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ABSTRACT

The convective period leading up to a Type Ia supernova (SN Ia) explosion is characterized by very low Mach
number flows, requiring hydrodynamic methods well-suited to long-time integration. We continue the development
of the lowMach number equation set for stellar-scale flows by incorporating the effects of heat release due to external
sources. Low Mach number hydrodynamics equations with a time-dependent background state are derived, and a
numerical method based on the approximate projection formalism is presented. We demonstrate through validation
with a fully compressible hydrodynamics code that this low Mach number model accurately captures the expansion
of the stellar atmosphere as well as the local dynamics due to external heat sources. This algorithm provides the basis
for an efficient simulation tool for studying the ignition of SNe Ia.

Subject headinggs: convection — hydrodynamics — methods: numerical —
nuclear reactions, nucleosynthesis, abundances — supernovae: general — white dwarfs

1. INTRODUCTION

Modeling the period of convection leading up to the ignition
of Type Ia supernovae (SNe Ia) is critical to determining the dis-
tribution of hot spots that seed the subsequent explosion. Multi-
dimensional simulations of SNe Ia explosions currently seed one
or more hot spots at or near the center of a white dwarf and use a
flame model to describe the subsequent evolution (see, for ex-
ample, Röpke & Hillebrandt 2005; Gamezo et al. 2005; Plewa
et al. 2004). Variations in the size, number, and distribution of
these seeds can lead to large differences in the explosion out-
come (Niemeyer et al. 1996; Garcı́a-Senz & Bravo 2005; Livne
et al. 2005). The convective flows leading up to ignition have
Mach numbers of 0.01 or less, with temperature perturbations
of only a few percent (Woosley 2001; Woosley et al. 2004)—
conditions that are extremely challenging for fully compressible
codes. One-dimensional statistical methods (Wunsch &Woosley
2004) predict that off-center ignition is likely, but they cannot
give information about the distribution of the hot spots. Only re-
cently has progress been made in multidimensional modeling of
convection in white dwarfs. The first such calculations (Höflich
& Stein 2002) evolved a two-dimensional wedge of the star for a
few hours using an implicit hydrodynamics algorithm. Convec-
tive velocities of approximately 100 km s�1 developed. They ob-
served compression near the center of the star leading to slightly
off-center ignition. Three-dimensional anelastic calculations
(Kuhlen et al. 2006) showed a large-scale dipole flow dominat-
ing the evolution, leading to an off-center ignition. These simula-
tions used a spectral decomposition, with a small portion of the
center of the star removed due to the coordinate singularity at
r ¼ 0. Neither of these calculations operated at a Reynolds num-
ber large enough to see fully developed turbulence. Further three-
dimensional studies are needed to see how robust this dipole flow
is to rotation and convection at higher Reynolds and Rayleigh
numbers.

The goal of the present work is the development of a newmulti-
dimensional hydrodynamics algorithm capable of evolving the
full star from the convective phase, through ignition and into the
early stages of flame propagation. Long time integration is crit-
ical. As we showed previously (Almgren et al. 2006, hereafter
Paper I), the lowMach number hydrodynamics equations provide
an accurate description of flowswithMach numbers less than 0.2.
By filtering out sound waves, the low Mach number approxima-
tion allows for much larger time steps (�1/M larger) than corre-
sponding compressible codes. In contrast to the anelastic equation
set, the low Mach number equations are capable of modeling
flowswith finite-amplitude density and temperature perturbations.
The only restriction is that the pressure perturbation be small.
Furthermore, because the compressibility effects due to both the
background stratification and local heat release are included,
the lowMach number equations set can self-consistently evolve
the expansion of a hydrostatic atmosphere due to heat release
(Almgren 2000).

In this paper, we continue the development of the low Mach
number hydrodynamics algorithm to include the effects of heat
release. An energy equation is added, and an earlier assumption
from Paper I is relaxed, now allowing the background state to
vary in time. In x 2 we develop the low Mach number equation
set. In x 3 the numerical methodology is explained. Comparisons
to fully compressible calculations are provided in x 4 to demon-
strate the accuracy and utility of our new algorithm.We conclude
in x 5.

2. LOW MACH NUMBER HYDRODYNAMICS

In Paper I, we derived a system of lowMach number equations
for stellar atmospheres for which there was a time-independent
background state. The necessary assumption for validity of this
system was that the Mach number (M ) of the flow be small. In
this case, any pressure deviations from the base-state pressure,
which are O(M 2), are also small. The perturbations of density
and temperature need not be small.

This system is valid for many low Mach number terrestrial
and stellar flows but fails to capture the correct atmospheric re-
sponse to large-scale heating that radially shifts the entire at-
mosphere at and above the level at which the heating occurs.
This was shown analytically for the terrestrial atmosphere,
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using the pseudoincompressible approximation, in Bannon (1996).
In Almgren (2000) it was shown that when time variation of the
background state is correctly included, the solution calculated by
the lowMach number equation set is identical to that reached by
the fully compressible equation set.

Physically, this is consistent with the interpretation of the low
Mach number equations as representing instantaneous acoustic
equilibration. If heating of a local parcel of fluid results in a large
temperature perturbation from the ambient, the effect of the re-
sultant acoustic waves is to return the parcel to pressure equi-
librium with the fluid around it by expansion of the parcel. The
density and temperature variations of the parcel relative to the
ambient values may be large, but the parcel will remain close to
pressure equilibrium.

By contrast, when an entire layer of the atmosphere is heated,
the acoustic equilibration process brings the entire layer to a new
hydrostatic equilibrium. Consider a horizontally uniform atmo-
sphere with heating uniformly applied throughout a horizontal
layer. The response of the atmosphere will itself be horizontally
uniform, and for positive heating each parcel of fluid above the
heated layer will rise in its respective radial column. In equilib-
rium, given the assumption that no fluid is lost at the top bound-
ary, then following an upward shift of each parcel, the mass of
fluid above any given parcel will not have changed. If gravita-
tional acceleration is effectively constant over the length scale
of the base-state displacement, then the weight of fluid above
a parcel will not have changed. Thus, for an atmosphere in hy-
drostatic equilibrium the pressure of each parcel will not have
changed, although that parcel will have changed its radial loca-
tion. In other words, the material derivative, rather than the time
derivative, of the base-state pressure must be zero. Numerical
examples in x 4 of this paper confirm that the time-dependent
response of the base state, as well as that of the full state, is nec-
essary to correctly capture the atmospheric response to large-
scale heat release.

We note that the assumption of constant gravity over the dis-
placement distance of the base state does not mean one must as-
sume constant gravity over the full domain. In practice the length
scale of the base-state adjustment is much smaller than the length
scale of more localized motions.

We now generalize the low Mach number equation set from
Paper I to allow for time dependence of the base state. We recall
from Paper I the fully compressible equations of motion in a
stellar environment, but here we add an external heat source,
Hext, and again neglect compositional and reaction terms:

@�

@t
þ: = �Uð Þ ¼ 0;

@(�U )

@t
þ: = (�UU )þ:p ¼� �ger; ð1Þ

@(�E )

@t
þ: = (�UE þ pU ) ¼: = (�:T )� �g(U = er)þ �Hext;

ð2Þ

and an equation of state

p ¼ p(�; T ):

Here �, U, T, and p are the density, velocity, temperature, and
pressure, respectively; E ¼ eþ U =U /2 is the total energy with
e representing the internal energy; g(r) is the radially dependent
gravitational acceleration (resulting from spherically symmet-

ric self-gravity); er is the unit vector in the radial direction; and
� is the thermal conductivity. The Reynolds number of flows in
a typical white dwarf is sufficiently large that we neglect vis-
cosity here, although viscous terms could easily be included in
the model and the numerical methodology.
Again we choose to work with enthalpy, h ¼ eþ p/�, rather

than energy, replacing equation (2) above by

@(�h)

@t
þ : = (U�h) ¼ Dp

Dt
þ �H ; ð3Þ

where �H ¼ �Hext þ: = (�:T ) represents the enthalpy source
terms and D/Dt ¼ @t þ U = : represents the Lagrangian (or
material ) derivative. (For the purposes of this paper we could
alternatively use the entropy equation,

�T
DS

Dt
¼ �H ;

but for future work in which the source terms due to reactions
are essential, we will prefer the enthalpy formulation.)
We recall from the low Mach number asymptotics in Paper I

that the assumption that M ¼ jUj/cT1 is sufficient to decom-
pose the pressure into a base-state pressure, p0, and a perturba-
tional pressure, �, i.e.,

p(x; r; t) ¼ p0(r; t)þ �(x; r; t);

where �/p0 ¼ O(M 2). Here x represents the horizontal coordi-
nate directions, and r represents the radial direction. We define
the base-state density, �0, by assuming hydrostatic equilibrium
of the base state; this allows us to rewrite equation (1) in the
form

@(�U )

@t
þ: = (�UU )þ:� ¼ �(�� �0)ger

with no loss of generality.
Continuing to follow the derivations of Paper I but with a

time-dependent base state, we rewrite conservation of mass as
an expression for the divergence of velocity:

: =U ¼ � 1

�

D�

Dt
: ð4Þ

Differentiating the equation of state, p ¼ p(�; T ), along particle
paths, we can write

D�

Dt
¼ 1

p�

Dp

Dt
� pT

DT

Dt

� �
; ð5Þ

with p� ¼ @p/@�jT , and pT ¼ @p/@T j�.
An expression for DT /Dt can be found by applying the chain

rule to the enthalpy equation (eq. [3]):

DT

Dt
¼ 1

�cp
1� �hp
� � Dp

Dt
þ �H

� �
; ð6Þ
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where cp ¼ @h/@T jp is the specific heat at constant pressure
and hp ¼ @h/@pjT for convenience. Substituting equation (6)
into equation (5) and the resulting expression into equation (4)
yields

: =U ¼ 1

�p�

pT

�cp
(1� �hp)� 1

� �
Dp

Dt
þ 1

�p�

�pTH

�cp

� �
;

still with no loss of generality. Now, replacing p by p0(r; t) and
recalling the definition of H, we write the divergence constraint
as

: =U þ �
@p0
@t

þ U = :p0

� �
¼ 1

�p�

pT

�cp
: = (�:T )þ �Hext½ �

� �
� S̃;

where

� (�; T ) � � (1� �hp)pT � �cp
�2cpp�

� �
¼ 1

�1p0

and �1 � d( log p)/d( log �)js. We recall from Paper I that: =Uþ
�U = :p0 can be rewritten as 1/�0ð Þ: = (�0U ), where

�0(r; t) ¼ �(0; t) exp

Z r

0

1

(�1p)0

@p0
@r 0

dr 0
� �

: ð7Þ

Thus, we can write the constraint as

: = �0Uð Þ ¼ �0 S̃ � �
@p0
@t

� �
: ð8Þ

For the purposes of comparing the fundamental hydrody-
namic behavior of this low Mach number model to the estab-
lished compressible formulation, we neglect thermal conduction
in what follows. Summarizing the low Mach number equation
set for this specialized case, with the momentum equation re-
written as an evolution equation for velocity, we have

@�

@t
¼�: = (�U );

@(�h)

@t
¼�: = (�Uh)þ Dp0

Dt
þ �Hext; ð9Þ

@U

@t
¼�U = :U � 1

�
:�� (�� �0)

�
ger;

: = (�0U ) ¼ �0 �Hext �
1

�1 p0

@p0
@t

� �
; ð10Þ

where we define, for convenience, � ¼ pT /(�cpp�).
This system differs from that in Paper I in that now p0 and

�0 are unknowns, as well as �, �h,U, and �. The equation of state
was used to derive the constraint; thus, to include it here would
be redundant. When reactions and compositional effects are in-
cluded in future work, evolution equations for species will be
added to this system, and reaction terms will be added to the en-
thalpy equation and divergence constraint, but for the hydro-
dynamic tests we present here, this system is sufficient.

We follow the approach used in Almgren (2000) to compute
the time evolution of the base state, recalling from the beginning
of this section that the pressure of each parcel remains unchanged
during base-state adjustment, i.e.,

Dp0

Dt
¼ 0: ð11Þ

We first calculate the radial velocity field, denoted w0, that ad-
justs the base state.We decompose the full velocity field,U, into
w0er and the remaining velocity field, Ũ, that governs the more
local dynamics, i.e.,

U(x; r; t) ¼ w0(r; t)er þ Ũ(x; r; t); ð12Þ

and write equation (10) in terms of w0 and Ũ,

: = (�0w0er)þ: = (�0Ũ ) ¼ �0 �Hext �
1

�1 p0

@p0
@t

� �
: ð13Þ

We then integrate equation (13) over a horizontal slab �H ;
(r � h; r þ h) to obtain

Z rþh

r�h

Z
�H

: = (�0w0er)þ: = (�0Ũ )
	 


drdx

¼
Z rþh

r�h

Z
�H

�0 �Hext �
1

�1p0

@p0
@t

� �
drdx: ð14Þ

Assuming solid wall or periodic boundary conditions on the
horizontal boundaries, or that the horizontal velocity decays suf-
ficiently as we reach the horizontal boundaries, we can simplify
the volume integrals into area integrals over �H,

Z
�H

(�0w0)þ (�0Ũ) = er
	 


dx

����rþh

r�h

¼
Z rþh

r�h

Z
�H

�0 �Hext �
1

�1p0

@p0
@t

� �
drdx: ð15Þ

To define the model, we want to partition the velocity field so
that the horizontal average of the radial flux due to heating is en-
tirely incorporated into w0 rather than into Ũ, namely,Z

�H

Ũ = er dx � 0:

Using this relationship, and taking the limit as h ! 0, equation (15)
can be simplified to

@(�0w0)

@r
¼ �0 (�H )� 1

�1p0

@p0
@t

� �
; ð16Þ

where we define �H ¼ 1/Area(�H )
R
�H

(�Hext) dx.
We can further simplify equation (16) by expanding @(�0w0)/

@r ¼ �0@w0 /@r þ w0@�0 /@r, exploiting Dp0 /Dt ¼ @p0 /@t þ
w0@p0 /@r ¼ 0 to replace @p0 /@t, and recalling from the definition
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of �0 that (1/�0)@�0 /@r ¼ (1/�1p0)@p0 /@r (see Appendix B of
Paper I for the derivation of �0). Then

@w0

@r
¼ �H :

This system can be integrated by noting that if there exists a
lower boundary at r ¼ r0 with zero normal velocity (such as the
center of a star), then at any time, t,

w0(r; t) ¼
Z r

r0

�H(r 0; t) dr 0: ð17Þ

The base-state pressure and density update follow from equa-
tion (11) and conservation of mass, respectively:

@p0
@t

¼� w0

@p0
@r

; ð18Þ

@�0
@t

¼� @(�0w0)

@r
: ð19Þ

There are now two choices for defining the new base-state en-
thalpy; these options are analytically equivalent but may differ
numerically. The first is to use the equation of state: (�h)0 ¼
�0h(p0; �0). The second is to use equation (9). In this second ap-
proach, we can exploit Dp0 /Dt ¼ 0, but we must also correctly
partition the heating term in the right-hand side of equation (9).
The partitioning is given by the requirement that the base state
continue to satisfy the equation of state. Then, givenDp0 /Dt ¼ 0,

Dh0

Dt
¼ @h0

@T

����
p

DT0

Dt
¼ cp � p�

pT

� �
D�0
Dt

¼ �0cpp�
pT

�H ¼ 1

�0

�H ;

recalling � ¼ pT /(�cpp�) and letting �0 ¼ �(p0; �0). Returning
to conservation form, we can write

@ �hð Þ0
@t

¼ �
@ w0 �hð Þ0
	 


@r
þ �0

�0

�H : ð20Þ

Using the velocity decomposition (eq. [12]), we can rewrite
the evolution equations for � and �h as

@�

@t
¼�: = (�Ũ )� @(�w0)

@r
ð21Þ

@(�h)

@t
¼�: = (�hŨ )� @(�hw0)

@r
þ w̃

@p0
@r

þ �Hext; ð22Þ

where w̃ ¼ Ũ = er. We can also write these in perturbational
form (with no loss of generality):

@�0

@t
¼�: = �0 Ũ þ w0er

� �	 

�: = �0Ũ

� �
;

@ �hð Þ0

@t
¼�: = �hð Þ0 Ũ þ w0er

� �	 

�: = �hð Þ0Ũ

	 

þ w̃

@p0
@r

þ �Hext �
�0
�0

�H

� �
;

using equations (19) and (20), where �0 � �� �0 and (�h)0 �
(�h)� (�h)0.

The evolution of the velocity field becomes

@Ũ

@t
¼ �Ũ = :Ũ � w0

@Ũ

@r
� w̃

@w0

@r
er �

1

�
:�� (�� �0)

�
ger;

ð23Þ

and subtracting equation (16) from equation (10), the constraint
equation for Ũ becomes

: = (�0Ũ ) ¼ �0(�H )0; ð24Þ

where we define (�H )0 ¼ �Hext � (�H ). In summary, then, the
evolution of the base state is described by equations (18) and
(19), with w0 given by equation (17), and the evolution of the
full state is given by equations (21)–(23), with the divergence
constraint given by equation (24).

3. NUMERICAL METHODOLOGY

Our strategy for evolving the lowMach number system with a
time-varying base state is a fractional step approach. In each time
step we first update density and enthalpy as if the base state were
time-independent, giving us predicted values that can be used to
construct time-centered values in the right-hand side of equa-
tion (17). We then compute the evolution of the base state and
recompute the updates to density and enthalpy, incorporating the
base-state adjustment. Finally, we update and project the ve-
locity field to define the new values of velocity and pressure. The
upwind methodology used to update all the state variables pro-
vides a robust discretization of the convective terms that avoids
any stability restriction other than the Courant constraint, i.e., the
time step scales linearly with the grid spacing and inversely with
the maximum magnitude of the velocity in any one coordinate
direction in the domain.
All base-state quantities, as well as all state quantities other

than the perturbational pressure, �, are defined at cell centers
and integer time levels. The perturbational pressure is defined
at nodes and at half-times; similarly, the advective velocity and
fluxes used for advective updates are defined at edges and half-
times. In this section we replace Ũ by U for convenience of
notation.

Initialization.—Specification of the initial-value problem in-
cludes initial values for p0, �0, and h0 (or T0) as well asU, �, and
h (or T ) at time t ¼ 0, and a description of the boundary con-
ditions, but the perturbational pressure is not initially prescribed.
We calculate �0 at t ¼ 0 using equation (7). Given this initial
�0, we project the initial velocity field to ensure that it satisfies
the divergence constraint at t ¼ 0. Then initial iterations of the
following steps (typically two are sufficient) are performed to
calculate an approximation to the perturbational pressure at t ¼
� t /2. At the end of each initial iteration all variables other than �
are reset to their initial values. The following steps are compo-
nents of the single time step taken to advance the solution from
t n to t nþ1.
Step 1.—In this step we construct UADV, a time-centered,

second-order accurate, staggered-grid approximation toU at t nþ1/2;
using an unsplit second-order Godunov procedure (Colella 1990).
To do so, we first predictUADV;� using the cell-centered data at t n

and the lagged pressure gradient from the interval centered at
t n�1/2. The provisional field, UADV;�, represents a normal veloc-
ity on cell edges analogous to a MAC-type staggered-grid discre-
tization of the Navier-Stokes equations (Harlow&Welch 1965).
However, UADV;� fails to satisfy the time-centered divergence
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constraint (eq. [24]). We apply a discrete projection by solving
the elliptic equation

DMAC � n
0

�n
GMAC�MAC

� �
¼ DMAC � n

0U
ADV;�� �

� � n
0 �Hð Þ0
	 
n

for �MAC, where DMAC represents a centered approximation to a
cell-based divergence from edge-based velocities and GMAC rep-
resents a centered approximation to edge-based gradients from
cell-centered data. The solution, �MAC, is then used to define

UADV ¼ UADV;� � 1

�n
GMAC�MAC:

In the above equations, we average � n
0 and �n

0 from centers to
edges, i.e., �

n
0jþ1=2

¼ 1/2(� n
0j þ � n

0jþ1), �
n
iþ1=2; j ¼ 1/2(�n

i; j þ �n
iþ1; j),

and �n
i; jþ1=2 ¼ 1/2(�n

i; j þ �n
i; jþ1).

Step 2.—We update � and �h as if w0 ¼ 0 and the base state
were constant, i.e., we discretize

@�

@t
¼�: = �0Uð Þ �: = �0Uð Þ;

@ �hð Þ
@t

¼�: = �hð Þ0U
	 


�: = �hð Þ0U
	 


þ w
@p0
@r

þ �Hext;

using the second-order advection methodology as in Paper I
with �Hext treated as an explicit source term. The discretization
takes the form

�nþ1;� ¼ �n ��t : = �0UADV
� �	 
nþ1=2��t: = �n

0U
ADV

� �
;

�hð Þnþ1;�¼ �hð Þn��t : = �hð Þ0UADV
	 
� nþ1=2

��t: = �hð Þn0U
ADV

	 

þ�twADV @p0

@r

� �n

þ�t �Hextð Þnþ1=2;

where wADV ¼ UADV = er and �nþ1=2 ¼ 1/2ð Þ(�n þ �nþ1;�) in
the construction of �Hextð Þnþ1/2. The details of the upwind con-
struction of : = (UADV�0)½ �nþ1/2 and : = (UADV(�h)0)

	 

nþ1/2

are
given in the Appendix, where we consider the construction of
: = (Vs)½ �nþ1/2

for any edge-based vector fieldVand cell-centered
quantity s. In this step V ¼ UADV. The terms,: = (�n

0U
ADV) and

: = (�h)n0U
ADV

	 

, are defined differently, in that we do not up-

wind �0 or (�h)0 in this step, rather they are simply averaged onto
edges as �0 and �n were averaged in step 1.

Step 3.—We integrate equation (17) to determinew0 on edges,

w0jþ1=2
¼ w0j�1=2

þ�r(�H )
nþ1=2
j ;

using the equation of state given �nþ1/2 and p0 to compute �. We
then update the base-state quantities,

p0ð Þnþ1
j ¼ p0ð Þnj �

�t

2�r
w0jþ1=2

þ w0j�1=2

� �
p
nþ1=2
0jþ1=2

� p
nþ1=2
0j�1=2

� �
;

�0ð Þnþ1
j ¼ �0ð Þnj�

�t

�r
�0w0ð Þnþ1=2

jþ1=2� �0w0ð Þnþ1=2
j�1=2

h i
;

�hð Þnþ1
0 ¼�nþ1

0 h pnþ1
0 ; �nþ1

0

� �
:

The construction of p
nþ1=2
0jþ1=2

and �nþ1=2
0jþ1=2

is described in the Ap-
pendix. After construction of the new base state, we compute
� nþ1
0 using equation (7) and then set � nþ1=2

0 ¼ 1/2(� n
0 þ � nþ1

0 ).
We use the equation of state here to calculate (�h)nþ1

0
in order to

keep the base state thermodynamically consistent.

Step 4.—In this step we repeat the update of � and �h, but
in the prediction of the edge states here V ¼ UADV þ w0er. We
also center the w@p0 /@r term in time:

�nþ1 ¼ �nþ1
0 þ �n � �n

0

� �
��t : = �0 UADV þ w0er

� �	 
� nþ1=2��t: = �n
0U

ADV
� �

;

�hð Þnþ1¼ �hð Þnþ1
0 þ �hð Þn� �hð Þn0

	 

��t : = �hð Þ0 UADV þ w0er

� �	 
� nþ1=2

��t: = �hð Þn0U
ADV

	 

þ �t

2
wADV @p0

@r

� �nþ1

þ @p0
@r

� �n" #

þ �Hext �
�0
�0

�H

� �nþ1=2

:

We use the perturbational form of these equations in order to
ensure that numerically, if, as in the anelastic case, �0 � �0,
�n ¼ �n

0 , and H is horizontally uniform, then �nþ1 ¼ �nþ1
0 , i.e.,

no perturbation to the base-state density is introduced in a case
in which analytically there should be none.
Step 5.—We then update the velocity field, U n, to U nþ1;� by

discretizing equation (23),

U nþ1;� ¼ U n ��t UADV þ w0er
� �

= :
	 


U
� nþ1=2

��t wADV @w
nþ1=2
0

@r

 !
er

� �t

�nþ1=2
G�n�1=2 ��t

�nþ1=2 � �
nþ1=2
0

� �
�nþ1=2

ger;

with �nþ1=2 ¼ 1/2ð Þ(�n þ �nþ1) andG a discretization of the gra-
dient operator. The construction of f½ðUADV þ w0erÞ = :�Ugnþ1/2

is described in the Appendix with V ¼ UADV þ w0er and s set
to each component of U n individually. Finally, we impose the
constraint (eq. [24])

: = (� nþ1=2
0 U nþ1) ¼ �

nþ1=2
0 (�H )0½ �nþ1

by solving

L
�
�� ¼ D �

nþ1=2
0

U nþ1;�

�t
þ 1

�nþ1=2
G�n�1=2

� �� �
�
�
nþ1=2
0 �Hð Þ0

	 
nþ1

�t

for nodal values of � where L
�
� is the standard bilinear finite

element approximation to : = (�0 /�): with � and �0 evaluated
at t nþ1=2, and D is a discrete second-order operator that approx-
imates the divergence at nodes from cell-centered data. (See
Almgren et al. [1996] for a detailed discussion of this approx-
imate projection; see Almgren et al. [2000] for a discussion of
this particular form of the projection operand.) We determine the
new time velocity field from

U nþ1 ¼ U nþ1;� � �t

�nþ1=2
G�� G�n�1=2
� �

;

and the new time-centered perturbational pressure from

�nþ1=2 ¼ �:
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4. NUMERICAL RESULTS

We consider three numerical tests in this section, each study-
ing the response of the atmosphere to prescribed external heat-
ing. For each test case, the initial conditions in the computational
domain are specified in two parts. The lower portion of the do-
main is initializedwith a one-dimensional hydrostatic white dwarf
model up until the outer boundary of the white dwarf. This ini-
tialization is identical for the compressible and low Mach num-
ber models. The model is created by specifying a base density of
2:6 ; 109 g cm�3 and a base temperature of 7 ; 108 K and inte-
grating the equation of hydrostatic equilibrium outward while
constraining the model to be isentropic. The composition is held
constant at 0.3 12C and 0.7 16O, and the gravitational acceleration
is fixed at�1:5 ; 1010 cm s�2.We use the stellar equation of state
developed by Timmes & Swesty (2000). This procedure pro-
vides a reasonable approximation of the state of the white dwarf
just before runaway. None of the methods described here re-
quire constant gravity, but it was assumed for simplicity in the
comparisons.

The upper portion of the domain represents the region beyond
the outer boundary of the white dwarf, and different approxima-
tions are used there for the compressible and low Mach number
models. For the compressible calculations, the integration pro-
ceeds radially outward until the density reaches a threshold value
of 10�4 g cm�3. Throughout the integration we set a low temper-
ature cutoff of 107 K, to keep the temperature in the outer layers
of the model reasonable. Once the density drops below its cut-
off, the integration is stopped, and the material above it is held
at constant density and temperature. This buffer region is nec-
essary to allow for expansion of the star; otherwise, as the star
expands, the loss of mass through the upper domain boundary
would change the base pressure (Glasner et al. 2005), impact-
ing the dynamics throughout the domain. Finally, for the multi-
dimensional test cases, we add a convectively stable layer below
the atmosphere to prevent any motions generated from the heat-
ing from interfering with the lower boundary. Figure 1 shows the
initial temperature, density, entropy, and adiabatic indices [�1

and �e � p/(�e)þ1] as a function of height for the compressible
background.

For the low Mach number model applied to the second and
third test cases, the density cutoff is set to 2:5 ; 106 g cm�3,
approximately the value at which the temperature cutoff is ap-
plied for the compressible background. Once the density reaches
this cutoff, the density, temperature, and pressure are held con-
stant, which is equivalent to gravity being set to zero radially
outward of that position. Because the base-state density in the
buffer region is significantly higher for the low Mach number
calculations than for the compressible calculations, this buffer
region serves to damp motions that reach it without impacting
the hydrostatic equilibrium of regions toward the center. Since
the time step for the entire calculation is determined by the largest
velocity in the domain, this damping is essential for low Mach
number calculations in order to avoid excessively large veloci-
ties above the cutoff that would dictate an excessively small time
step. An additional approximation in the outer region is that we
set �0 � �0 for �0 < 5 ; 107 g cm�3 in order to suppress spuri-
ous wave formation at the outer boundary of the star.

In the first test, a layer of the star is heated for 5.0 s with a
heating profile,

H ¼ H0 exp � r � r0ð Þ2

W 2

" #
;

with r0¼ 4 ; 107 cm, W ¼107 cm, and H0 ¼1 ; 1017 ergs g�1

s�1. This energy generation rate is quite a bit higher than we
would expect during the smoldering phase of the convection
leading up to an SN Ia (Woosley et al. 2004), but necessary to
see a response with the compressible code on a reasonable time-
scale. It also provides a more stringent test of the hydrostatic
adjustment than a lower energy generation rate would give.
Because the initial conditions and the heating are both one-
dimensional, we use a reduced one-dimensional form of the equa-
tions to solve the systems. We contrast three different systems of
equations.
For this one-dimensional test, we compare the lowMach num-

ber results to those produced by the fully compressible piecewise
parabolic method (PPM) (Colella & Woodward 1984), as im-
plemented in the FLASH code (Fryxell et al. 2000). Two ver-
sions of the low Mach number algorithm are used for this test.
The first is the low Mach number equation set with a time-
varying base state (as described in x 2). The second is a formu-
lation of the lowMach number equations in which the base state
is time independent (equivalent to the equation set present in
Paper I ).
Figure 2 shows the density, temperature, and pressure for the

three solutions at t ¼ 5 s. All simulations were run on a uniform
grid with 768 zones spanning 2:5 ; 108 cm. The compressible
and low Mach number expanding background solutions show
excellent agreement. In the region of heating, the temperature
has increased enormously, with a corresponding density decrease.
The amplitude of the density decrease is much smaller, due to
the degenerate nature of the equation of state. The inset in the
density plot shows the density adjustment on a linear scale, show-
ing the decrease at the heating height and an increase in the
density above this. Both equation sets reach the same solution in
response to the heating. The differences above 1:7 ; 108 cm are
due to the different treatments of the upper boundary and are not

Fig. 1.—White dwarf atmosphere initial model. Shown are the density (top
left), temperature (top right), entropy (bottom left), and adiabatic indices (bottom
right). To prevent convective motions from hitting the lower boundary in our
multidimensional tests, the first 5 ; 107 cm of this model is constructed to have a
convectively stable entropy profile. The one-dimensional tests do not use this
portion of the model.
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significant to the atmospheric dynamics. As a result of the energy
deposition, the model expands by almost 107 cm, or about 5%. In
contrast, when the background is not allowed to adjust (dashed
line), the lowMach number model fails to capture the expansion.
While the temperature increases in the region of the heating, there
is no expansion in the material above the heating layer. This is
consistent with the point made in Bannon (1996) that the pseudo-
incompressible equation set does not give the correct solution in
the terrestrial atmosphere when the base state is not allowed to
vary in time, and with the demonstration in Almgren (2000) that
the correct solution is found when the base state does absorb the
horizontally averaged heating.

Figure 3 shows the difference in density before and after heat-
ing. Here we seemore clearly the adjustment of the density struc-
ture as a result of the localized heating. There is a slight rise in the
density in the compressible solution below the heated layer. This
small error is due to the difficulty in constructing a lower hydro-
static boundary that allows soundwaves to leave the domain. For

the low Mach number case, the state remains unchanged below
the heating layer, as it should. The compressible and expanding-
background lowMach number solutions show a large increase in
the density above the heating layer. This is not present in the low
Mach number case in which the background was not allowed to
expand.

In even this one-dimensional simulation, the choice of bound-
ary conditions at the top and bottom boundaries of the compu-
tational domain is critical for the compressible calculations. The
fully compressible code generates sound waves as it struggles to
keep the hydrostatic solution steady on the grid. The boundary
conditions must allow these disturbances to leave the domain, or
they will corrupt the solution.We use a hydrostatic lower bound-
ary, integrating the pressure and density in the ghost cells using a
fourth-order reconstruction of the pressure (Zingale et al. 2002),
in which the temperature is kept constant in the ghost cells and
the velocities are given a zero gradient. This provides pressure
support to the material while allowing sound waves to leave the
domain. Further robustness is obtained by computing the hydro-
static structure in the boundary from the initial base density and
temperature, and keeping this structure fixed in time. At the up-
per boundary, we set the density and temperature to our cutoff
values and allow the fluid to move out of the domain (with a zero
gradient) but set inward velocities to zero. This has the effect of
keeping the fluid velocities in this region small, and therefore,
they do not dictate the time step.

The low Mach number calculations, by contrast, are not sen-
sitive to mass exiting the top boundary, as the hydrostatic equi-
librium is incorporated into the base state, which is independent
of the total mass. A simple outflow boundary condition is used at
the top (with any inflowing velocities set to zero), and a reflect-
ing boundary condition is used at the bottom boundary. In ad-
dition, the compressible calculations need to resolve the scale
height of the atmosphere very well to suppress any ambient ve-
locities generated by slight imbalances of the pressure gradient

Fig. 3.—Hydrostatic adjustment problemwith uniform heating: difference in
density between t ¼ 0 and 5 s. The solid black line is the fully compressible
solution, the dotted line is the low Mach number formulation that allows for the
base-state expansion, and the dashed line is the low Mach number formulation,
assuming a fixed base state. We see close agreement between the compressible
and low Mach number formulation with the time-dependent base state.

Fig. 2.—Hydrostatic adjustment problem with uniform heating: density
(top), temperature (middle), and pressure (bottom). The initial conditions are
shown in gray. The solid black line is the fully compressible solution, the dotted
line is the low Mach number formulation that allows for the base-state expan-
sion, and the dashed line is the lowMach number formulation, assuming a fixed
base state. The compressible and expanding base-state low Mach number so-
lutions show excellent agreement. The low Mach number model with a fixed
base state is unable to capture the correct solution. The inset in the density plot
shows the structure in the vicinity of the local heating.
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and the gravitational force (see Zingale et al. [2002] for a dis-
cussion of this). This is not the case with the lowMach number
method, so we expect our low Mach number solutions to nu-
merically converge at a lower resolution than the compressible
solutions.

For the second and third tests, we consider fully two-
dimensional heating profiles, in which both parts of the new low
Mach number algorithm are fully exercised. For these cases
we compare the new low Mach number formulations with the
compressible solution. In addition to the PPM algorithm, these
multidimensional tests are also run with an unsplit compressible
algorithm (Colella 1990), adapted to a general equation of state,
and incorporated into the FLASH framework. This is the same
implementation of the unsplit method we described in Paper I.
The computational domain for these tests is 2:5 ; 108 cm by
3:5 ; 108 cm, spanned by a uniform grid with 640 ; 896 zones.
Periodic boundary conditions are used on the sides of the domain.

In the second test, we specify three local regions of heating,
designed to mimic ‘‘hot spots,’’ but no heated layer as in the first
case. In this scenario, while both the horizontal average and the
local deviations from the horizontal average are nonzero, the de-
viations are much larger than the average, so the dominant effect
is the local rather than the horizontally averaged atmospheric
response to the heating. For the first 2 s the heating profile has the
form

H ¼ H0

X3
i¼1

ai

2
1þ tanh 2� di

�i

� �� �( )
; ð25Þ

where di ¼ (x� xi)
2 þ (r � ri)

2
	 
1/2

and the amplitudes, ai, loca-
tions, (xi; ri), and widths, �i, of the perturbations are given in
Table 1. After the first 2 s H is set to zero, and we continue to
follow the evolution until t ¼ 4 s. Figure 4 shows a time se-
quence from t ¼ 1 to 4 s of temperature contours in a subset
of the domain spanning from 5 ; 107 to 1:4 ; 108 cm high. The
temperature is an independent variable in the compressible
calculations, but in the low Mach number model, for these ex-
amples, we evolve density and compute temperature from the
equation of state using density and p0.

At early times, the three methods agree very well; at later
times, they diverge slightly. The vertical speed of the bubbles
appears greatest with the low Mach number methodology fol-
lowed by the unsplit compressible formulation; the PPM gen-
erates the slowest bubbles. We note that the difference in height
between the FLASH PPM and unsplit methods is comparable to
the difference between the unsplit and the low Mach number
bubble heights. The precise reason for these differences is not yet
completely understood; however, they serve to underscore the
sensitivity of these flows and the difficulties in simulating them
accurately with either the compressible or low Mach number
approach.

Figure 5 shows a resolution study of this second test case for
each of the three methods. The general trend one observes is that
the location of the bubble rises with increased resolution. How-
ever, we also notice that the low Mach number model appears
to converge to a solution at a lower resolution than either of the
compressible models. This is likely due to the fact that hydro-
static equilibrium is guaranteed in the lowMach number method
by the base state, while the compressible methods need consid-
erable resolution just to keep the background medium quiescent.
We also notice the difficulty that the FLASH PPM method has
at the higher resolution, evidenced by the strong oscillations in
temperature. This was also observed and discussed in Paper I.
In the third test, we add the heated layer of the first test case

to the three ‘‘hot spots’’ of the second case, resulting in a case for
which the horizontal average of the heating is larger than the per-
turbation from the average. The heating profile has the form

H ¼ H0 exp � (r � r0)
2

W 2

� �
þ
X3
i¼1

ai

2
1þ tanh 2� di

�i

� �� �( )
;

ð26Þ

TABLE 1

Location of Heating Sources for Nonuniform Heating Terms,

Equations (25) and (26)

i ai

xi
(cm)

ri
(cm)

�i
(cm)

1................ 0.00625 5.0 ; 107 6.5 ; 107 2.5 ; 106

2................ 0.01875 1.2 ; 108 8.5 ; 107 2.5 ; 106

3................ 0.01250 2.0 ; 108 7.5 ; 107 2.5 ; 106

Fig. 4.—Second test case: temperature contours for the low Mach number
(green), unsplit (red ), and PPM (blue) solvers, shown at 1, 2, 3, and 4 s. Here,
a heating source term gradually adds energy at three points in the domain (see
eq. [25]) during the first 2 s of evolution. This gives rise to the three buoyant plumes
seen in the panels. Contours span 108 to 8 ; 108 K, spaced every 5 ; 107 K.
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where r0 ¼ 7:5 ; 107 cm and the amplitudes, ai, locations, (xi; ri),
and widths, �i, of the perturbations are as in the previous case
and are given in Table 1. We apply the heating source for 2 s.
As in the one-dimensional uniform heating case, we place the
heating layer a bit above the lower boundary, so as to minimize
contamination of the solution from lower boundary effects. Fig-
ure 6 shows the temperature contours for the unsplit compress-
ible and low Mach number solver at t ¼ 1:5, 1.75, and 2 s. We
again notice excellent agreement between the low Mach num-
ber and compressible results. We do not expect the exact shape
of the rising bubbles to match precisely, given the extremely
unstable nature of the bubble’s surface, but there is overall
agreement between methods. Once again the lowMach number
bubble rises slightly faster. We do not show the FLASH PPM
results here, as the noise resulting from the dimensional split-
ting dominates the solution. We also note that at the final time,
the low Mach number result shows a disturbance in the upper
left corner of the domain. This disturbance is a result of a spu-
rious wave generated at the outer boundary, which is not present
in the compressible results because of the different treatment
of the outer boundary condition. The question of how best to
represent the outer boundary of the white dwarf in a low Mach
number calculation is still an open research question; at this
point we note that while the high-velocity disturbance does re-
strict the time step, it does not appear to impact the solution in
the primary region of interest. We also expect that more realistic
heating profiles in three-dimensional geometries will not gen-
erate the disturbances in the outer boundary that we have ob-
served in this final test case.

Figure 7 shows the horizontal average of the difference be-
tween density at t ¼ 2 and 0 s for the low Mach number and
unsplit compressible results shown in Figure 6. On the left of this
plot we see that the compressible solution has an increase in
density over time below the level of the applied heating; this was
also present in the first test case, although to a lesser degree. This
error results from the difficulty in prescribing an accurate hydro-
static lower boundary. We note, however, that this is less than a
0.1% relative error in the density at this boundary. At approxi-
mately the center of the heated layer (7:5 ; 107 cm) each calcu-
lation shows a negative average density variation. The small
difference here between the compressible and lowMach number
results here may also be a product of the lower boundary con-
dition. Overall, however, the two algorithms agree well in the
average response of the atmosphere to the heating.

Finally, since computational efficiency as well as accuracy is
necessary for successful long-time integration, we comment on
the relative efficiency of the low Mach number algorithm. For

Fig. 5.—Resolution study for the second test case. Each panel shows the middle bubble from Fig. 4 only; PPM results are in the left panel, unsplit results are in the
middle panel, and low Mach number results are in the right panel. Within each panel, the left half is identical to the left half of the bubble in Fig. 4, with the same color
scheme. On the right half of each pane is a reflection around the center line of the bubble of the comparable results but at both a lower (320 ; 448) and higher
(1280 ; 1792) resolution. The low resolution is shown in purple, and the high resolution is shown in black.

Fig. 6.—Third test case: temperature contours for the low Mach number
(green) and unsplit (red ) solvers. Here, in addition to the localized heating from
the previous test (see Fig. 4), there is a uniform heating layer centered at a height
of 7:5 ; 107 cm, as specified by eq. (26). Contours span 108 to 8 ; 108 K, spaced
every 5 ; 107 K.
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the second test case, for example, to evolve the state to 4.0 s, the
unsplit compressible method took 14,272 time steps, while the
lowMach number algorithm took only 233 time steps. Evolving
to just 2.0 s on a single processor (2.8 GHz Intel Xeon) using the
Intel 9.0 compilers (with -O3 -ipo optimization flags) took
71.76 hr with the FLASH PPM solver. FLASH was set up to use
32 ; 32 zone blocks for greatest efficiency. By comparison, the
low Mach number method took only 0.46 hr—a factor of over
150 faster. The unsplit method takes the same time step as the
PPM algorithm but is approximately a factor of 2 slower, due to
the additional work per time step.

For the final test case, evolving the solution to 1.5 s took 6532
time steps for the unsplit method and 749 time steps for the low
Mach number algorithm. Already by this point in the calculation,
the spurious disturbance at the outer boundary of the star in the
lowMach number algorithm is impacting the time step, decreas-
ing the relative advantage of the low Mach number algorithm.
As noted above, we expect this not to be the case for more real-

istic ignition scenarios. However, this case points out that to
achieve the gains in efficiency possible with a lowMach number
model one must successfully address this issue.

5. CONCLUSIONS

We have introduced a new algorithm for evolving low Mach
number flows in the presence of local and large-scale heating.
By contrast with the previous lowMach number model, this new
model allows time variation of the base state in order to account
for atmospheric expansion due to large-scale heat sources. The
time evolution of the base state must be calculated at each time
step in addition to the local dynamics. Numerical comparisons of
low Mach number simulations with simulations using a fully
compressible code demonstrate that the low Mach number algo-
rithmwith a time-dependent base state can accurately capture the
hydrostatic adjustment of an atmosphere as well as local dynam-
ics in response to large- and small-scale heat release.
Our long-term goal is to develop the capability for full star

simulation using the new low Mach number approach. The fun-
damental low Mach number approach has been validated with
a number of simplified test cases, but further development is
necessary to begin to perform detailed physics investigations of
ignition and other problems of interest. This development will
include extension to three dimensions with adaptive griding, ra-
dial representation of gravity and the base state within the three-
dimensional setting, nonconstant gravity, and the calculation of
internal heating due to reaction networks.
The tests presented above are quite demanding, and provided

a challenge to both the low Mach number and the compressible
solvers. The energy generation and resulting temperature/density
contrasts during the convective phase of an SN Ia are much
smaller. Based on the agreement demonstrated on these difficult
tests, we are confident that the lowMach number hydrodynamics
method will be a useful and efficient tool in exploring the prob-
lem of SN Ia ignition. In addition, this algorithm is applicable to a
wide range of problems outside of our target application (SNe Ia),
including type I X-ray bursts, classical novae, and convection in
stars.
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APPENDIX

CONSTRUCTION OF ADVECTIVE UPDATES

Consider the construction of an advective update in the form : = (sV )½ �nþ1/2
, given the cell-centered velocity field U n ¼ (u; v), an

edge-based velocity field V ¼ (V x;V r ), and a cell-centered scalar s. For simplicity we present the construction in two dimensions,
although extension to three dimensions is straightforward and is given in detail in Almgren et al. (1998).

Fig. 7.—Third test case: horizontal average of the difference between density
at t ¼ 2 and density at t ¼ 0. The dotted line shows the low Mach number
results; the solid line shows results using the unsplit compressible formulation.
The discrepancy between the two solutions on the left is due to the difficulties in
prescribing an accurate hydrostatic lower boundary for the fully compressible
calculation. Overall, however, the two algorithms agree well in the average
response of the atmosphere to the heating.
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We first extrapolate s from cell centers at t n to edges at t nþ1/2 using a second-order Taylor series expansion in space and time. The
time derivative is replaced using the evolution equation for s. If, for example, st ¼ �: = (sV ) ¼ �V = :s� s: =V, then

s̃ Liþ1=2; j � si; j þ
�x

2
sx þ

�t

2
st ¼ si; j þ

�x

2
� ui; j

�t

2

� �
s limx
� �

i; j
þ�t

2
� cvsrð Þi; j�si; j V

x
x þ V r

r

� �
i; j

h i
;

extrapolated from (i; j), and

s̃ Riþ1=2; j � siþ1; j �
�x

2
sx þ

�t

2
st ¼ siþ1; j þ ��x

2
� uiþ1; j

�t

2

� �
(s limx )iþ1; j þ

�t

2
�(cvsr)iþ1; j � siþ1; j V

x
x þ V r

r

� �
iþ1; j

h i
;

extrapolated from (iþ 1; j). In evaluating these terms the first derivatives normal to the face (in this case slimx ) are evaluated using a
monotonicity-limited fourth-order slope approximation (Colella 1985). The construction of the transverse derivative terms (cvsy in this
case) are given in detail in Almgren et al. (1998). Analogous formulae are used to predict values for s̃ T /Bi; jþ1=2 and s̃

T /B
i; j�1=2 at the other cell

edges.
Upwinding is used to determine s̃ at each edge as follows:

s̃iþ1=2; j ¼

s̃ L
iþ1=2; j; V x

iþ1=2; j > 0;

1

2
s̃ Liþ1=2; j þ s̃ Riþ1=2; j

� �
; V x

iþ1=2; j ¼ 0;

s̃ Riþ1=2; j; V x
iþ1=2; j < 0;

8>>><>>>:
and similarly for defining s̃i; jþ1=2 using V r. Finally, we define the conservative update term,

: = sVð Þ½ �nþ1=2
i; j ¼ V x

iþ1=2; j s̃iþ1=2; j � V x
i�1=2; j s̃i�1=2; j

� �
þ V r

i; jþ1=2s̃i; jþ1=2 � V r
i; j�1=2s̃i; j�1=2

� �
:

The construction of pnþ1/2
0jþ1=2

and �nþ1/2
0 jþ1=2

in step 3 is similar but not identical to the above procedure. Here we make no reference toU n.
Rather

pB
0 jþ1=2
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0 j þ

�r

2
� w0 j

�t
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� �
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� �
j
;

extrapolated from j, and
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extrapolated from jþ 1. Here w0 j ¼ 1/2ð Þ
�
w0 jþ1=2

þ w0j�1=2

�
. Upwinding then determines pnþ1/2

0jþ1=2
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8>>><>>>:
The evolution equation for �0 differs from that for p0 so the construction of �nþ1/2

0jþ1=2
differs slightly from that for �nþ1/2

0jþ1=2
. Here

�B
0 jþ1=2

¼ �n
0 j þ

�r

2
� w0 j

�t

2

� �
�lim0r
� �

j
��t

2
�n
0 j w0 jþ1=2

� w0j�1=2

� �
;

extrapolated from j, and

�T
0jþ1=2

¼ �n
0 jþ1 �

�r

2
þ w0jþ1

�t

2

� �
�lim0r
� �

jþ1
��t

2
�n
0jþ1 w0 jþ3=2 � w0 jþ1=2

� �
;

extrapolated from jþ 1. The upwinding procedure is the same.
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