wastes work when gen-
erated sub-domain images are rejected by the final image
composition pass.

3. Algorithm Overview

This section describes the specific challenges for distributed-
memory ray scheduling, the baseline approaches we mod-
eled, and our dynamic scheduling algorithm.

3.1. Scheduling Considerations

While serial ray scheduling implementations tradeoff in-
creased locality with additional state, moving to a distributed
parallel environment adds load balancing to the list of con-
cerns. With this added variable, it is not clear how one can
apply a serial scheduling algorithm in a parallel environ-
ment. A successful parallel schedule will strike a balance
among locality, state size and load balance to provide both
memory efficiency and high utilization. Because the char-
acteristics of ray computations can change over the course
of generating a single image, such as from tracing coher-
ent camera rays to incoherent diffuse reflections, we expect
that a dynamic schedule will provide improved performance
compared to a static baseline. Pseudocode for the tested
schedules can be found in Figures 3 – 6.

3.2. Static Ray Scheduling Baselines

To establish a performance baseline, we implement two
static schedules that represent direct extensions of a Pharr-
like approach to the parallel domain: an image-plane decom-
position, where a subset of camera rays and their child rays
are traced to completion on each processor; and a static do-
main decomposition, where domains are assigned to a par-
ticular process and rays are sent among processes as the rays
move across domains.

Static Image-Plane Decomposition — rays are evenly
divided among processes by contiguous image-plane decom-
position, and data is loaded on each process as ray com-
putation requires. At each scheduling step, each process
selects the domain with the most local rays queued. This
schedule optimizes for load balance, but it may exhibit poor
locality. This strategy is similar to previous image coher-
ence strategies [BSP06, DGBP05, DGP04, DPH∗03, GP90,
PSL∗98, PSL∗99, WBS03, WSB01]. This schedule also cor-
responds to the demand-driven component of the schedule
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ProcessQueue(queue)
{

while (! queue.empty() ) {
r = q.top();
q.pop();

PerformRayOperations(d, r, q);

if (! RayFinished(r) ) En-
queue(queues, r);

else ColorFramebuffer(r);
}

}

Figure 2: Pseudocode for ProcessQueue(), used in each
schedule pseudocode (see Figures 3 – 6). PerformRay-
Operations() includes traversal, intersection, shading
and spawning new rays.

ImagePlaneTrace()
{

rays = GenerateRays();
queues = EnqueueRays(rays);

while (! queues.empty() ) {
q = FindQueueWithMostRays(queues);
d = LoadDomain(q.domain_id);
ProcessQueue(q);
queues.delete(q);

}
MergeFramebuffers();

}

Figure 3: Pseudocode for Static Image-Plane Decomposi-
tion Schedule.

used by Reinhard et al. [RCJ99, RJ96]; and it directly par-
allelizes a Pharr-like approach by using multiple serial in-
stances run in parallel, where each seeded with a subset of
camera rays. See the pseudocode in Figure 3.

Static Domain Decomposition — the dataset is spa-
tially subdivided, and these smaller domains are distributed
among the available processes, typically in round-robin or-
der. A process can be assigned multiple domains if there
are more domains than processes, or it can be assigned no
domain if there are more processes than domains. Domain
data is loaded at first use, rather than prefetched. Rays are
sent to the process that contains data needed for computa-
tion. At each scheduling step, each process selects the as-
signed domain with the most local rays queued. This sched-
ule optimizes for locality, but it may exhibit poor load bal-
ance. This strategy is similar to previous domain decom-
position strategies [DK00, DS84, KNK∗88] and to the data
parallel component of the scheduling strategy in Reinhard
et al. [RCJ99, RJ96]. This decomposition also corresponds
to the data distribution used in large-scale volume render-
ers [CDM06,HEC10,PYR∗09]; and it directly parallelizes a

DomainTrace() {
rays = GenerateRays();
queues = EnqueueRays(rays);

last_d = NONE;
done = FALSE;
while (! done ) {
# only has rays for its domains
q = FindQueueWithMostRays(queues);
if (q.domain_id != last_d) {
d = LoadDomain(q.domain_id);
last_d = q.domain_id;

}
ProcessQueue(q);
queues.delete(q);

# send rays to procs with
# next domain
SendRaysToNeighbors(queues);
done = NoProcessHasRays();

}
MergeFramebuffers();

}

Figure 4: Pseudocode for Static Domain Decomposition
Schedule.

Pharr-like approach by using multiple serial instances run in
parallel, where each is assigned a set of domains and rays are
sent among the processes. See the pseudocode in Figure 4.

3.3. Dynamic Scheduling Algorithm

Our dynamic scheduling algorithm combines the benefits of
the image-plane and domain decompositions to adapt to the
changing characteristics of a ray tracing rendering. Our algo-
rithm begins with an image-plane distribution of rays, with
potentially duplicated domains across processes if many rays
are concentrated in a particular domain. As the rendering
progresses, the schedule shifts to a domain-decomposition
style where rays are sent between processes and data remains
resident. In contrast to the approaches above, our algorithm
takes real-time feedback from the rendering to improve the
scheduling for coherence and maintain high utilization.

Dynamic Schedule — rays are evenly divided across pro-
cesses. After the initial ray distribution, each scheduling step
sends rays to processes that already contain the domain data
required for intersection. After swapping rays, each process
operates on the domain with the most rays waiting for it. Pro-
cesses that have domain data not needed by any rays may be
assigned a new domain that is immediately needed by cur-
rent rays. See the pseudocode in Figures 5 and 6.

The advantage of our dynamic schedule is its ability to
reorder rays and defer computation until the required data
has been loaded into memory. We expect that the dynamic
schedule will see a reduced number of domain loads when
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ScheduleNextRound(loaded_domain, queues) {
foreach q in queues

queue_info.insert(q.domain_id,q.size());
SendQueueInfoToMaster(loaded_domain,

queue_info);
if (isMaster()) {

ReceiveQueueInfo(loaded_domains,
queue_infos);

foreach p in ProcessCount()
foreach q in queue_infos[p] {

to_schedule.insert(q.domain_id);
is_loaded.insert(loaded_domains[p],p);

}

foreach p in ProcessCount()
if (!to_schedule

.contains(loaded_domains[p])
to_evict.insert( p );

foreach domain_id in to_schedule
if (is_loaded.contains(domain_id)) {

proc_id = is_loaded[domain_id];
schedule.insert(proc_id,domain_id);

}
else { to_assign.insert(domain_id); }

while (!(to_assign.empty()
|| to_evict.empty())) {

domain_id = to_assign.top();
proc_id = to_evict.top();
schedule.insert(proc_id, domain_id);
to_assign.pop();
to_evict.pop();

}
SendScheduleToAll( schedule );

}
ReceiveSchedule( schedule );
return schedule[ MyProcessId() ];

}

Figure 5: Pseudocode for ScheduleNextRound(), called in
the dynamic schedule.

compared against the static image-plane decomposition and
will achieve better load balance than the static domain de-
composition.

4. Methodology

This section describes our experimental methodology, in-
cluding the hardware platform, the datasets, and the render-
ing methods that we used to evaluate our scheduling strategy.

4.1. System Configuration

All experiments are run on Longhorn, a 2048 core, 256
node cluster hosted at the Texas Advanced Computing Cen-
ter. Each node contains two four-core Intel Xeon E5540
“Gainestown” processors and 48 GB of local RAM. All

DynamicRayWeightedTrace() {
rays = GenerateRays();
queues = EnqueueRays(rays);

q = FindQueueWithMostRays(queues);
d = LoadDomain(q.domain_id);
last_d = q.domain_id;
done = FALSE;
while (! done ) {

if (q.domain_id != last_d) {
d = LoadDomain(q.domain_id);
last_d = q.domain_id;

}
ProcessQueue(q);
queues.delete(q);

q = ScheduleNextRound(last_d, queues);
done = NoProcessHasRays();

}
MergeFramebuffers();

}

Figure 6: Pseudocode for Dynamic Ray-Weighted Sched-
ule. ProcessQueue() is defined in Figure 2 and ScheduleNex-
tRound() is defined in Figure 5.

nodes are connected via a Mellanox QDR InfiniBand switch,
and we use MVAPICH2 v1.4 for our MPI implementation.
Our ray tracer is implemented within VisIt [CBW∗11], a
visualization tool designed to operate in parallel on large-
scale data. We use the VisIt infrastructure to load data and
to generate isosurfaces; we implemented all code related to
ray tracing and ray scheduling. To focus on the effects of the
schedules, we turn off all caching within the VisIt infrastruc-
ture, so that only one dataset is maintained per process. Each
load of non-resident data accesses the I/O system.

All MPI communication in our implementation is two-
way asynchronous. This implementation decision impacts
dynamic schedules most, since they have the highest degree
of communication among processes.

4.2. Datasets

We perform a scaling study of our approach using datasets
of various size and granularity from four domains: the vis-
ible female dataset from the National Library of Medicine,
the Richtmyer-Meshkov instability dataset from Lawrence
Livermore National Laboratory, a particle density field from
an n-body cosmological simulation and a high-resolution CT
scan of an abdominal cavity from Viatronix. The particular
data sizes and decompositions on disk are presented in Ta-
ble 1. Sample images of the data are given in Figure 1.

For each dataset, we extract an isosurface using VisIt’s
VTK-based isosurfacing and internal BVH acceleration
structure, and we then ray trace the returned geometry using
two directional lights and, for the n-body particle data, two-
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Table 1: Dataset Sizes and Decomposition

Resolutions
512×512×1734

Visible 24 domains
Female 1.69 GB total size

2048×2048×1920
Richtmyer 960 domains

Meshkov 7.5 GB total size

5123 40963

CT Scan 125 domains 4096 domains
4 GB total size 256 GB total size

5123 61443

Cosmology 512 domains 4096 domains
8.7 GB total size 650 GB total size

bounce reflections. While the isosurface extraction and BVH
generation is performed each time the dataset is loaded from
disk, the cost is small relative to the I/O cost. These costs are
all included in the rendering times in Section 5. We do not
save the BVH since that would incur additional disk and I/O
costs. In addition, we use the coarse acceleration structure
from the spatial decomposition implied by the disk image
of each dataset, since large simulation-derived datasets are
typically stored across multiple files. For the n-body particle
density field, we also perform direct volume ray casting, as
described by Levoy [Lev88, Lev90].

5. Results

This section evaluates our three scheduling strategies on
the datasets described in Section 4. Our primary results are
based on rendering 2048× 2048 images of each dataset. In
addition, we provide results that estimate the impact of a
more optimized ray tracer by rendering 512×512 images of
each dataset, which keeps data access costs about the same
while reducing the ray computation cost. The difference be-
tween the 2048×2048 results and the 512×512 results ap-
proximates improved ray operation performance, as ray op-
erations are a smaller fraction of total execution time.

We find that the image-plane schedule performs best for
cases where ray operation costs (traversal and intersection)
outweigh data I/O costs. Each process runs continuously,
since there is no synchronization, and because I/O costs are
small compared to ray operation costs, there is little penalty
for redundant data loads. However, when I/O costs outweigh
ray operation costs, typically the case for large datasets, the
redundant data loads overcome the benefit of continuous par-
allel execution. As a result, the image-plane schedule per-
forms significantly worse than the domain and ray-weighted
schedules. Figure 7 demonstrates this effect on the small ab-
dominal CT scan dataset. When few primary rays are cast,

Figure 7: Ray Tracing of Abdominal CT scan — Sched-
ule performance for ray tracing on an isosurface of a 5123

abdominal CT scan at image resolutions of 5122 and 20482

(lower is better). The render includes shadow rays for two
directional lights. Runtime is given in seconds per frame.

the I/O costs are a significant portion of overall runtime,
and the image-plane schedule performs poorly. However,
when many primary rays are cast, the I/O costs shrink rel-
ative to the ray operation costs, and the relative performance
of the image-plane schedule improves. The static image-
plane schedule can be as much as 78% faster than dynamic
scheduling, since the I/O costs are amortized over many ray
calculations. The results of Figure 7 are an outlier in two re-
spects: First, our tracer is unoptimized, which artificially in-
flates the cost of ray calculations, and second, the abdominal
CT scan isosurface is our smallest dataset, and our technique
is targeted at much larger data. Nevertheless, this result sug-
gests that if the data can reside completely in memory, an
image-plane decomposition is a competitive technique. We
see this effect exclusively on our smaller datasets: for the
larger datasets discussed below, the I/O costs always dom-
inate the total runtime, and the image-plane schedule per-
forms poorly.

When rendering scenes larger than the memory available
to a single process but that can still fit within aggregate
memory, the domain and dynamic ray-weighted schedules
perform significantly better than the image-plane schedule.
In particular, the domain schedule performs best when the
available aggregate memory can hold the dataset, so that
each process receives one data domain. Since each domain
is resident on a process, there is no I/O beyond the initial
load. This effect can be seen in Figure 8. For the Richtmyer-
Meshkov instability dataset, the ray-weighted schedule runs
124% faster than the domain schedule at 64 processes, but
the domain schedule runs 64% faster at 1024 processes,
where each process receives a single domain.

When rendering scenes that are larger than available ag-
gregate memory, dynamic scheduling provides significant
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Figure 8: Richtmyer-Meshkov and Visible Female —
Schedule performance for the Richtmyer-Meshkov instabil-
ity and the Visible Female datasets (lower is better). The ren-
der includes shadows from two directional lights; runtime is
given in seconds per frame.

performance gains, as shown in Figure 9. When data load
costs dominate execution time, which will be increasingly
true as simulations and datasets increase, the dynamic ray-
weighted schedule improves performance 8× to 14× over
static schedules. When ray computation costs are large, the
dynamic ray-weighted schedule still improves performance
3× to 5× over static schedules.

The performance gains of dynamic scheduling are primar-
ily due to its ability to reduce data domain loads from disk.
Figure 10 shows that ray-weighted dynamic scheduling can
reduce data loads by 10× to 48×, regardless of ray compu-
tation load. We note that the image-plane schedule always
touches more domains as the number of processes increases,
since each process must load a domain if even one ray re-
quires it. Under the domain schedule, a process will repeat-
edly swap among its assigned sub-domains. This swapping
only stops when there are sufficient processes available to
assign a single domain to most processes, as is the case with
the Abdominal CT scan dataset. We also note some oscilla-
tion in the result trends, particularly for the domain schedule
and for small processor counts. This occurs because the or-
der in which domains are processed depends in part on the
total number of processors available, which affects the or-
der in which child rays are both generated and processed
and results in different data access patterns; also, the round-
robin domain assignment for the domain schedule causes
each processor to receive a different set of domains, which
can cause a particular process to load more data.

5.1. Scaling

To test the scalability of our approach, we ran the dynamic
schedule on large versions of our datasets (exact details are
in Table 1). The static schedules failed to complete on these
larger datasets. The domain schedule fails when the ray

Figure 9: Direct Volume Ray Casting and Ray Tracing of
N-Body Particle Density — Schedule performance for direct
volume ray casting and ray tracing on a 5123 particle den-
sity field at image resolutions of 5122 and 20482 (lower is
better). The ray tracing includes two-bounce reflections and
shadow rays for two directional lights. Runtime is given in
seconds per frame.

queue becomes too large for a particular process to contain
all queued rays along with the currently-loaded sub-domain.
The image-plane schedule fails to finish within runtime lim-
its on Longhorn. Figure 11 shows how the ray-weighted dy-
namic schedule performs on large datasets. We believe that
the increased runtime for the largest number of processes
tested is due to increased communication overhead while
available parallelism from the data was exhausted.

Figure 12 compares strong scaling speedup for the
three schedules. Dynamic ray-weighted scheduling exhibits
monotonically increasing speedup until the scaling limit of
the problem size is reached. The slope of the speedup line
might be improved with ray calculation optimizations and
interprocessor communication optimizations for exchanging
rays among processes.
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Figure 10: Spatial Domains Loaded from Disk — Number
of domains (spatial subdivisions) loaded from disk for each
schedule for the cosmology and CT scan datasets (lower is
better). Dynamic scheduling significantly reduces the num-
ber of domains loaded from disk, which is the primary factor
for the performance gain of our approach.

5.2. Effects of Decomposition on Disk

Because the I/O system has a significant impact on perfor-
mance, we evaluate the performance of different approaches
to decomposing the dataset on the disk. We organize the n-
body datasets with two levels of subdivision, and we find that
dividing the data into many spatially distinct sub-domains
can improve scheduling performance. If there are too few
sub-domains, the flexibility of the scheduler is limited, but
if there are too many sub-domains, the data become frag-
mented, which limits the number of rays queued at each
domain. Empirically, a good balance occurs when the num-
ber of sub-domains is several times the number of processes
used to render them. The execution times presented in Ta-
ble 2 are for direct volume ray casting.

6. Future Work and Conclusion

In this paper, we have presented a dynamic scheduling ap-
proach to large-scale distributed memory ray tracing. Our
ray-weighted dynamic schedule is robust across many data

Figure 11: Dynamic Schedules for Large Data — Dynamic
schedule performance for direct volume ray casting of a
61443 n-body particle density field and for ray tracing of
an isosurface extracted from a 40963 abdominal CT scan
(lower is better). The isosurface render includes shadow
rays for two directional lights and two-bounce specular re-
flections. Runtime is given in seconds per frame.

sizes and rendering modes, and it provides an order of mag-
nitude speedup over static scheduling methods when data ac-
cess costs dominate the execution time. In addition, our dy-
namic schedule can render datasets that cannot be rendered
by a static schedule. Our ray tracer has not been thoroughly
optimized, and we have argued that as ray calculation costs
are reduced through optimization, the gap between dynamic
and static schedules will further increase.

We have just begun to explore the space of possible
dynamic schedules. Further work is warranted to identify
schedules that achieve particular system goals. In particu-
lar, it may be possible to schedule a sub-domain across sev-
eral available processes, though this may increase both I/O
and communication costs. A dynamic schedule could also
speculatively load data based on anticipated ray travel, par-
ticularly for an animation sequence where rendering infor-
mation from the previous frame is available. We anticipate
that moving to a one-way communication model will further
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Figure 12: Schedule Speedup — Performance of image-
plane schedule, domain schedule and dynamic schedule for
direct volume ray casting and ray tracing an isosurface of
a 5123 n-body particle density field (higher is better). The
isosurface render includes shadow rays for two directional
lights and 16× sampled, two-bounce diffuse reflections.

increase the performance benefit of dynamic schedules over
static schedules.
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