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In this paper we present a second-order accurate adaptive algorithm for solving
multiphase, incompressible flow in porous media. We assume a multiphase form of
Darcy’s law with relative permeabilities given as a function of the phase saturation.
The remaining equations express conservation of mass for the fluid constituents.
In this setting the total velocity, defined to be the sum of the phase velocities, is
divergence-free. The basic integration method is based on a total-velocity splitting
approach in which we solve a second-order elliptic pressure equation to obtain a
total velocity. This total velocity is then used to recast component conservation
equations as nonlinear hyperbolic equations. Our approach to adaptive refinement
uses a nested hierarchy of logically rectangular grids with simultaneous refinement
of the grids in both space and time. The integration algorithm on the grid hierarchy
is a recursive procedure in which coarse grids are advanced in time, fine grids are
advanced multiple steps to reach the same time as the coarse grids and the data at
different levels are then synchronized. The single grid algorithm is described briefly,
but the emphasis here is on the time-stepping procedure for the adaptive hierarchy.
Numerical examples are presented to demonstrate the algorithm’s accuracy and
convergence properties and to illustrate the behavior of the method.
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1. Introduction

Multicomponent and multiphase flows in the subsurface are often characterized by
localized phenomena such as steep concentration gradients or saturation fronts.
Accurately resolving these types of phenomena requires high resolution in regions
where the solution is changing rapidly. For this reason, the development of some
type of dynamic gridding capability has long been of interest in the porous media
community.

Heinemann (1983) and Ewing et al. (1989) have considered dynamic local grid
refinement approaches. More recent papers by, for example, Sammon (2003) and
Christensen et al. (2004), discuss development of adaptive techniques in the con-
text of unstructured grids. An alternative approach to local refinement is based
on structured-grid adaptive mesh refinement. This type of approach, based on the
strategy introduced for gas dynamics by Berger and Colella (1989), was first ap-
plied to porous media flow by Hornung and Trangenstein (1997) and by Propp
(1998). Additional developments are discussed in the work by Trangenstein (2002),
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Trangenstein and Bi (2002), and Hoang and Kleppe (2006). In this approach, re-
gions to be refined are uniformly subdivided in both space and time. Related ap-
proaches were developed by Nilsson et al. (2005a,b) who use a spatially anisotropic
refinement strategy with no temporal refinement and by Edwards (1996) who uses
a cell-by-cell refinement strategy.

The focus of this paper is on developing a structured-grid adaptive mesh re-
finement (AMR) algorithm for porous media flow. Our approach is similar to the
approach introduced by Hornung and Trangenstein (1997) and to the approach
discussed by Propp (1998). In these approaches, the solution is represented on a hi-
erarchical sequence of nested grids with successively finer spacing in both time and
space. Increasingly finer grids are recursively embedded in coarse grids until the so-
lution is sufficiently resolved. An error estimation procedure based on user-specified
criteria evaluates where additional refinement is needed and grid generation pro-
cedures dynamically create or remove rectangular fine grid patches as resolution
requirements change. The method presented here uses subcycling in time so that
all levels are advanced at the same CFL number, thus reducing the numerical dis-
sipation of the explicit upwind advection scheme used to advance the solution.
The major difference between the approach adopted here and that of Hornung and
Trangenstein (1997) is that the current method does not require a global, multilevel
pressure solve at each fine-grid time step. Instead, when advancing a given level, we
solve the pressure on that level only with boundary conditions obtained from the
coarser levels. This approach avoids the computational expense of the global solve
but introduces additional complexity into the synchronization step of the algorithm
in which inconsistencies between different levels are corrected. The synchronization
approach used here is based on the algorithm developed by Almgren et al. (1998)
for incompressible flows. The methodology is implemented in parallel using the
BoxLib framework discussed in Rendleman et al. (2000) and Crutchfield (1991). A
similar approach was used by Propp (1998); however, his algorithm used a different
approach to synchronization and was limited to two dimensions.

Before describing the adaptive algorithm we will briefly review the total velocity
splitting approach and discuss our basic fractional step scheme for a single grid.
In the third section we describe, in detail, the recursive time-stepping procedure
for the adaptive algorithm and other aspects of the adaptive algorithm. The fourth
section shows convergence results and presents computational examples illustrating
both the performance and parallel scaling of the method.

2. Total velocity-splitting algorithm

Here we consider multiphase, multicomponent incompressible flow in heterogeneous
porous media. The multicomponent mixture is composed of N components (or
lumped pseudo-components). We define n = (ny,...,ny) as the vector of compo-
nent densities per unit pore volume, and let n, represent the portion of n in phase
a, where Greek subscripts refer to mobile phases. Thus, ) n, = n is the total
component density in the combined fluid system. In a general setting, the separation
of components into phases requires a computation of thermodynamic equilibrium
for the mixture. For the problems considered here, the phases are incompressible,
we assume no volume change on mixing and each component only appears in a
single phase. The basic void fraction of the medium is referred to as the porosity, ¢,
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AMR for porous media flow 3

and the fraction of that void occupied by a particular phase is referred to as the
phase saturation, u,, which, for the models considered here, can be determined
from the composition of the phase, n,, and the pure component densities.

The equations that describe the flow represent mass conservation, energy con-
servation, and Darcy’s law. Darcy’s law expresses the volumetric flow rate, v,, of
each phase in terms of the phase pressure, p,, namely,

Vo = _)‘a(Vpa - pag) s (2'1)

where Ay = Kky o/lto is the phase mobility. Here K is the permeability distribution
of the medium; k, . is the relative permeability, which is a function of wu, that
expresses modification of the flow rate due to multiphase effects; uo and p, are
the phase viscosity and phase density, respectively, which depend on the phase
composition; and § is the gravitational acceleration. The pressure in each phase is
related to a reference pressure, p, by a capillary pressure, p. o = po — p, Which is a
function of saturation.
For this system, conservation of mass for each component is given by

on n,
¢>a+v-§ajf@a:v-p+n7 (2.2)

Uq

where D represents diffusive terms that include multiphase molecular diffusion and
dispersion, and R is the reaction source term. The diffusive term associated with
capillary pressure is implicitly included in the definition of the phase velocities. The
diffusion terms can be quite complex, depending on the particular problem; see the
work of Xu et al. (2004) for a detailed discussion of these terms. For purposes
of exposition, we will set D = 0 and R = 0 for the remainder of the discussion.
However, we note that within this framework additional diffusion terms can be
added analogously to the capillary pressure term. If reactions are included in the
system they can be included using the operator-split formalism discussed in Day
and Bell (2000).

The component conservation equations specify the change in total mass of each
component resulting from the transport and diffusion of that component distributed
across the phases. The phase behavior of the system specifies how the components
are apportioned into phases and the volume occupied by those phases. In this pa-
per, we consider only simple incompressible systems without mass transfer between
phases. We can then define a total velocity

v = Zva - - Z )\a(Vpot - pag) = - Z )\a(v(p +pc,a - Pag), (23)
since po = P + Pc,o. The total velocity is divergence-free so that

Vevr ==V Aa(V(p+pea) = pad) =0 . (2.4)

This leads to a second-order elliptic equation for pressure:
VY AVp=-V- (Z AaVPea — pa§> : (2.5)
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We can rewrite (2.3) to express Vp in terms of vy, then using (2.1) we can express
v, in terms of the total velocity,

Aa AsPs AsVDe,p
Vo = EUT + Aa(pa — Z Y)g — Aa(Vpe,o — Z T) )
B B
where A7 = > A, is the total mobility. Writing the conservation equations in terms
of the total velocity yields the fractional flow form of the component conservation

equations, given by

dJ% +V . F(n,ur)=V-(HVP,), (2.6)
where
n, >\a )\ﬁpﬁ N
F(naUT) = . E E'UT+)\@(P0¢ *; Ar )9 s
and

n, AV,
HVP, =) “2Aa(VPea =Y %).
o « B

In the absence of diffusive terms the total velocity defines a splitting that
decomposes the dynamics into an elliptic pressure equation and a system of hy-
perbolic conservation laws. We note that we are assuming here that the system
(b%—rt‘ + V- F(n,vr) = 0 is hyperbolic with vy viewed as a function of space and
time. This is a condition on the model specification; some models for three-phase
flow use relative permeability models that lead to non-hyperbolic behavior and the
resulting problems are ill-posed in the zero-viscosity limit (Bell et al., 1986).

Single grid algorithm

In this subsection, we discuss the single grid algorithm, giving an overview of
the time stepping procedure. The discretization uses a volume of fluid approach
in which nj%;; denotes the average value of n over cell (i,7,k) at time ¢"; n and p
are defined on cell centers while F' and vy are defined on cell edges. The temporal
discretization fits into the basic framework of IMPES-type methods in which the
pressure equation is solved implicitly and the saturation (component) equations are
solved explicitly. Here the basic algorithm is modified so that the overall splitting
approach is second-order accurate in time and we treat the diffusion terms semi-
implicitly so that diffusive terms, HV P,, do not limit the time step.

The outline of the algorithm is as follows:

e Step 1: Solve the pressure equation, (2.5), rewritten in the form
DY Xa(Gp) =D Xapai— DD Aa(Gpea)

for p with properties evaluated using n”. We then use equation (2.3) to define
a total velocity v7:. Here D and G are second-order accurate discretizations of
the divergence and gradient operators, respectively. The divergence operator
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AMR for porous media flow 5

returns a cell-centered divergence from face-centered values; the gradient op-
erator differences cell-centered values to return normal gradients on faces. For
example, in two dimensions the discretization of D) Ao (Gp) at cell (i, )
would be

+

(Ao, (Pit1g = Pig) = Aa,_y (Pi = Pi15))
2 2
2 A

«
a1 (Pige1 = Pig) = Aa, ;o
Ay

(pij —pi,jl))>

where Az and Ay are the mesh spacings in the x and y directions, respectively.

e Step 2: Use (2.6) to advance the solution from time " to time t"*! using
vl We use an unsplit second-order Godunov scheme to compute the hyper-
bolic fluxes using the methodology described in Bell et al. 1989. (See Almgren
et al. 1998 for additional details of the multidimensional aspects of the ad-
vection scheme.) The Godunov discretization is coupled to a Crank-Nicolson
discretization of the diffusive terms, so that

nn+1,* — "
At

with a suitable linearization of the coefficients of the diffusion term; here we
use H"™1* and P71 to denote H and P., respectively, which are functions
of n, evaluated at n™**. In this step, F™72* denotes time-centered fluxes
computed using the Godunov procedure but with the total velocity evaluated
at t".

¢ + DF"* = 1)y (D(H"GPr) + D(H" T *GPr)) - (2.7)

e Step 3: Solve the pressure equation (2.5), with properties evaluated using

n"t1* to compute a new total velocity U?‘H from (2.3). We then define

v;f% = (v} + v;lfl) so that we can time center the dependence of the flux
on vr.

e Step 4: Use (2.6) to re-advance the solution from time " to time t"!, this
1,
time using v?f %2 to obtain values of n"t1,

n”+1 — nn 1 1 1

— DF"t’ =14 (D(H"GP") + D(H" 'GP 1)) (2.8)
again with a suitable linearization of the coefficients of the diffusion term. In
this step, F" 72 denotes time-centered fluxes computed using the Godunov
procedure but with the total velocity evaluated at ¢+ 7.

¢

We note here that Step 1 is not always necessary; it can be acceptable to replace
vl with the final vy computed in Step 3 of the previous time step without significant
loss of accuracy, thus allowing us to avoid the computational cost associated with
Step 1. In this case, v7: is computed with n™* instead of n”. We shall demonstrate
in Section 4 that for our examples this has no noticeable effects on our solution. For
clarity, we shall denote a time step that uses Step 1 as a full solve and one without
as a partial solve.
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3. Adaptive Mesh Refinement

In this section we present the extension of the algorithm described above to an
adaptive hierarchy of nested rectangular grids. First we describe the creation of the
grid hierarchy and the regridding procedure used to adjust the hierarchy during the
computation. Next we discuss the adaptive time step algorithm with subcycling in
time, focusing on the synchronization between different levels of refinement.

(a) Creating and Managing the Grid Hierarchy

The grid hierarchy is composed of different levels of refinement ranging from
coarsest (£ = 0) to finest (¢ = {;q5). Each level is represented as the union of rect-
angular grid patches of a given resolution. In this implementation, the refinement
ratio is always even, with the same factor of refinement in each coordinate direc-
tion, i.e. Azttt = Ayttt = Az = LAz, where r is the refinement ratio. (We
note here that neither isotropic refinement nor uniform base grids are requirements
of the fundamental algorithm.) In the actual implementation, the refinement ratio,
either 2 or 4, can be a function of level; however, in the exposition we will assume
that r is constant. The grids are properly nested, in the sense that the union of
grids at level £ + 1 is contained in the union of grids at level ¢ for 0 < £ < £p44-
Furthermore, the containment is strict in the sense that, except at physical bound-
aries, the level £ grids are large enough to guarantee that there is a border at least
one level ¢ cell wide surrounding each level £41 grid. (Grids at all levels are allowed
to extend to the physical boundaries so the proper nesting is not strict there.)

The initial creation of the grid hierarchy and the subsequent regridding opera-
tions in which the grids are dynamically changed to reflect changing flow conditions
use the same procedures as were used by Bell et al. (1994) for hyperbolic conserva-
tion laws. The construction of the grid hierarchy is based on error estimation criteria
specified by the user to indicate where additional resolution is required. The error
criteria are currently based on tracking component density gradients for one of the
components; however, more sophisticated criteria based on estimating the error can
be used (see, e.g., Berger and Colella (1989)). Given grids at level ¢, we use the
error estimation procedure to tag cells where the criteria for further refinement are
met. We then tag a buffer region n4,s cells wide around the originally tagged cells
so that the features of interest are safely contained within the newly created fine
level. The tagged cells are grouped into rectangular patches using the clustering
algorithm given in Berger and Rigoutsos (1991). These rectangular patches are re-
fined to form the grids at the next level. The process is repeated until either the
error tolerance criteria are satisfied or a specified maximum level is reached. The
proper nesting requirement is imposed at this stage.

At t = 0, the initial data is used to create grids at level 0 through £,,4,. (Grids
have a user-specified maximum size, therefore more than one grid may be needed
to cover the physical domain.) As the solution advances in time, the regridding
algorithm is called every k, (also user-specified) level ¢ steps to redefine grids at
levels £ + 1 to £;q.- The parameter ky should reflect the constraint that we do not
want the tagged feature to move off level £ + 1 during k; level £ + 1 time steps, so
typically k¢ < mpyf. Level O grids remain unchanged throughout the calculation.
Grids at level £ + 1 are only modified at the end of level ¢ time steps, but because
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AMR for porous media flow 7

we subcycle in time, ie. At‘t! = %Ate7 level £ 4 2 grids can be created and/or
modified in the middle of a level ¢ time step if k1 < 7.

When new grids are created at level /41, the data on these new grids are copied
from the previous grids at level ¢ + 1 if possible, or interpolated in space from the
underlying level £ grids otherwise. After regridding we always recalculate vy from
the new data, thus the first fine time step after regridding is always a full solve
rather than a partial solve. We note here that while there is a user-specified limit
to the number of levels allowed, at any given time in the calculation there may
not be that many levels in the hierarchy, i.e. 4, can change dynamically as the
calculation proceeds, as long as it does not exceed the user-specified limit.

(b) Owverview of Time-Stepping Procedure

The adaptive time stepping approach uses temporal subcycling so that each
level is advanced independently at its own time step (At‘+! = %Ate), requiring no
interlevel communication other than the supplying of Dirichlet data from a coarse
level to be used as boundary conditions at the next finer level. When coarse and fine
data reach the same point in time, the data at the different levels are synchronized.
The synchronization approaches are based on the same set of algorithmic ideas as
those developed in Almgren et al. (1998)

The adaptive time-step algorithm can most easily be thought of as a recursive
procedure, in which to advance level ¢, 0 < ¢ < £, the following steps are taken:

o Advance level £ in time as if it is the only level. Use boundary conditions for
component densities and pressure from level £ — 1 if level £ > 0, and from the
physical domain boundaries.

o If { < Vg

— Advance level ((+1) r times with time step At*** = LA¢‘. Use boundary
conditions for component densities and pressure from level ¢ and from
the physical domain boundaries.

— Synchronize the data between levels ¢ and ¢+ 1, and interpolate correc-
tions to higher levels if £ 4+ 1 < £p,44.

Before describing the steps of the synchronization in detail, we first discuss, in
general terms, how to synchronize the data at different levels so that the solution
as computed on each level sequentially can most closely approximate the solution
which would be found using composite solves. During the advance of each level,
for each operator we supply Dirichlet boundary data for the fine grids from the
next coarser grid. This implies that the values at both levels are consistent, but the
computed fluxes at the coarse/fine interfaces are not. The synchronization solves
correction equations that account for discrepancies in fluxes between levels. The
correction equations reflect the type of operator being corrected. For hyperbolic
equations the correction of flux discrepancies is a simple explicit flux correction
as discussed in Berger and Colella (1989). For a self-adjoint elliptic operator, the
discrepancy in the fluxes represents a discontinuity in normal derivative at the
coarse/fine boundary and the correction equation takes the form of a discrete layer
potential problem (Almgren et al., 1998).
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After the level ¢ + 1 data have been advanced to the same point in time as the
level ¢ data, there are three sources of discrepancy in the composite solution that
need to be corrected in the synchronization step.

(D.1) The data at level £ that underlie the level £ 4+ 1 data are not synchronized
with the level £ + 1 data.

(D.2) The composite total velocity computed from the pressure equation, defined as
the time-averaged (over a level ¢ time step) level £ + 1 advection velocity on
all level £+ 1 faces including the £|(¢ + 1) interface, and the level ¢ advection
velocity on all other level ¢ faces, does not satisfy the composite divergence
constraint at the ¢|(¢ + 1) interface.

(D.3) The advective and diffusive fluxes from the level ¢ faces and the level £ + 1
faces do not agree at the ¢|(£+ 1) interface, resulting in a loss of conservation.

The aim of the synchronization steps is to correct the effects of each mismatch.
Discrepancy (D.1) is easily corrected by averaging n at level £ 4+ 1 onto level ¢.
We denote this correction by (S.1). The third discrepancy, (D.3), is also easily
corrected in the case without diffusive terms; we simply correct the solution in the
coarse cells immediately adjacent to the fine level by the divergence of an edge-
based correction field that is non-zero only on the coarse/fine interface where it
contains the difference between the coarse flux and time- and space-averaged fine
flux. In combination with (S.1) this ensures overall conservation.

The second discrepancy, (D.2), is discretely manifest as a non-zero difference
between the coarse grid total velocity and the effective time- and space-averaged
fine grid total velocity at the coarse/fine interface. This difference results from not
having satisfied the elliptic matching conditions at the coarse/fine interface during
the pressure solve. An elliptic solve is necessary to correct for the discrepancy. We
perform a level ¢ “pressure sync solve,” (S.2) with the right-hand-side defined as
the divergence of the mismatch between the level ¢ and the time-averaged level
? + 1 total velocity. From this solve we define a total velocity correction field that
is used to modify the explicit dependence of the hyperbolic flux terms on the total
velocity. In the case of zero diffusive terms these “re-advection corrections” are
explicitly added to the new-time solution in all cells at level £ and are interpolated
to the new-time solution at all higher levels.

In the case of non-zero diffusive terms, the modification of the solution by the
refluxing (S.2) and re-advection (S.3) corrections requires solving additional elliptic
equations. These will be described in more detail in the next subsection.

(¢) Details of Time-Stepping Procedure

Assume now that we are advancing level £, 0 < £ < £,,42, one level £ time step.
We now add the level index, ¢, to the superscript of each quantity, defining, for
example, n™¢ as the component density on level £ at time ¢". We define At? as the
time step of level /.

(i) Advancing a single level

To advance the data on level £ one level £ time step, we follow the time-stepping
procedure as described for the single grid algorithm in the previous section. For the
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AMR for porous media flow 9

level ¢ advancement we advance all the grids at that level simultaneously. Explicit
advection work is decoupled except for the exchange of boundary conditions. When
a coarse/fine boundary does not coincide with a physical domain boundary for the
level ¢ advection step, level £ — 1 data are interpolated linearly in time to specify
Dirichlet boundary conditions at the coarse-fine boundary. The procedures used for
these interpolations are the same as those discussed in Almgren et al. (1998).

(ii) Computing the Coarse-Fine Discrepancy

Over the course of a level ¢ time step, we must accumulate several quantities
at the ¢|(¢ 4+ 1) interface in order to correctly capture the flux discrepancies at the
end of the level ¢ time step. We refer to the face-based data structures that contain
these quantities as registers. The total velocity and flux registers accumulate the
discrepancies between the level ¢ and level ¢ + 1 face-based total velocity vr and
fluxes F', respectively.

These registers are defined only on the £|(¢ + 1) interface and are indexed by
level ¢ indices. Note that in d dimensions, one level ¢ face contains %1 level £ + 1
faces; the sums over faces below should be interpreted as summing over all level £+1
faces which are contained in the level ¢ face. The sums over k should be understood
as summing over the r level £ 4 1 time steps contained within a single level ¢ time
step.

At the end of the level ¢ time step, the velocity register (§v4) holds the difference
between the total velocity at level £ and the time average over one level ¢ time step
of the space average over the area of the level ¢ face of the total velocity at level

0+1:
.
(5’05« _ _v;+1/2,£ +71dz Z U;+Vz,€+1.
k=1 faces
We note that the velocity included in the total velocity register is the time-centered
velocity, v?fl/ ?, that is defined in Step 3 as the time average of v} and v;f”l because
this is the velocity field used in advection.

The flux registers, F"P:* and §F¥Ff¢ contain the differences between the
hyperbolic and diffusive fluxes calculated at level ¢ and the time average over the
level £ time step of the space average over the area of the level £ face of the advective
fluxes at level £+ 1 :

1 r
6f-hyp,f — _j:hyp,i + ﬁ Z Z J:hyp,k,f—&-17

k=1 faces
T

, 4 1 ,
diff.0 _ _ pdiffe dif f .k 041
SFUINE = —Fhilt 4 5 > M F :

k=1 faces
where
hyp,t n+Y N/
Fhup F Yo ,

]:diff,f — 1/2 (Hn,ZGPcn,@ + Hn+1’éGPgl+1’£) ;

as computed in Step 4 of the algorithm.
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We note here that the signs of the quantities added to the flux registers actually
depend on the orientation of the normal facing away from the fine grid. We follow
the convention below that the signs are given for the faces at which the fine grid is
in the direction of the lower coordinate indices.

(iii) Synchronization of data

The first synchronization step, (S.1), has already been described in subsec-
tion (b). Here we give the details of the other two steps of the synchronization.

The discrepancy in the total velocity, (D.2), is captured in dv%.; the divergence
of 0v4 defines the right-hand-side for the level £ elliptic sync solve (S.2). We solve

—D (A\rG(5¢")) = D(6v%)

on all grids at level ¢ for the correction de’. Recall §vf is defined only at the

coarse/fine interface; here D is defined to be the discrete divergence operator eval-
uated only on the level ¢ cells adjacent to the interface but not underlying any
level ¢ + 1 grids, and including contributions only from the coarse/fine interface.
Boundary conditions on physical no-flow boundaries are homogeneous Neumann
(%Z)Z = 0); on outflow de’ = 0. If £ > 0, the boundary conditions for de’ are given
as homogeneous Dirichlet conditions on the level £ —1 cells outside the level ¢ grids.

We then define the correction velocity field from de’ :
U;OTM = M\ G(deb).

We now use (v;lfl/ﬂ +057""") to define new fluxes on all level £ faces, and define

.7-'5;”"4 as the difference between the original fluxes and these newly computed
fluxes. In the case of non-zero diffusive terms, we must diffuse the re-advection and
refluxing corrections before adding them to the new-time solution, so we do not
add them directly to the solution. Rather, the divergence of the re-advection flux
corrections is added to the advective and diffusive flux mismatches to define the
cell-centered right-hand-sides for the refluxing solves (S.3):

14 corr,l 2 hyp,L dif f,l
RHS!,,. = —DF"" — D(SF"P* 4 sFH1E). (3.1)
Then, we solve for the correction to the solution, nf;ync
L At s E 4
PNy — ?D(H GP]) = RHS,,,. (3.2)

where H® = H(n"t1¢ + nﬁync) and P$ = P,(n"Thf + nf;ync).
If £ > 0, we must now modify the level £ — 1 velocity registers and flux registers
to account for the corrections to the solution due to the re-advection corrections as

well as the diffused corrections. This is analogous to the accumulation of advective
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AMR for porous media flow 11

and diffusive fluxes during the advance of a single level. To do this, we set

1
suit = sult 4 p v?COTT7
faces
1
hyp,—1 . _ hyp,£—1 - corr,t
2 = OF + g > F,
faces
. , 1 1
dif fl—1 . __ dif fl—1 7 ~1rs s
2 = 0F —s—rdZ{QHGPC}.
faces

These will enter into the correction performed between levels £ — 1 and £ at the end
of the level ¢ — 1 time step if £ > 1.
The corrected solution at level £ is then given by
nn-‘rl,f — nn-‘rl,f 4 ngync‘
If ¢ < 4,40, we interpolate the correction onto the fine grids at all finer levels, g,
{ < q < lqy using conservative interpolation:

n"the .= pntha 4 Interpcons(nﬁync).

This completes the synchronization steps for scalar quantities.

4. Numerical Results

In this section, we examine the numerical properties of the method described in the
previous section. In the first subsection we examine the convergence behavior of
the method. While the basic discretization presented here is similar to a traditional
IMPES fractional step discretization, we have modified the method such that the
total velocity is centered in time. This makes the method formally second-order
accurate, in contrast to the standard IMPES approach. In our first example, we use
a stable one-dimensional problem based on a two-component single-phase system
to demonstrate the method’s second-order rate of convergence and to illustrate the
loss of accuracy associated with the standard IMPES-type fractional step scheme.
We then demonstrate the second-order convergence rate of the algorithm with a
two-dimensional problem and show that the partial solve algorithm maintains the
overall accuracy of the method relative to the full solve version. We also examine
the effects of centering the total velocity and compare the current approach with
the standard IMPES discretization when the flow is unstable. In the second subsec-
tion, we compare solutions obtained on a uniform grid with those computed with
AMR. For this purpose, we use a more complicated example involving a three-
component two-phase system. In the final two subsections, we simulate a large
three-dimensional problem using the parallelized AMR algorithm, and present the
scaling behavior. We note that for the numerical results presented here, we neglect
capillary pressure.

(a) Convergence

For our first study we consider a single-phase two-component system where
components 1 and 2 are completely miscible, and form a mixture with viscosity
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Table 1. L' errors and convergences rate of the method for a 1D two-component
single-phase system.

h, m | IMPES rate | NEW rate
2/50 | 1.06e-2 - 9.92e-3 -

2/100 | 2.86e-3 1.89 | 2.44e-3  2.02
2/200 | 1.25e-3 1.19 | 5.97e-4  2.03
2/400 | 6.07e-4 1.04 | 1.50e-4 1.99
2/800 | 3.00e-4 1.01 | 3.58e-5 2.07

given by
1

= P 4.1
0= e MiAg: & (4-1)

where ¢ = n1/(n1 + n2) and M = 10. In our algorithm as presented, both the
pressure discretization and the component conservation equations are discretized
to second-order accuracy. In the standard IMPES formulation, the total velocity is
not centered in time, which introduces a small first-order temporal error. In most
realistic problems, this error is typically dominated by spatial truncation errors,
so we examine the problem in the context of one dimension where we can use fine
spatial resolution. We take as initial data ¢(x) = 0.5(1+tanh((0.3—x)/0.05) on the
interval [0, 2] and impose a constant pressure drop. The time step, which is fixed for
each resolution, is set so that the CFL is initially approximately 0.35. In addition,
we turn off the flux limiting in the advection scheme.

The L' norm of the errors for the standard IMPES discretization and the full
solve version of the new algorithm are presented in Table 1. The new algorithm
shows clear second-order convergence whereas the standard IMPES algorithm is
only first-order accurate asymptotically. At the coarsest resolution, the two ap-
proaches have nearly the same error and the IMPES discretization shows nearly
second-order convergence between the two coarsest discretizations. At these coarser
resolutions the temporal discretization error is dominated by the spatial truncation
error, which is second-order accurate in both cases.

Next, we examine the convergence properties of the single grid algorithm in two
dimensions. For this problem we consider a domain [0,[;] % [0,l,] where I, = 16m
and I, = 4m. At time ¢ = 0, the domain contains only component 2. For time
t > 0, component 1 flows into the domain from the left edge of the domain with
a composition given by n1(0,y;t) = 7p1 and n2(0,y;t) = (1 — 7)p2 where 7(t) =
0.5(1 + tanh(¢/109))). The densities of component 1 and 2 are 1000 kg/m? and 800
kg/m3, respectively. We impose no-flow conditions on the top and bottom edges and
a pressure difference of 2 atm between the inlet and the outlet. We define M = 2.
The porosity is uniformly 1 while the permeability function k(zx,y) is given by

K(x,y) = 100(1 + sin(7y/1,)*) mD.

We note that 7(¢) and x(x,y) are chosen so that the solution will be smooth.
Gravity points in the negative y direction. The calculation is run for 1.2 x 107 s
with Az = Ay =1/2" m for n = 3,4, 5,6. Uniform grids and a fixed time step are
used for the purpose of evaluating the convergence of the solution.

Table 2 shows the discrete L>°, L' and L? norms of the difference between the
solution n; obtained on each grid and that obtained on the next finer grid, and
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Table 2. L, L' and L? errors and converge rates for ni in a 2-D two-component
single-phase calculation with the partial solve algorithm.

n 3 rate 4 rate 5 rate 6
L | 7.980 1.38 3.0612 1.57 1.29 1.11 0.5960
L' | 0752 191 2.005-1 1.99 5.047e-2 1.95 1.306e-2
L? | 1438 1.83 4.036e-1 1.88 1.097e-1 1.81 3.137e-2

Table 3. L™, L' and L? errors and converge rates for ny in a 2-D two-component

single-phase calculation, with the full solve approach.

n 3 rate 4 rate 5 rate 6
L | 7978 1.38 3.061 1.29 1.250 1.08  0.5913
L' | 0.752 1.91 2.006e-1 1.99 5.050e-2 1.98 1.282¢-2
L? | 1439 1.83 4.039e-1 1.88 1.098¢-1 1.81 3.128e-2

the resulting convergence rates. The rate between the two columns of error norms
is defined as log,(g;/e,) where ¢; and &, are the errors shown in the left and right
columns. Table 2 clearly demonstrates the second-order convergence property of
the algorithm when measured in the L' and L? norms. The convergence rate of
the L error is less than 2; this can be attributed to limiters used in the Godunov
scheme. Table 3 shows the same data but for calculations done using the full solve
approach. We see by comparing the two tables that the errors obtained from the
different approaches are very similar. We conclude that the omission of Step 1 does
not adversely affect the convergence rate of our method.

The next set of calculations compares the solution obtained using our method to
that obtained using a first-order method when the solution is no longer smooth. The
goal is to show that even though the flow is no longer in the asymptotically second-
order regime of the algorithm, the accuracy properties of the formally second-order
method still have important consequences for the behavior of the flow. We construct
the first-order method by eliminating Steps 3 and 4 from the method presented in
Section 2, and setting n"t! = n"t*,

However, the error in the solution cannot be directly measured by taking the
norm of the difference between two solutions. We instead compare the mixing length
given by the length of the fingered zone. Following the work of Manickam and Homsy
(1995), we define the mixing length, Ls, as

Ls = x|e=s — T|e=1-5 (4.2)

ly
/ n1dy
0
ly ly
/ n1dy+/ nady
0 0

and § = 1x107°. We first look at a stable fingering profile that allows us to establish
a hypothesis on how mixing length is related to accuracy. We then examine an
example where the flow is highly unstable.

For the first example, we again look at the two-component single-phase system
described in the previous section. We consider here a uniform «(z,y) = 200 mD
and a pressure difference of 0.5 atm between the inlet and the outlet. We see in

where

c(x) =
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Figure 1. Solution of n; at 8 x 106 s.

Table 4. Comparison of the mizing length Ls at time 8 x 10° s; e, is the relative error
when compared to solution obtained for grid size 1024 x 256 with the full solve second-order
method.

grid size 512 x 128 1024 x 256 2048 x 512
Ls, m €r Ls, m €r Ls, m €r

1st-order 11.0313 7.23e-2 11.5000 3.29e-2 11.8828 6.57e-4
2nd-order, partial  11.0625 6.96e-2 11.5156 3.16e-2  11.8906 0

2nd-order, full 11.0625 6.96e-2 11.5156 3.16e-2  11.8906 -

Figure 1 that a stable finger extends from the inlet to the outlet at the bottom
of the simulation domain. We then measure the mixing length for three different
grid sizes and three different approaches. The grids we consider are 512 x 128,
1024 x 256 and 2048 x 512. The three approaches are first-order, second-order with
the partial solve algorithm, and second-order with the full solve approach. The
solution obtained from the 2048 x 512 grid and the full solve approach is used as
the reference solution. The simulation is run to a final time of 8 x 106 s.

To amplify the difference between the first-order method and the second-order
methods, we change the permeability distribution function k(x,y) to

150 mD, y/l, < .25;
) 300mD, 0.25 <y/l, < .5
@Y) =9 100 mD, 0.5 < y/l, < .75; (4.3)

200 mD, y/l, > .75.

In addition, M is increased to 10, dramatically increasing the inherent insta-
bility of the problem. Figure 2 shows that the viscous fingers resulting from the
first-order method and the second-order methods have some notable differences.
Slight variations in the solution can develop into distinct fingering profiles due to
instabilities in the solution. To further illustrate this point, we examine a two-
component single-phase system in a domain where £ = 100 (1+1078¢) mD and e is
a random number between 0 and 1. Figure 3 shows that two different realizations of
€ lead to two different fingering profiles. This suggests that any minor perturbation
can lead to variation in the details of the fingering. In spite of this sensitivity, we
see that the omission of Step 1 does not have significant effects on the solution. In
Table 5, we list the mixing lengths for grid sizes 512 x 128 and 1024 x 256 com-
puted with the three approaches. The minor differences in mixing length for the
two second-order methods further demonstrate that the additional work required
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Figure 2. Concentration of component 1 after time 5 x 10° s based on first order method
(top), second order method (middle), and second order method with Step 1 (bottom).

Figure 3. Fingering details of two different perturbation profiles of «.

Table 5. Comparison of the mizing length Ls at time 5 x 10° s for an unstable
two-component single-phase system.

grid size Ls, m
512 x 128 1024 x 256
1st-order 7.219 7.906
2nd-order, partial 7.500 8.219
2nd-order, full 7.531 8.250

for the full solve algorithm is unnecessary. Results of the subsequent sections are
based on the second-order method with the partial solve algorithm.
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(b) Comparison between AMR and Uniform Grid

The next set of calculations compares the composite grid solution with the uni-
form fine grid solution for a two-phase, three-component system representing a
simple polymer flood example. We have an aqueous phase consisting of two com-
ponents, water (n,,) and polymer (n,), that is injected into a domain filled with
an oleic phase composed of a single component (n,). We impose the same type
of boundary conditions as in the previous two subsections. For this problem, we
have p, = p, = 1000 kg/m?, faqueous = 0.175 + 0.35(n17fn2) cP, p, = 800 kg/m?,
and poleic = 0.35 cP. The porosity is again uniformly 1. The permeability function
k(x,y) is given by (4.3) and the injection composition is given by

. 100 kg/m®, 0<t<5x10%
Y7 900 kg/m®, ¢t>5x10° s ’

n, = 1000 — ny kg/m3, t > 0; and n, = 0 kg/m?, ¢ > 0. Again, the flow is not
in the asymptotically second-order regime of the algorithm. The goal here is to
show that with the adaptive algorithm one can achieve accuracy comparable to
that on a uniform fine grid. The regridding criterion, which flags coarse grid cells
for refinement, is based on the magnitude of |Vn,|.

We note that although the composition for t < 5 x 10° s will lead to a stable
front, the composition for ¢ > 5 x 10% s will lead to a highly unstable front. A
direct comparison between the solution after t = 5 x 10° s is then not meaningful
for reasons elucidated in the previous section. It nevertheless allows us to examine
the behavior of both propagation modes of the aqueous phase.

For the uniform grid, we use a grid size of 1024 x 256. For the AMR simulation
we have a base grid of 256 x 64, with two additional levels of refinement with a factor
of two refinement between each level. A particular cell is tagged for refinement if
|[Vn,,| > 500. For both simulations, the time step is computed with a CFL number
of 0.4. Figure 4 shows that stable solution fronts for the uniform and the adaptive
simulations are identical. However, while the unstable fronts exhibit similar features,
there are notable differences in the fingering structure. Unstable fronts can thus
develop differently even though captured at the same effective resolution, as shown
by the uniform and adaptive solutions shown in Figure 5.

In Table 6, we compare the computational time needed to solve the current
problem on a uniform grid and an adaptive grid. We note that at 7 x 10° s, AMR
reduces the computational time by 88%. However, as the percentage of the domain
that is refined increases, the performance benefit decreases. At 10% s, when the
percentage of the domain refined at level 2 increases to 22.5%, the computational
savings from using AMR is reduced to 80%, As expected, the efficiency gains from
using AMR will be problem-dependent.

(¢) A three-dimensional example

We consider the same three-component two-phase system for a three-dimensional
problem. The domain is now given by [0,16] m x [0,4] m x[0,2] m. We impose no-
flow boundary conditions along the faces with normals in the y and z direction, and
a pressure difference of 2 atm in the z-direction. The properties of the components
are the same as in Section (b), and porosity is again uniformly 1. The permeability
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i 3

=

Figure 4. Concentration of water at time 7 x 10° s, solved on an uniform grid (top) and
adaptive grid (bottom).

Figure 5. Concentration of water at time 1.04 x 10° s, solved on an uniform grid (top)
and adaptive grid (bottom).

Table 6. Comparison of the computational cost
[ t=7x10°s t=1x10°s

time taken for uniform grid 7233.5 s 10461.9 s
time taken for AMR grid 8784 s 2106.2 s

% domain refined at level 1 26.4 45.6

% domain refined at level 2 11.9 22.5

function k(z,y, z) here is a log-random distribution with a mean of 150 mD and a
variance of 0.1 mD. In addition,  is highly correlated in the x and y directions but
not in the z direction, as shown in Figure 6.

We performed the simulation on a Cray XT4 supercomputer. At the coarsest
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Figure 6. The permeability function used in the 3D example.

Figure 7. The adaptive grid (left) and solution at time 1.6 x 10° s.

level, the grid size is 128 x 64 x 16 with up to three additional levels of refinement
with refinement ratio 2 between adjacent levels. The resulting grid and component
density of component water at time 1.6 x 10 s are shown in Figure 7.

(d) Parallel Performance

By adopting a block-structured form of AMR, the solution at each level in the
hierarchy is naturally represented in terms of data defined on a collection of logically
rectangular grid patches each containing a large number of points. Thus, the data
is represented by a modest collection of relatively large, regular data objects as
compared to a point-by-point refinement strategy. This type of approach allows
us to amortize the irregular aspects of an adaptive algorithm over large regular
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operations on the grid patches. This organization of data into large aggregate grid
patches also provides a model for parallelization of the AMR methodology.

Our adaptive methodology is embodied in a hybrid C++/FORTRAN software sys-
tem. In this framework, memory management and flow control are expressed in the
C++ portions of the program and the numerically intensive portions of the compu-
tation are handled in FORTRAN. The software is written using a layered approach,
with a foundation library, BoxLib, that is responsible for the basic algorithm domain
abstractions at the bottom, and a framework library, AMRLib, that marshals the
components of the AMR algorithm, at the top. Support libraries built on BoxLib
are used as necessary to implement application components such as interpolation of
data between levels, the coarse/fine interface synchronization routines, and linear
solvers used in the pressure and diffusion solves.

The fundamental parallel abstraction is the MultiFab, which encapsulates the
FORTRAN-compatible data defined on unions of Boxs; a MultiFab can be used as if it
were an array of FORTRAN-compatible grids. The grids that make up the MultiFab
are distributed among the processors, with the implementation assigning grids to
processors using the distribution given by the load balance scheme described in
Crutchfield (1991) and in Rendleman et al. (2000). This load balance scheme is
based on a dynamic programming approach for solving the knapsack problem: the
computational work in the irregularly sized grids of the AMR data structures is
equalized among the available processors. After the initial allocation of grids addi-
tional changes to the grid distribution can be performed to reduce communications
between processors. For non-reacting flows, the number of cells per grid is often a
good work estimate. MultiFab operations are performed with an owner computes
rule with each processor operating independently on its local data. For operations
that require data owned by other processors, the MultiFab operations are preceded
by a data exchange between processors.

Each processor contains meta-data that is needed to fully specify the geometry
and processor assignments of the MultiFabs. At a minimum, this requires the stor-
age of an array of boxes specifying the index space region for each AMR level of
refinement. In the parallel implementation, meta-data also includes the processor
distribution of the FORTRAN compatible data. The meta-data can thus be used to
dynamically evaluate the necessary communication patterns for sharing data among
processors, enabling us to optimize communications patterns within the algorithm.

To measure the parallel performance of the algorithm, we use a weak scaling
study based on a replicated problem strategy as discussed in Colella et al. (2007).
The case considered here is a two-component single-phase system with a layered
permeability function. By replicating the problem in the y and z directions, we
are able to scale the problem size without modifying the problem characteristics,
particularly with regard to how adaptive criteria and grid generation impact the
overall problem. In Figure 8 we present scaling data compared to ideal behavior for
a range of processors from 4 to 256. We see a slight deviation from ideal scaling,
which is primarily attributable to increases in time spent in the elliptic solver.

5. Conclusions and Future Work

In this paper, we have presented a structured adaptive mesh refinement algorithm
for incompressible flows in porous media. The method is based on a total veloc-
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Figure 8. Parallel performance of the adaptive algorithm based on weak scaling.

ity splitting of the equations into an elliptic pressure equation and a system of
hyperbolic conservation laws for the component densities. The resulting system is
discretized using cell-centered differencing for the pressure equation and a second-
order Godunov scheme for the component conservation equations. The adaptive
algorithm uses subcycling in time, i.e., the ratio of the time step to the mesh spac-
ing is constant across levels of refinement. Rather than solve a global composite
equation for the pressure at every time step at the finest level, we perform single-
level solves at each fine step then use an elliptic correction solve to synchronize
the solution across levels. This leads to a considerable improvement in computa-
tional efficiency. The method has been implemented in parallel and shows excellent
scalability up to 256 processors.

Our goal in future work will be to extend this approach to more realistic prob-
lems. As a first step in that direction, we will extend the current approach to include
realistic geochemical reactions. Beyond that, our target will be to extend the ap-
proach to more realistic fluid models that include compressibility, interphase mass
transfer and thermal effects.
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