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ABSTRACT 
Simulations are routinely used to study the process of 
carbon dioxide (CO2) sequestration in saline aquifers.   
In this paper, we look at some numerical aspects of 
the accurate modeling and simulation of the 
dissolution-diffusion-convection process. We 
perform convergence studies with respect to solver 
tolerances, grid resolutions, fluctuation strength, and 
domain size. We show that stringent tolerances and 
grid resolutions are needed to accurately predict onset 
time. Domain size must be sufficiently large to 
contain at least 2 extended fingers to accurately 
predict the long-term stabilized mass flux of CO2; 
otherwise, finite domain effects will adversely 
change the flow behavior of the system we are 
modeling.   
 
INTRODUCTION 
Carbon dioxide (CO2) sequestration involves 
injecting CO2 into a saline aquifer.  While the 
primary mechanism of securing the CO2 relies on a 
leak-proof formation, secondary geochemical 
mechanisms may play a significant role, especially in 
a geological time frame.  At long time, an immiscible 
CO2 gas layer will form on top of the brine in the 
rock formation. Under ambient temperature and 
pressure conditions in a typical aquifer, CO2 will 
dissolve into the brine and increase the density of the 
brine at the interface of the layers by 0.1–1%, 
depending on the salinity of the brine (Pruess and 
Zhang, 2008). Due to gravitational instability and the 
heterogeneity in the rock properties of the aquifer, 
CO2-rich brine fingers will form, leading to 
convective flow that transports these CO2-rich brines 
downward, while driving brine with low CO2 
concentration upwards. This then accelerates the rate 
at which CO2 is dissolved and provides a more secure 
mechanism by which CO2 can be stored.  
 
This dissolution-diffusion-convection process has 
been analyzed in a number of studies. In Ennis-King 
and Paterson (2003) and Riaz et al. (2006), linear 
stability analyses yield useful relations for the onset 
time for convection, dominant wavelength for growth 
of convective fingers, and the growth rates of these 

fingers. Numerical simulations were also performed 
to further elucidate the process and to validate the 
linear stability analyses. For example, Riaz et al. 
(2006) performed numerical simulation of a single-
phase two-component model with the Boussinesq 
assumption and demonstrated that the simulation 
results are consistent with their analysis. Pruess and 
Zhang (2008) examined long-term behavior of the 
CO2 flux, in addition to the onset of convection. 
Their simulation uses a full compressible model with 
very accurate equations of state.  
 
In this work, we examine some of the numerical 
aspects of studying the dissolution-diffusion-
convective process of CO2 through simulation. We 
use a second-order accurate adaptive method that is 
described in the next section. Specifically, we 
examine how simulation parameters, such as solver 
tolerances, grid resolution, strength of perturbations, 
and domain size, affect our solution.  The results are 
compared to those obtained through TOUGH2-MP, a 
parallelized version of the general-purpose simulator 
TOUGH2/ECO2N (Zhang et al., 2008; Pruess, 2004; 
Pruess and Spycher, 2007). 
 
NUMERICAL SCHEME 
We assume that a layer of CO2-saturated brine is 
formed at the interface of the brine and CO2 gas, and 
the dissolution rate is sufficiently high that the layer 
remains saturated for the length of the simulation. 
This assumption allows us to use a variable-density 
single-phase incompressible model to treat the 
dissolution-diffusion-convection process. The 
variable-density formulation we use is similar to the 
formulation of Douglas et al. (2002), and different 
from that of Riaz et al. (2006), since it does not make 
the Boussinesq assumption. Here, we provide an 
overview of the methodology; details of the approach 
are given in Pau et al. (2009). 
 
The basic integration scheme is based on the total-
velocity splitting approach. Due to the dependence of 
fluid density on the mass fraction of dissolved CO2, 
the velocity divergence constraint is given by 
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where the summation is over components i = 1 (CO2) 
and i = 2 (H2O). Here, u is the Darcy velocity, ρ1 and 
X1 are the density and the mass fraction of CO2(aq), 
ρ2 and X2 are the density and the mass fraction of 
H2O, respectively, ρ  is the density of the mixture, φ 
is the porosity and D is the diffusion coefficient. 
Expressing u in terms of pressure p, this divergence 
constraint leads to a second-order elliptic pressure 
equation, given by, 
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that we can solve to obtain u; κ  is the permeability of 
the porous media, µ is the viscosity of the mixture 
and g is the gravity. This velocity is then used to 
recast component conservation equations as nonlinear 
hyperbolic equations.   
 
The discretization procedure we have adopted is 
similar to the IMPES approach. The pressure 
equation is solved implicitly using a finite difference 
method and the mass conservation equations are 
solved semi-explicitly using an explicit second-order 
Godunov method for advection and an implicit 
Crank-Nicholson discretization of diffusion. Unlike 
the basic IMPES algorithm, however, our method is 
second-order accurate in both space and time.   
 
The overall time-stepping procedure is integrated into 
an adaptive mesh refinement (AMR) framework 
(Almgren et al., 1994) to efficiently accommodate the 
difference in scale between the diffusive boundary 
layer and the large-scale convective fingers. Our 
approach to adaptive refinement uses a nested 
hierarchy of logically rectangular grids with 
simultaneous refinement of the grids in both space 
and time. The grid changes with time based on a set 
of user-defined refinement criteria.  Shown in Figure 
1 is a snapshot of the grid; finer grids are placed in 
region where small features with large concentration 
gradients are present. The resulting algorithm is 
parallelized and shows good scaling behavior up to 
1024 CPUs.   
 

 
Figure 1. AMR grid with four levels of refinement.  

Refinement criterion is based on 
concentration gradient of all components. 

 
PROBLEM SETUP 
The fluid properties, as specified in Table 1, are 
derived from the ECO2N fluid module of TOUGH2 
and correspond to pure water (no salinity) at 
temperature and pressure conditions of T = 45°C, P = 
100 bar, as would be encountered in a typical 
sedimentary basin near 1,000 m depth. A two-
dimensional domain was used as shown in Figure 2. 
In most cases, a domain size of 1 m × 4 m is used. 
 

Table 1. Fluid and formation properties 
Property Magnitude 
Viscosity, µ 0.5947 mPas 

Water density, ρw 994.56 kg/m3 

Saturated CO2 mass fraction, X1 0.049306 
Density increase due to CO2 

dissolution, Δρ 
 
10.45 kg/m3 

Diffusivity, D 2×10-9 m2/s 
Mean permeability, κ 10 D 
Mean porosity, φ 0.3 
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Figure 2. Schematic of specifications used for 

numerical simulations. Different heights 
H and widths W were employed for the 
simulation domain. Periodic boundary 
conditions mean that the same conditions 
were maintained on the left and right 
boundaries. 

 
The flow system is initialized in gravity equilibrium 
(hydrostatic pressure gradient). The top boundary is 
impermeable and only diffusion of dissolved CO2 
into the simulation domain is permitted at the top 
boundary. Isothermal conditions are assumed 
throughout. The medium is assumed homogeneous, 
but small random variations, described by maximum 
per cent deviation from the mean, in permeability or 
porosity are imposed to seed the convective activity. 
   
RESULTS 
Figure 3 shows the concentration of CO2 after the 
initialization of convective flow. Small fingers that 
form at the top boundary of the domain grow and 
merge into one or more extended fingers, the main 
conduits by which aqueous CO2 is transported 
efficiently downward. These extended fingers grow 
wider as they traverse downward, due to diffusion.  
In addition, the dynamics within each of these 
extended fingers can be quite complex. Specifically, 
we observe that blobs of aqueous CO2 with higher 
concentration may pinch off from an extended finger, 
and move downward at a greater speed. These blobs 
eventually diffuse to a point where they are 
indistinguishable from the extended finger. The 
dynamics of convective flow is thus complex and 
exhibits highly nonlinear behavior.   

 

 
Figure 3. A snapshot of the concentration of CO2 

after onset of convection. The arrows 
show the velocity field.   

 
In subsequent analyses, we will focus on two 
quantities of interest. First is the onset time of 
convection, tonset, which determines the time at which 
convection becomes an important transport 
mechanism. We define tonset as the time at which the 
average mass flux at the top boundary, F0, has a 
relative deviation of 1% from a pure diffusive mass 
flux.    
 
Second is the stabilized mass flux, 〈F0〉, at the top 
boundary.  The existence and the quantification of 
〈F0〉 provide a simple model for larger-scale 
simulations of CO2 injection. To determine 〈F0〉, we 
first compute the moving average Fm(t) defined as 
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where Δt is chosen such that Fm does not fluctuate 
more than 5% over a time interval ΔT. The stabilized 
mass flux is then given by  
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where T+Δt/2 is time at end of simulation. We ensure 
that the fingers have not reached the bottom of the 
simulation domain at time T+Δt/2.   
 
Both the definitions we adopted above are admittedly 
arbitrary, but they provide consistent measures for 



 

  
 
 
 

performing our convergence studies. We note that F0 
is numerically equal to the CO2 dissolution rate. 
Thus, F0 denotes the rate at which CO2 is removed 
from the highly mobile and buoyant gas phase, and 
put into a less mobile and negatively buoyant 
aqueous phase. This rate has important ramifications 
for storage security. 
 
Effects of solver tolerances on the onset time 
We begin this section with an analysis of the 
influence of numerical errors on the onset time. For 
homogeneous permeability and porosity, the two-
dimensional problem at hand can be essentially 
reduced to a one-dimensional diffusion problem.  
Convective transport is only induced when a non-
uniform flow field is generated by the heterogeneity 
in the permeability or the porosity function.   
However, linear solvers with finite tolerances may 
introduce small non-uniform errors that can also 
eventually lead to instability and convective flow. It 
is then important that we ensure that any convective 
transport observed in our simulation is induced by 
heterogeneities in formation’s properties, and not due 
to finite tolerances of the linear solver we use. In 
particular, the tolerances must be sufficiently small 
that it has limited influence on the dynamics of the 
flow, and thus the onset time.   
 
Since the Darcy velocity is computed from the 
pressure, we shall look at tolerances of the linear 
solver used to solve the pressure equation in our 
numerical scheme. Our multigrid linear solver uses 
two tolerances to control the accuracy of the linear 
solve: the relative error tolerance, εrel and the absolute 
error tolerance, εabs.  Figure 4 shows that for 1% 
fluctuation in κ and εrel = 10-12, the onset time 
converges to a value of 2.3×105 s when εabs<10-14. We 
note that the numerically-induced onset time is larger 
by a factor greater than 2. In addition, as we decrease 
εabs, the numerically induced onset time increases, but 
the true onset time remains unchanged. Decreasing 
εrel to 10-14 also does not change the results. Thus, we 
can conclude that with εrel =10-12 and εabs=10-14, the 
convective behavior that we observed is induced only 
by the heterogeneity in the permeability, and not by 
effects of finite tolerances in the linear solver.  

 
Figure 4. Effects of numerical errors on the 

determination of onset time. The onset 
time has converged when the absolute 
tolerance is 10-14. 

 
Effects of grid resolution on the onset time 
Riaz et al. (2006) derived a critical wavelength λc 
from the linear stability analysis for examining the 
onset of convective flow. To fully capture the 
dynamics during the onset of convection, the 
dimensions of the simulation domain must be much 
larger than λc. For the parameters given in Table 1, 
λc=0.1 m. Thus, our simulation domain, which has a 
width that is 10 times larger, is adequate.  
 
However, the grid resolution must still be sufficiently 
high to resolve λc so that we can capture the initiation 
of convective flow accurately. We perform a grid 
convergence study to determine the appropriate grid 
size. Initial experiments show that we need to adjust 
the fluctuations value with grid size so that the 
underlying statistics are consistent for an 
uncorrelated random distribution.  It reflects the 
notion that for a truly random medium, as gridblocks 
become larger, the variance of the fluctuations will be 
lower because of averaging. For example, an initial 
1% fluctuation for a given resolution has to be 
reduced by half when the grid size in each direction 
is doubled.   
 
We examine four different grid sizes: Δx = 1/256, 
1/512, 1/1024, and 1/2048. The corresponding 
fluctuations are given by 0.25%, 0.5%, 1% and 2%.  
Figure 5 shows that the onset time converges to a 
single value.  From Table 2, we can conclude that the 
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onset time converges to 2.23×105 s.  An effective 
resolution of Δx = 1/1024, which is a factor of 100 
smaller than λc, is thus sufficient.  
 

 
Figure 5. Effects of numerical errors on onset time. 

The onset time has converged when the 
absolute tolerance is 10-14. 

 
Table 2. Onset time, tonset, at different resolutions. 

h, m tonset × 10-5 s 
1/256 2.44 
1/512 2.33 
1/1024 2.26 
1/2048 2.23 

 
 
Effects of fluctuation strength on the onset time 
As the fingering phenomenon is driven by the 
heterogeneity in the permeability and porosity, we 
would like to study what influence fluctuations in 
permeability and porosity have on the onset time.  
Figure 6 shows that for similar level of relative per 
cent fluctuation, fluctuation in φ leads to faster onset 
time than fluctuation in κ.  The variations with 
respect to per cent fluctuation are, however, similar; 
the onset time decreases with increasing fluctuation 
strength.   

 
Figure 6. Variation of onset time with % fluctuation 

in permeability κ and porosity φ 
 
Effects of domain size on the stabilized mass flux 
At long time, the flow is characterized by fingers that 
extend along the length of the domain. Initial 
experiments show that boundary effects will 
adversely affect the solutions if the simulation 
domain cannot accommodate at least two extended 
fingers.  To provide a good averaging to F0, here 
should be a modest number of these extended fingers. 
In Table 3, we show the computed stabilized mass 
fluxes, the maximum relative deviations from the 〈F0〉 
in the sample set used to compute 〈F0〉, and the 
number of fingers for domains with different widths.   
 
Table 3. Stabilized mass fluxes for different domain 

size.  The deviation shown is the maximum 
absolute relative deviation of F0 from 〈F0〉. 

width, m 〈F0〉 × 106 

kg/m2/s 
deviation number of 

fingers 

1 1.46 0.27 2 
2 1.48 0.12 4 
8 1.52 0.07 8 
16 1.50 0.06 17 

 
The fluctuation decreases with increasing width; the 
relative deviation of F0 from 〈F0〉 for W = 16 m is 
about a factor of 5 smaller than the relative deviation 
for W = 1 m.  The mean also appears to converge to 
1.5×10-6 kg/m2/s, although the variation is less drastic 
compared to the variation in the relative deviation.  
This shows that having a width that can 



 

  
 
 
 

accommodate two fingers may be sufficient, but 
larger width will lead to better averaging.   
 
COMPARISON TO TOUGH2-MP 
The same problem of convective instability discussed 
above was simulated with a parallelized version 
TOUGH2-MP (Zhang et al., 2008) of the general-
purpose reservoir simulator TOUGH2. Initial 
calculations used the ECO2N fluid property module 
(Pruess and Spycher, 2007). However, since the 
conditions in the present problem are limited to a 
single aqueous phase, a more efficient simulation can 
be obtained by using EOS7, in which the fluid is 
represented as a two-component mixture of H2O and 
brine. We use the brine component to represent 
density changes in the aqueous phase from CO2 
dissolution. Numerical work is approximately 
proportional to NEQ2, where NEQ is the number of 
equations per gridblock. Accordingly, a given 
problem can be solved with EOS7 (NEQ = 2) in less 
than half the time required with ECO2N (NEQ = 3). 
Our test calculations have confirmed excellent 
agreement between simulations using EOS7 and 
ECO2N.  
 
We experimented with different domain sizes and 
grid resolutions, to achieve results with “small” space 
discretization errors. Most calculations were 
performed for a domain of width W = 1 m, height H 
= 5 m, and a vertical grid resolution of 1 mm near the 
top boundary, which gradually was coarsened going 
downward. Horizontal grid resolution was 10 mm, 
and the total number of gridblocks was 52,300. 
Simulations presented here were performed an a Dell 
T5400 dual quad core computer with a total of 8 
cores, and in most cases 16 processes were run (two 
per processor), because this was found to reduce total 
execution time compared to running eight processes. 
Depending on grid resolution and simulation time, 
individual runs typically took from 1/2 to 4 hours. 
 
Results 
The convective activity shows similar features as 
seen in the adaptive grid simulations discussed 
previously, including fingering convection, merging 
and pinch-off of fingers, and continuous generation 
of new fingers as older ones grow. As an example, 
Figure 7 shows convective patterns for three different 
random number seeds after a time of 101.6 days. The 
resolution of features is somewhat inferior in 
comparison to the adaptive gridding (Figure 3). 
Specifics of the convective activity are very sensitive 
to small problem variations, but we observe that 
integral measures of the process, such as onset time 
of convection and long-term behavior of the CO2 

mass flux carried by the convection, are quite robust 
to modest changes in problem parameters. Indeed, for 
the three cases with different random permeability 
fields shown in Figure 7, onset times of convection 
are identical, and long-term stabilized fluxes show 
random fluctuations of ± 15% about the same mean 
of approximately 1.3×10-6 kg/s/m2. 
 
 

(a) 

(b)

(c) 
Figure 7. Simulated distribution of dissolved CO2 

after 101.6 days for three different 
random number seeds to generate 
permeability heterogeneity (a-0.7; b-0.8; 
c-0.9). Note the different horizontal and 
vertical scales. 
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We explored the sensitivity of the onset time for 
convection to the random perturbations applied to the 
medium. Figure 8 shows that the onset time for 
convection decreases with increasing strength of the 
applied perturbation of the medium. Porosity 
perturbations are seen to be more effective in 
triggering convective instability than permeability 
perturbations. These results are consistent with the 
results in the previous section, as shown in Figure 6.   
 
A comparison calculation with a perfectly 
homogeneous medium yields a substantially larger 
onset time, as in this case convective instability arises 
only from numerical roundoff. The onset times 
obtained from TOUGH2-MP simulations are around 
6-9×104 s, about a factor 3 smaller than obtained with 
the adaptive algorithm. The reason for this significant 
discrepancy is unknown. At a nominal onset time of 
7.5×103 s, the thickness of the diffusive boundary 
layer is = 12.2 mm, which is well resolved with our 1 
mm grid resolution. 
 

 
Figure 8. Simulated CO2 fluxes at the top boundary 

at early times, for different random 
perturbations of the porosity or 
permeability field.  

 
The convective CO2 flux at the top is equal to the 
CO2 dissolution rate per unit area. Due to the partially 
chaotic nature of the convection process, this rate 
fluctuates, but the fluctuations are modest in size, and 
fluxes stabilize at 1.3×10-6 kg/s/m2 (±15%), 
regardless of how the instability was triggered 
(Figure 9).  This is approximately 13% smaller than 
the value obtained from adaptive gridding 
simulations. 
 

 
Figure 9. Longer-term behavior of simulated CO2 

fluxes at the top boundary. 
 
We also performed simulations with different 
boundary conditions at the sides and bottom of the 
domain, such as no-flow conditions on the sides, and 
constant pressure conditions on the bottom. Onset 
times for convection and long-term stabilized fluxes 
were found to be insensitive to boundary conditions. 
A more extensive account of TOUGH2 analyses of 
the dissolution-diffusion-convection process is 
available in a laboratory report (Pruess and Zhang, 
2008). 
 
CONCLUSION 
High-resolution simulations of the diffusion-
convection process in CO2 sequestration were 
performed using a block structured adaptive mesh 
refinement method. Some numerical aspects of the 
simulations were examined, specifically variations in 
the onset time and stabilized mass flux with respect 
to solver tolerances, grid resolution, fluctuation 
strength, and domain size. Our main findings are as 
follows. 
 
The diffusion-convection process involves complex 
fluid dynamics on multiple scales, including creation, 
growth, movement, merging, and pinch-off of 
convective fingers.  While details of the convection 
process are chaotic in nature, integral measures, such 
as onset time for convection, and long-term CO2 
mass flux associated with the convective activity, are 
robust and insensitive to modest problem variations. 
By employing an adaptive gridding method 
combined with semi-implicit time stepping, we were 
able to control discretization errors and demonstrate 
convergence of onset times for convection. High-
resolution simulations with TOUGH2-MP, using 
fixed gridding with resolution down to 1 mm at the 
CO2 dissolution boundary, showed similar features as 
the simulations with adaptive gridding. Long-term 
stabilized CO2 fluxes obtained from adaptive 



 

  
 
 
 

gridding simulations and TOUGH2-MP agree to 
within 13%. Onset time for convection with 
TOUGH2-MP was only about 1/3 of what was 
obtained with the adaptive gridding approach. The 
reason for these differences is unknown at present, 
but may have to do with different approximations 
made for the flow physics. 
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