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ABSTRACT

We introduce a low Mach number equation set for the large-scale numerical simulation of carbon-oxygen white
dwarfs experiencing a thermonuclear deflagration. Since most of the interesting physics in a Type Ia supernova
transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a considerable increase in accuracy and
a savings in computer time compared with frequently used compressible codes. Our equation set is derived from
the fully compressible equations using low Mach number asymptotics, but without any restriction on the size of
perturbations in density or temperature. Comparisons with simulations that use the fully compressible equations
validate the lowMach number model in regimes where both are applicable. Comparisons to simulations based on the
more traditional anelastic approximation also demonstrate the agreement of these models in the regime for which the
anelastic approximation is valid. For low Mach number flows with potentially finite amplitude variations in density
and temperature, the low Mach number model overcomes the limitations of each of the more traditional models and
can serve as the basis for an accurate and efficient simulation tool.

Subject headinggs: convection — hydrodynamics — methods: numerical —
nuclear reactions, nucleosynthesis, abundances — supernovae: general — white dwarfs

1. INTRODUCTION

A broad range of interesting phenomena in science and en-
gineering occur in a lowMach number regime, in which the fluid
velocity is much less than the speed of sound. Several lowMach
number schemes have been developed to exploit this separation
of scales; these models capture the fluid dynamics of interest
without the need to resolve acoustic wave propagation. Physi-
cally, one can think of the solution to a lowMach number model
as supporting infinitely fast acoustic equilibration rather than
finite-velocity acoustic wave propagation. Mathematically, this
is manifest in the addition of a constraint on the velocity field to
the system of evolution equations. This velocity constraint can
be translated into an elliptic equation for pressure that expresses
the equilibration process. Because explicit discretization schemes
for the lowMach number system are limited by the fluid velocity
and not by the sound speed, they often gain several orders of
magnitude in computational efficiency over the traditional com-
pressible approach.

The simplest low Mach number model is expressed by the in-
compressibleNavier-Stokes equations for a constant density fluid.
Generalizations that incorporate variations in density include
the Boussinesq approximation (Boussinesq 1903), which allows
heating-induced buoyancy in a constant-density background,
and the anelastic atmospheric (Batchelor 1953; Ogura & Phillips
1962; Dutton & Fichtl 1969; Gough 1969; Lipps & Hemler
1982, 1985; Lipps 1990; Wilhelmson & Ogura 1972) and stellar
(Latour et al. 1976; Gilman & Glatzmaier 1981; Glatzmaier
1984) approximations that include the effect of large-scale back-
ground stratification in the fluid density and pressure but assume
small thermodynamic perturbations from the background. Low
Mach number models for chemical combustion (Rehm & Baum
1978; Majda & Sethian 1985; Day & Bell 2000) and nuclear
burning (Bell et al. 2004) incorporate large compressibility ef-

fects due to chemical nuclear reactions and thermal processes
with a spatially constant background pressure.
Low Mach number models to date have, with one exception,

allowed either zero volumetric changes (incompressible Navier-
Stokes, Boussinesq) or changes due only to local heating effects
( low-speed combustion, nuclear burning) or to large-scale back-
ground stratification (anelastic). The only low Mach number
model that incorporates both finite local expansion due to heat-
ing and volume changes due to background stratification is the
pseudo-incompressible equation set for the terrestrial atmosphere,
introduced by Durran (1989) and rigorously derived using low
Mach number asymptotics by Botta et al. (2000). The formula-
tion of the pseudo-incompressible constraint assumes the ideal
gas equation of state, which results in a simplification of terms
that does not hold for more general equations of state and non-
trivial changes in composition.
Our anticipated applications for this model are in the con-

vective, ignition, and early propagation phases of Type Ia su-
pernovae, but the model should be applicable to many other
problems, such as Type I X-ray bursts (see, e.g., recent work by
Lin [2005] for an alternate form of the low Mach number ap-
proach for Type I X-ray bursts), classical novae, and ordinary
convection in stars. Events such as Type Ia supernovae are char-
acterized by a large range in length scales, from the O(10�4) to
O(101) cm scale of the flame to the O(108) cm scale of the white
dwarf. The range in timescales is equally impressive, from the
100 years of convection that precedes ignition, to the 1 s duration
of the explosion. At present, most large-scale calculations focus
on the explosion itself, beginning with several seeded hot spots
to start the runaway. In the lastminutes of the convective phase, ve-
locities reach�1% of the sound speed (Woosley 2001; Woosley
et al. 2004), with temperature fluctuations of at most 5% (Wunsch
& Woosley 2004). These speeds are too slow for compressible
codes to accurately follow. For this reason, only limited numer-
ical work has been done on simulation of the convective and
ignition phases, e.g., Höflich & Stein (2002). Recent analytic
work (Woosley et al. 2004) suggests that full star simulations are
needed to accurately capture the convective flows and yield the
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spatial, temporal, and size distribution of the hot spots that seed
the explosion. Three-dimensional anelastic calculations (Kuhlen
et al. 2006) have shown that a dipole velocity field dominates the
convection.

The low Mach number model presented here, like the anelas-
tic model, will be capable of the long time integration necessary
to follow the convection. Unlike the anelastic model, however,
the low Mach number approach continues to be valid as the var-
iation in density and temperature increases in the flame bub-
bles that evolve in the early phases of the explosion. Following
the evolution from the convection through the early phases of
the explosion is the eventual target of our low Mach number
methodology.

Although the derivation of the lowMach number equation set
will be general, the example we consider is a simplified problem,
without reactions or thermal conduction and with a time indepen-
dent, radially symmetric form of self-gravity. The focus of the
examples is to demonstrate the ability of the low Mach number
model to accurately represent the hydrodynamics. We compare
the simulations based on the low Mach number approach to
simulations based on the fully compressible equation set, where
applicable, and to the traditional anelastic approach, where ap-
plicable. We show that the low Mach number algorithm works
well for very lowMach number flows, with validation presented
to Mach numbers �0.2.

In the next section we derive the lowMach number equations,
and in x 3 we discuss the numerical implementation. Section 4
contains numerical comparisons with compressible and anelastic
simulations, and in the final section we discuss our conclusions
and future work.

2. LOW MACH NUMBER MODEL

We begin with the fully compressible equations governing
motion in the stellar environment as described, for example, in
Bell et al. (2004)

@�

@t
þ: = (�U )¼ 0; ð1Þ

@�U

@t
þ: = (�UU )þ:p¼� �g êr; ð2Þ

@�E

@t
þ: = (�UE þ pU )¼

: = (�:T )��g(U = êr)�
X
k

�qk !̇k ; ð3Þ

@�Xk

@t
þ: = (�UXk)¼ �!̇k : ð4Þ

Here �,U, T, and p are the density, velocity, temperature, and pres-
sure, respectively, andE ¼ eþ U = U /2 is the total energy, with e
representing the internal energy. In addition, Xk is the abundance
of the kth isotope, with associated production rate !̇k , and energy
release qk . Finally, g (r) is the radially dependent gravitational ac-
celeration (resulting from spherically symmetric self-gravity) ê
is the unit vector in the radial direction, and � is the thermal con-
ductivity. The Reynolds number offlows in a typical white dwarf
is sufficiently large that we neglect viscosity here, although vis-
cous terms could easily be included in the model and the numer-
ical methodology.

For the stellar conditions being considered, the pressure con-
tains contributions from ions, radiation, and electrons. Thus

p ¼ p(�; T;Xk)¼ pionþ pradþ pele; ð5Þ

where

pion ¼ �kBT=Āmp; prad ¼ aT 4=3;

and pele is the contribution to the thermodynamic pressure due
to fermions. In these expressions, mp is the mass of the proton,
a is related to the Stefan-Boltzmann constant � ¼ ac/4, c is the
speed of light, Ā ¼

P
k XkAk , Ak is the atomic number of the kth

isotope, and kB is Boltzmann’s constant. The ionic component
has the form associated with an ideal gas, but the radiation and
electron pressure components do not. We use a stellar equation
of state as implemented in Timmes & Swesty (2000).

As a prelude to developing the low Mach number equations,
we first rewrite the energy equation (eq. [3]) in terms of the
enthalpy, h ¼ eþ p/�,

�
Dh

Dt
� Dp

Dt
¼ : = (�:T )�

X
k

�qk !̇k ¼ �H ; ð6Þ

where we introduce H to represent the enthalpy source terms.
Our goal in this section is to derive a model for low speed

flows in a hydrostatically balanced, radially stratified background
that removes acoustic waves, yet allows for the development of
finite amplitude temperature and density variations. We thus posit
the existence of a background state with pressure, density, and
temperature p0(r, t), �0(r, t) and T0(r, t) satisfying both the equa-
tion of state and hydrostatic equilibrium. Because we neglect
reaction terms that could potentially alter the large-scale pressure
distribution within the star, for the purposes of this paper we
neglect time variation of the background state, i.e., we assume
@p0 /@t ¼ @�0 /@t ¼ @T0 /@t ¼ 0.

In order to understand the behavior of the system, we examine
the balance of terms as a function of Mach number,M ¼ U /cs (cs
is the speed of sound), which is assumed to be small. We rewrite
the momentum equation in nondimensional coordinates, where
the space and time coordinates as well as the density, velocity,
and pressure are scaled by characteristic values Lref , tref, �ref , pref ,
and Uref , respectively. For the problem scale of interest, Uref

is a typical advective velocity, Lref a typical length scale, tref ¼
Lref /Uref , and pref ¼ �ref c

2
sref
, where csref is a characteristic value

of cs . We define a scaling for g in terms of the pressure scale
height, Href ¼ pref /(�refg):

The momentum equation in nondimensional coordinates ( t̃ ¼
t /tref , etc.), if we exploit the hydrostatic equilibrium of the refer-
ence state, has the form

@�̃Ũ

@ t̃
þ :̃ = �̃ŨŨ

� �
þ 1

M 2
:̃ p̃� p̃0ð Þ ¼� 1

M 2

Lref

Href

( �̃� �̃0)g̃êr:

For the large-scale near-equilibrium behavior, we set Lref ¼
Href , getting

@�̃Ũ

@ t̃
þ :̃ = �̃ŨŨ

� �
þ 1

M 2
:̃ p̃� p̃0ð Þ ¼ � 1

M 2
( �̃� �̃0)g̃êr;

where g̃ ¼ g/ pref /(�refHref )½ �.
Since all nondimensional terms are O (1), it is clear that to

maintain a long-term balance, both ( p̃� p̃0) and ( �̃� �̃0) must
be O(M 2). This is consistent with the traditional anelastic ap-
proximation; once the density perturbation is assumed small, the
approximation: = (�0U ) ¼ 0 follows from the continuity equa-
tion, and a linearized temperature-density relationship can be
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used to replace the buoyancy term in the momentum equation by
one dependent on temperature (or entropy) rather than density.

Here, however, we are interested in finite amplitude density
perturbations. In this case, it is possible for the model to break
down in long time integrations should the flow accelerate to the
point that M is no longer small. We would, nevertheless, expect
the lowMach number model to remain valid for a limited period
of time. The behavior of the model for finite time intervals can be
examined by considering a shorter timescale, tref ¼ Uref /g, defined
such that on this timescale, the buoyancy forcing from finite am-
plitude density perturbations can accelerate the flow to at most
Uref. Then, recalling tref ¼ Lref /Uref , we see that Lref ¼ U 2

ref /g:
Recalling then thatHref ¼ pref /(�refg) and pref ¼ �ref c

2
sref , we see

that Lref /Href ¼ O(M 2): In this case the nondimensional momen-
tum equation has the form

@�̃Ũ

@ t̃
þ :̃ = �̃ŨŨ

� �
þ 1

M 2
:̃ p̃� p̃0ð Þ ¼ �( �̃� �̃0)g̃êr;

which is consistent with the low Mach number, nuclear burn-
ing model used in Bell et al. (2004). The assumption that tref ¼
Uref /g is in fact unnecessarily restrictive; in a realistic physical
scenario, even in the case of locally large density variations, the
fluid accelerates with acceleration DU /Dt ¼ a < g; and the rel-
evant timescale would be tref ¼ Uref /a; i.e., the model is valid as
the fluid accelerates, until the Mach number of the flow is no
longer small. In other words, the assumption of smallMach num-
ber is sufficient to guarantee validity of the model.

We note two important features of the model thus far. The first
is that in both cases the perturbational pressure, which we now
denote as �(x; t) ¼ p(x; t)� p0(r) satisfies �/p0 ¼ O(M 2): Thus
in all but the momentum equation (where the 1/M 2 scaling re-
quires the presence of :�), we can substitute p0 for p. It is this
approximation that decouples the pressure from the density in
such a way as to filter acoustic waves from the solution.

The second important feature is that the momentum equation
can be retained in its original form,

@�U

@t
þ: = (�UU )þ:� ¼ �(�� �0)gêr;

with no approximation to the buoyancy term and no assumption
on the size of the perturbational density, as long as the actual
acceleration of the flow is such that the Mach number of the
flow remains small.

We now consider the implications of replacing p by p0. The
evolution of the nonreacting low Mach number system is de-
scribed by the mass and momentum equations together with the
enthalpy equation, but the system remains constrained by the
equation of state (eq. [5]), namely, p(�;Xk ; T ) ¼ p0(z). To com-
plete the low Mach number model we re-pose the equation of
state as a constraint on the velocity field, following closely the
derivation in Bell et al. (2004) but retaining stratification effects.

We begin by rewriting conservation of mass as an expression
for the divergence of velocity:

: = U ¼ � 1

�

D�

Dt
: ð7Þ

Differentiating the equation of state (eq. [5]) along particle paths,
we can write

Dp

Dt
¼ @p

@�

����
T ;Xk

D�

Dt
þ @p

@T

����
�;Xk

DT

Dt
þ
X
k

@p

@Xk

����
�;T

DXk

Dt
;

or

D�

Dt
¼ 1

p�

Dp

Dt
� pT

DT

Dt
�
X
k

pXk
!̇k

 !
; ð8Þ

with p� ¼ @p/@�jT ;Xk
, pT ¼ @p/@T j�;Xk

, and pXk
¼ @p/@Xk j�;T .

We now require an expression forDT /Dt, which can be found
by differentiating the enthalpy equation (eq. [6]):

�
Dh

Dt
¼ �

@h

@T

����
p;Xk

DT

Dt
þ @h

@p

����
T ;Xk

Dp

Dt
þ
X
k

@h

@Xk

����
T ; p

DXk

Dt

 !

¼ Dp

Dt
þ �H ;

or, gathering terms,

DT

Dt
¼ 1

�cp
(1� �hp)

Dp

Dt
�
X
k

��k !̇k þ �H

" #
; ð9Þ

where cp ¼ @h/@T jp;Xk
is the specific heat at constant pressure,

�k ¼ @h/@Xk jp;T , and hp ¼ @h/@pjT ;Xk
, for convenience. Substi-

tuting equation (9) into equation (8) and the resulting expression
into equation (7) yields

: = U ¼ 1

�p�

(
� Dp

Dt
þ pT

�cp

"
(1� �hp)

Dp

Dt

� �
X
k

�k !̇k þ �H

#
þ
X
k

pXk
!̇k

)
ð10Þ

¼ 1

�p�

pT

�cp
(1� �hp)�1

� �
Dp

Dt

þ 1

�p�

pT

�cp
(�H � �

X
k

�k !̇k)þ
X
k

pXk
!̇k

" #
: ð11Þ

Then, replacing p by p0(r), Dp/Dt becomes U = :p0, and, re-
calling the definition of H, the divergence constraint can be
written

: = U þ �U = :p0 ¼

1

�p�

(
pT

�cp

"
: = (�:T )�

X
k

�(qk þ �k)!̇k

#
þ
X
k

pXk
!̇k

)
� S̃;

ð12Þ

where we define

� (�; T ) � � (1� �hp)pT � �cp
�2cpp�

� �
: ð13Þ

We note that for domains sufficiently smaller than a pressure
scale height in which :p0 can be neglected, equation (12) re-
duces exactly to the divergence constraint, equation (5) in Bell
et al. (2004).
For the larger domains that are the target of this paper, we use

the thermodynamic identities as outlined in Appendix A, to write

� ¼ 1

�1 p0
;
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where �1 � d( log p)/d( log �)js, and we have substituted p0
for p.

In the case of terrestrial atmospheres and in the absence of
compositional effects, �1 is replaced by the constant � ¼ cp /cv ,
and using p ¼ �RT with R the gas constant, this expression can
be simplified to

: = ( p1=�0 U )¼ RH

cpp
R=cp
0

;

the pseudo-incompressible constraint as derived by Durran (1989).
For stellar atmospheres, the variation in �1 can be decom-

posed into two contributing factors: the background stratification
and the local perturbation to that base state. For a nearly isentro-
pically stratified base state with small perturbations,�1 is close to
constant, hence �0 / p

1=�10

0
. Neglecting expansion effects from

thermal diffusion or reactions, this then reduces to the traditional
anelastic approximation,

: = (�0U ) ¼ 0:

For the more general case �10 ¼ �1(�0; T0; p0) is not constant,
but we can exploit the fact that both p0 and �10 are functions only
of r. It is straightforward (see Appendix B) to show that in this
case, the constraint can be written

: = (�0(r)U )¼ �0S̃; ð14Þ

where

�0(r)¼ �(0) exp

Z r

0

p00
�10 p0

� �
dr 0

� �
:

For the types of problems amenable to the low Mach number
model, the density and temperature perturbations may be large,
but even so the variation of �1 due to the perturbation is at most a
few percent. For the examples in this paper we neglect the local
variation of �1; this assumption will be reexamined in subse-
quent work.

For the purposes of comparing the fundamental hydrody-
namic behavior of the lowMach number model relative to estab-
lished compressible and anelastic formulations, we will, for the
remainder of this paper, neglect the effects of variation in com-
position, reactions, and thermal conduction. By summarizing the
low Mach number equation set for this specialized case and re-
writing the momentum equation as an evolution equation for ve-
locity, we now have

@�

@t
¼ �: = (�U ); ð15Þ

@U

@t
¼ �U = :U � 1

�
:�� (�� �0)

�
gêr; ð16Þ

: = (�0U ) ¼ 0: ð17Þ

We note that this system contains three equations for three un-
knowns: density, velocity, and pressure. The equation of state
was used to derive the constraint, so to include it here would be
redundant. When reactions and compositional effects are in-
cluded in future work, the evolution equations for species and
energy (in the form of temperature, entropy or enthalpy) will be

added to this system, but for the simple hydrodynamical tests
we present here, this system is sufficient.

3. NUMERICAL METHODOLOGY FOR THE LOW
MACH NUMBER MODEL

We discretize the low Mach number equation set derived in
the previous section using an extension of the second-order accu-
rate projectionmethodology developed for incompressible flows
(Bell et al. 1989, 1991; Almgren et al. 1996, 1998; Bell &
Marcus 1992) and extended to low Mach number combustion
(Pember et al. 1998; Day & Bell 2000) and to small-scale re-
acting flow for SNe Ia (Bell et al. 2004). We refer the reader to
the above references for numerical examples demonstrating the
second-order accuracy of the overall methodology and for many
of the details of projection methods. Here we present a brief over-
view of the numerical methodology as applied to this equation set.
The absence of reactions and presence of�0 in the projection steps
are the key differences from to the algorithm in Bell et al. (2004).

In the projection approximation, explicit discretizations of the
evolution equations are first used to approximate the velocity and
thermodynamic variables at the new time, then an elliptic equa-
tion for pressure, derived from the constraint imposed on the new-
time velocity, is solved to update the pressure and return the
velocity field to the constraint surface. In contrast to the tradi-
tional anelastic approach, we have not replaced conservation of
mass by the divergence constraint, which means that we are able
to evolve the density field with a conservative update rather than
invoking the equation of state to diagnose it. Thus the variables
we update in each advection step are the velocity, density, and
either temperature, enthalpy, or entropy. The low Mach number
constraint constrains the evolution of the thermodynamic vari-
ables to the manifold defined by the equation of state.

The discretization of the evolution equations is essentially a
three step process. First, we use an unsplit second-order God-
unov procedure (Colella 1990) to predict a time-centered t nþ1=2

edge-based advection velocity, UADV;�, using the cell-centered
data at t n and the lagged pressure gradient from the interval cen-
tered at t n�1=2. The provisional field, UADV;� , represents a normal
velocity on cell edges analogous to a MAC-type staggered grid
discretization of the Navier-Stokes equations (Harlow & Welch
1965). Figure 1 illustrates the MAC grid. However, UADV;� fails
to satisfy the time-centered divergence constraint (eq. [14]). We
apply a discrete projection by solving the elliptic equation

DMAC �0

�n
GMAC	MAC

� �
¼ DMAC �0U

ADV;�� �
� �0S̃

nþ1=2 ð18Þ

for 	MAC, where DMAC represents a centered approximation to a
cell-based divergence from edge-based velocities, andGMAC rep-
resents a centered approximation to edge-based gradients from
cell-centered data. The solution, 	MAC, is then used to define

UADV ¼ UADV;�� 1

�n
GMAC	MAC:

UADV is a second-order accurate, staggered-grid vector field at
t nþ1=2 that discretely satisfies the constraint (eq. [14]), and is
used for computing the time-explicit advective derivatives for
U and �.

We next explicitly update the density using a second-order
accurate discretization of the mass equation (we note here that
this approach differs from both the anelastic equation set and the
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alternate form of the lowMach number equations as described in
Lin 2005),

�nþ1 ¼ �n �� t : = �UADV
� �� 	nþ1=2

:

The final step of the integration procedure is to advance the
velocity to the new time level. For this step we first obtain a pro-
visional cell-centered velocity at t nþ1 using a time-lagged pertur-
bational pressure gradient,

�nþ1=2 U
nþ1;� � Un

�t
þ �nþ1=2 UADV = :

� �
U

� 	nþ1=2

¼ �G�n�1=2 �
�
�nþ1=2 � �0

�
gêr;

where �nþ1=2 ¼
�
�n þ �nþ1

�
/2. At this point, Unþ1;� does not

satisfy the constraint. We apply an approximate projection to
simultaneously update the perturbational pressure and to proj-
ect Unþ1;� onto the constraint surface. In particular, we solve

L
�
�	 ¼ D �0

Unþ1;�

�t
þ 1

�nþ1=2
G�n�1=2

� �� �
� �0S̃

nþ1

�t
ð19Þ

for nodal values of 	, where L�� is the standard bilinear finite
element approximation to: = (�0 /�):with � evaluated at tnþ1=2.
In this step, D is a discrete second-order operator that approxi-
mates the divergence at nodes from cell-centered data, and G ¼
�DT approximates a cell-centered gradient from nodal data.
(See Almgren et al. [1996] for a detailed discussion of this ap-
proximate projection, and Almgren et al. [2000] for a discussion
of this particular form of the projection operand.) Finally, we de-
termine the new-time cell-centered velocity field from

Unþ1 ¼ Unþ1;� � �t

�nþ1=2
G	� G�n�1=2

 �

;

and the new-time-centered perturbational pressure from

�nþ1=2 ¼ 	:

Specification of the initial value problem includes initial values
for U and � at time t ¼ 0 and a description of the boundary con-
ditions, but the perturbational pressure is not initially prescribed.
In order to begin the calculation, the initial velocity field is first
projected to ensure that it satisfies the divergence constraint at
t ¼ 0. Then initial iterations (typically two are sufficient) are
performed to calculate an approximation to the perturbational
pressure at t ¼ � t /2.
In each step of the iteration we follow the procedure described

above. In the first iteration we use ��1=2 ¼ 0. At the end of each
iteration we have calculated a new value of U1 and a pressure
�1/2. During the iteration procedure, we discard the value of U1,
but define��1=2 ¼ �1=2. Once the iteration is completed, the above
algorithm can be followed as written.

4. NUMERICAL VALIDATION AND COMPARISON

4.1. Compressible Formulations

We compare and contrast the low Mach number results with
those obtained using two different discretizations of the fully com-
pressible equation set, both implemented in the FLASH code
(Fryxell et al. 2000). The first is the piecewise parabolic method
(PPM; Colella & Woodward 1984), which is a high-order accu-
rate, dimensionally split algorithm in which the updates are done
in one-dimensional sweeps, e.g., in two dimensions

Snþ2
i; j ¼ X (�t)Y (� t)Y (� t)X (� t)S n

i; j;

where S ¼ (�; �U; �E ) is the state variable, X(� t) is the operator
that updates the state through�t in time in the horizontal direc-
tion, and Y(� t) updates the state by� t in the vertical direction.
One PPM cycle updates the state through 2� t, switching the or-
der of the directional operators midway through to retain second-
order accuracy. PPM is the primary hydrodynamics algorithm
used by the large-scale SNe Ia explosion modeling community

Fig. 1.—Illustration of the MAC-type grid showing the advective velocities
ðuADV, vADVÞand 	MAC for the (i, j ) cell. An unsplit Godunov method is used to
predict these advective velocities from the cell centered velocities (ui, j , vi, j) in
the surrounding cells.

Fig. 2.—Initial model generated by theKepler code (dotted line) and uniformly
gridded, constant gravity portion used in the bubble simulations (solid line).
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Fig. 3.—Bubble evolution for five different algorithms. Here, the peak temperature is 6 ; 109 K. We see good agreement between the two compressible codes
(PPM and unsplit) and the low Mach number algorithm.



(Röpke & Hillebrandt 2005; Plewa et al. 2004; Gamezo et al.
2003). The FLASH implementation of PPM has been well val-
idated (Calder et al. 2002), and serves as a good basis for com-
parisons with the low Mach number algorithm.

A numerical issue that arises in fully compressible simula-
tions, but not with the lowMach number approach, is the difficulty
of maintaining a quiet hydrostatic atmosphere. Small displace-
ments from hydrostatic equilibrium (HSE) can generate sound
waves throughout the atmosphere, which, if unchecked, can lead
to ambient velocities that can swamp the process being studied.
The hydrostatic equilibrium improvements described in Zingale
et al. (2002), which remove the hydrostatic pressure from the
pressure jump across the interfaces in the Riemann problem, were
used for all PPM runs. The upper and lower boundary conditions
are the hydrostatic boundaries described in that same paper, with
the pressure and density modified according to hydrostatic equi-
librium and the velocities given a zero gradient.

The second compressible algorithm we consider is a second-
order unsplit method followingColella (1990).At lowMach num-
bers, dimensionally split methods can have trouble producing
realistic velocity fields, as will be shown in the bubble rise com-
parison. In the unsplit formulation, the cell averages are updated
in all directions at once. A critical part of the unsplit method is
that the interface reconstructions contain a transverse flux term
that explicitly couples in the information from the corner cells.

Centered fourth-order limited slopes are used for both the re-
construction and the definition of the states used for the trans-
verse Riemann problem, as described in Colella (1985). This
is the same procedure used in predicting the interface states
in the low Mach number method presented here. This method
was extended to handle general equations of state, following the
procedure in Colella & Glaz (1985). We added an additional
transverse flux piece to the interface reconstruction of �, to be
consistent with the unsplit reconstructions. This was put into the
FLASH framework for the present simulations. Both the PPM
and unsplit solvers use the same two-shock Riemann solver de-
scribed in Colella & Glaz (1985). For both the split and unsplit
solvers, a CFL number of 0.8 was used based on the sound speed.

4.2. Anelastic Approach

The low Mach number equations and the anelastic equation
set are derived differently. Both equation sets assume a lowMach
number, which implies a small pressure perturbation from the back-
ground state. However, the anelastic equation set assumes both
small density and small temperature perturbations as well. As
noted earlier, the velocity constraints resulting from these two
derivations are strikingly similar and are, in fact, equivalent for
an isentropically stratified background state. Even in the non-
isentropic background considered here, the differences between
�0 and �0 are small.

Fig. 4.—Detailed comparison of the temperature field for PPM (blue), the unsplit compressible algorithm (red ), and the lowMach number algorithm (green), for the
6 ; 109 K perturbation. Contours are shown at 3 ; 109 and 4:5 ; 109 K.
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However, because the anelastic approximation assumes small
density and temperature perturbations, approximations are made
to the buoyancy term in the momentum equation. These approx-
imations follow from the observation that since the perturba-
tional density was neglected in the continuity equation in order to
derive the velocity constraint, the continuity equation cannot be
used to evolve the perturbational density. Therefore, an alterna-
tive formulation of the buoyancy term must be used. A typical
anelastic model evolves temperature or entropy and constructs
the buoyancy forcing term from the field using a linearized ap-
proximation. Following the derivation by Braginsky & Roberts
(1995) that combines parts of the pressure gradient and buoyancy
terms, we consider the following form of the anelastic equations:

�0
DU

Dt
¼� �0:

p0

�0

� �
� @�0

@S

� �
p

S 0gêr; ð20Þ

DS

Dt
¼ 0; ð21Þ

: = (�0U ) ¼ 0: ð22Þ

Here S is entropy, S 0 ¼ S � S0, p
0 ¼ p� p0, and we neglect

viscosity, thermal diffusivity, and the gravitational potential per-
turbation. We note that in the case of small density and tem-
perature perturbations, simulations using the low Mach number
equations and the anelastic approximation give indistinguishable
results, and so for the numerical comparisons, we focus on prob-
lems with finite amplitude perturbations as described in the next
subsection.

4.3. Bubble Rise Comparison

We present three sets of two-dimensional calculations of a
rising bubble in a stellar environment. The one-dimensional
background state (�0 , T0 , p0) is calculated using the Kepler code
(Weaver et al. 1978), to evolve aChandrasekhar-masswhite dwarf
until the central temperature reaches 7 ;108 K, representing
conditions just before ignition. We map a portion of the one-
dimensional model onto a uniform two-dimensional grid and
place it into hydrostatic equilibrium with a constant gravitational
acceleration (g ¼ �1:9 ;1010 cm s�2). We further simplify by
ignoring metric terms associated with the radial coordinate and

Fig. 5.—Mach number comparison for the 6 ; 109 K bubble. (a) At early times, the PPM results show a sound wave from the initial perturbation just about to exit
through the top of the domain. This is not present in the lowMach number case, as it filters sound waves. (b) At late times, the flow has attained aMach number of almost
0.2 in places.
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Fig. 6.—Bubble evolution for four different algorithms. Here, the peak temperature is 1 ; 109 K. As with the 6 ; 109 K case, the PPM, unsplit, and lowMach number
results are in good agreement.



view the domain as Cartesian. We note that neither the constant
gravity assumption nor the simplified metric is a limitation of any
of the methods presented here, but are chosen in these comparison
simulations for simplicity. The density structure of the model is
illustrated in Figure 2.

All bubbles begin in pressure equilibrium with the back-
ground state and are defined by a simple temperature perturbation,
from which the density perturbation is calculated. We consider
three different cases, which we distinguish by the maximum tem-
perature at the center of the bubble Tmax. The temperature profile
of the bubble is then defined by

T ¼ T0 þ (Tmax� T0)
1

2
1þ tanh

2:0� �=


0:9

� �� �
;

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� xcent)

2 þ (r � rcent)
2

q
;

(xcent; rcent) ¼ (2:5 ; 107; 6:25 ; 107) cm, and 
 ¼ 1:25 ; 106 cm
in a domain from x ¼ 0 to 5 ; 107 cm and r ¼ 5 ; 107 to 108 cm.

The stellar equation of state is then used to compute � given T
and p0. This profile was chosen to give a smooth transition from
the ambient temperature to the perturbed temperature, thus min-
imizing the effects of the numerical slope limiters present in the
different hydrodynamics methods. Due to the short timescale of
the problem, thermal diffusivity is neglected. For all bubble cal-
culations presented the grid has uniform resolution of 384 ; 384;
the adaptive gridding features of all the codes are turned off.

Figures 3 and 6 present comparisons of simulations using the
low Mach number approach, two different discretizations of the
fully compressible equation set, and the anelastic and incompres-
sible equation sets. The lowMach number, anelastic, and incom-
pressible results are calculated using the projection method
approach described in the previous section. The only differences
in methodology occur in the coefficient of velocity in the projec-
tion and in the construction of the buoyancy term. Each of these
methods was run at a CFL number of 0.9, based on themaximum
advection velocity.

Figure 3 shows the temperature evolution forTmax ¼ 6 ; 109 K.
This corresponds to an Atwood number for the bubble of approx-
imately 0.079. In this simulation, the bubble reaches a Mach
number of about 0.2. In addition to the PPM and unsplit compres-
sible solvers, traditional anelastic and incompressible solvers are

Fig. 7.—Detailed comparison of the temperature field for PPM (blue), the unsplit compressible algorithm (red ), and the low Mach number algorithm (green), for
the 1 ; 109 K perturbation. Contours are shown at 5 ; 108 and 7:5 ; 108 K.
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also shown for comparison. The lowMach numbermethod closely
tracks the two compressible solvers. The incompressible and
anelastic results demonstrate the effects of their respective as-
sumptions. The velocity constraint for the anelastic model is
sufficiently accurate to capture the bubble rise, but because of the
linearity of the density-temperature relationship in the anelastic
approach, the buoyancy term is too small in the anelastic simu-
lation. By contrast, the incompressible simulation contains the
full buoyancy term, but due to the incompressibility constraint,
the bubble cannot expand; consequently, it reaches neutral buoy-
ancy at a much lower level and stops rising.We do not follow the
bubbles past the point where nonlinear instabilities along the
sides begin to dominate the evolution.

A more detailed comparison of the results from Figure 3 is pro-
vided in Figure 4, where temperature contours of the low Mach
number solution are superimposed on temperature contours of
the unsplit and PPM solutions. Here we see a large degree of
overlap, demonstrating that the bubbles have the same rise ve-
locity and size independent of the algorithm. Figure 5 shows the
Mach number of the PPM and low Mach number methods, fur-
ther demonstrating the agreement between the two sets of results,
with the exception of the unphysical loss of symmetry in the
PPM simulation.

Figure 6 shows the temperature evolution for the lower peak
temperature case, Tmax ¼ 1 ; 109 K, and corresponding Atwood
number of 0.0024. Over the course of this comparison, the Mach
number remains below 0.05. Again, we observe the agreement
between the low Mach number and compressible solvers, with
the exception of the late-time breakdown of the PPM solution,
indicated by the large-amplitude temperature oscillations dom-
inating the flow behind the bubble. These oscillations reflect the
poor performance of operator split algorithms for very low speed
flows.

A more detailed comparison of the results from Figure 6 is
shown in Figure 7, again superimposing temperature contours
from the low Mach number and compressible formulations. We
again see good agreement, with the exception of the breakdown
of PPM at late times.

Timings of the PPM and low Mach number code were made
on a single processor (1.53 GHz Athlon MP) using the Intel 8.1
compilers. Both codes were compiled with the same compiler
optimization flags, -O3 -ip -ipo. FLASH was set to run with
16 ; 16 zone blocks, instead of the default 8 ; 8 for better perfor-
mance with uniform gridding. The 6 ; 109 K bubble required
2148 time steps, taking 14,200 s to evolve the bubble to 0.25 s in
simulation time. By comparison, the low Mach number solver
took 246 time steps and 1480 s, about an order of magnitude
increase in speed. For the 109 K bubble, the PPM solver took
7842 time steps, taking 52,100 s to evolve the bubble for 1 s of sim-
ulation time, while the low Mach number solver took 252 time
steps and 1560 s. As expected, the performance gap increases as
the Mach number decreases. The unsplit compressible algorithm
takes approximately twice asmuch time to run as PPM, primarily
due to the additional transverse Riemann solves required.

Finally, in Figures 8 and 9 we compare the low Mach number
and anelastic models for a bubble with Tmax ¼ 3:5 ; 108 K. This
regime is inaccessible to the compressible formulation, with a
peakMach number during the calculation of 0.012.We note that,
as expected, as the Atwood number decreases the fidelity of the
anelastic approximation improves.

The three cases presented in this section demonstrate the suc-
cessful application of the lowMach number approach, as well as
the failure of the compressible approach for low-speed flows and

the failure of the anelastic approach for flows with large density
or temperature variations. The low Mach number approach, like
the other methods, has limits to its applicability. Specifically,
as the flow speed, and therefore theMach number, increases, typi-
cally the thermodynamic pressure will diverge from p0, and the
assumptions underlying the low Mach number approach will be
violated. Aswith the anelastic model, numerical simulations using
the low Mach number model will continue to yield what appear

Fig. 8.—Bubble evolution the low Mach number and anelastic algorithms,
showing good agreement for the two different methods. Here, the peak temper-
ature is 3:5 ; 108 K.
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to be reasonable solutions, even as the underlying assumptions
are violated, but the solutions will no longer be physically
relevant.

In the case of a bubble rise without heat sources, it is difficult
to numerically demonstrate the failure of the low Mach number
method even as the Mach number increases. However, the di-
vergence of the low Mach number model from the compressible
solution in the case of a large Mach number will be discussed
more thoroughly in the subsequent paper that discusses the
behavior of the low Mach number model in the presence of
heating.

5. CONCLUSIONS

We have introduced a new method for following low-speed,
stratified flows in astrophysical conditions and have demonstrated,
through comparison with compressible and anelastic codes, that
this algorithm performs well in the range of Mach numbers from
near zero to about 0.2. The increased computational efficiency
associated with a low Mach number formulation makes it an
ideal tool for investigations of the convective/ignition phase of
SNe Ia. However, to be applicable in this setting, a number of
generalizations to the methodology will need to be developed. In
particular, we will need to extend the algorithm to include the

effects of variation in composition, reactions, and thermal conduc-
tion. In addition, once a flame is established, it will be necessary
to include subgrid models for turbulent flame propagation that
will enable the methodology to be used to simulate the evolution
of the early phases of the explosion. These issueswill be addressed
in future work.
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Center/University of California, Santa Cruz, and by the NASA
Theory Program (NAGW-5-12036).

Fig. 9.—Detailed comparison of the temperature field for the anelastic algorithm ( purple) and the low Mach number algorithm (green), for the 3:5 ; 108 K
perturbation. The contours are at 2:5 ; 108 and 3 ; 108 K.
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APPENDIX A

SIMPLIFICATION OF �

In this appendix we derive a simplified expression for � introduced in equation (13). We refer to Chapter 9 of Cox & Giuli (1968,
hereafter CG68), for a number of thermodynamic identities.

We begin by rewriting hp, using

@h

@�

�����
T

¼ @h

@p

�����
T

@p

@�
¼ hpp�:

with

h(�; T ) ¼ p(�; T )

�
þ e(�; T ):

Therefore,

hp ¼
1

p�
� p

�2
þ p�

�
þ e�

� �
¼ 1

�
1� p

�p�

� �
þ e�

p�
:

Putting this into � , we have

� ¼� 1

�2cpp�
1� 1� p

�p�

� �
� �

e�

p�

� �
pT � �cp


 �
ðA1Þ

¼ � 1

�p�cp

p

�2p�
� e�

p�

� �
pT � cp

� �
: ðA2Þ

For a generalized equation of state, there are three principal adiabatic exponents which relate the various differentials (dp, dT, and d�).
For an ideal gas, they are all equivalent. Here, we use �1 (CG68 eq. [9.88]):

�1�
d ln p

d ln �

� �
ad

:

This is related to the ratio of specific heats, � via

� ¼ cp

cV
¼ �1

��
;

(CG68 eq. [9.87]) where

�� �
@ ln p

@ ln �

� �
T

¼ �

p
p�

(CG68 eq. [9.82]) is the ‘‘density exponent in the pressure equation of state.’’ For an ideal gas, �� ¼ 1, and �1 ¼ �. Taking all of
this together, we see that

1

�p�
¼ �

�1p
:

Putting this into our � expression,

� ¼ � �

�1pcp

p

�2p�
� e�

p�

� �
pT � cp

� �
: ðA3Þ

Motivated by the ideal gas result that � ¼ 1/(�p), we want to show that the quantity in the square brackets in equation (A3) reduces
to cV .

The specific heats are related by (CG68 eq. [9.84])

cp� cV ¼ � E

T

@ ln E

@ ln �

� �
T

�T

��
þ p

�T

�T

��
: ðA4Þ
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The temperature exponent is defined as

�T �
@ ln p

@ ln T

� �
�

¼ T

p
pT

(CG68 eq. [9.81]), so equation (A4) simplifies to

cp � cV ¼� �

T
e�

�T

��
þ p

�T

�T

��
ðA5Þ

¼ � e�
pT

p�
þ p

�2

pT

p�
; ðA6Þ

which substitutes directly into equation (A3) to yield

� ¼ � �

�1pcp
(cp� cV )� cp
� 	

¼ � �

�1pcp
�cVð Þ ¼ 1

�1p
:

We note that �1 varies slowly throughout the white dwarf and is a quantity that is already returned by the tabular equation of state.

APPENDIX B

DERIVATION OF �

We seek a function �(z) such that

1

�(z)
: = (�U ) ¼ (: = U )þ 1

�1 p0
U = :p0:

We expand : = (�U ) ¼ �(: = U )þ U = :� and note that for the equality to hold, we would need

1

�(z)
U = :� ¼ 1

�1 p0
U = :p0;

or

1

�
w� 0 ¼ 1

�1 p0
wp00:

Since we want this to hold for all w, we are left with

� 0

�
¼ p00

�1 p0
:

We integrate this up from z ¼ 0: Z z

0

� 0

�
dz0 ¼

Z z

0

d ln (� )½ �
dz

dz0 ¼
Z z

0

p00
�1 p0

dz0

so

ln �(z)� ln �(0) ¼
Z z

0

p00
�1 p0

dz0;

or

�(z) ¼ �(0) exp

Z z

0

p00
�1 p0

dz0
� �

:

We note that this also can be written as the recursive relationship

�(zk) ¼ �(zk�1) exp

Z zk

zk�1

� �0g

�1 p0
dz0

� �
;

exploiting the hydrostatic equilibrium of the base state. This equation is the one we use to numerically compute �(z); we let
�(0) ¼ �0(0).

LOW MACH NUMBER MODELING OF SNe Ia. I. 935No. 2, 2006



REFERENCES

Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., & Welcome, M. L. 1998,
J. Comput. Phys., 142, 1

Almgren, A. S., Bell, J. B., & Crutchfield, W. Y. 2000, SIAM J. Sci. Stat.
Comput., 22, 1139

Almgren, A. S., Bell, J. B., & Szymczak, W. G. 1996, SIAM J. Sci. Stat.
Comput., 17, 358

Batchelor, G. K. 1953, Q. J. R. Meteorol. Soc., 79, 224
Bell, J. B., Colella, P., & Glaz, H. M. 1989, J. Comput. Phys., 85, 257
Bell, J. B., Colella, P., & Howell, L. H. 1991, in Proc. Tenth AIAA Compu-
tational Fluid Dynamics Conf. (Washington: AIAA), 360

Bell, J. B., Day, M. S., Rendleman, C. A., Woosley, S. E., & Zingale, M. A.
2004, J. Comput. Phys., 195, 677

Bell, J. B., & Marcus, D. L. 1992, J. Comput. Phys., 101, 334
Botta, N., Klein, R., & Almgren, A. 2000, in ENUMATH 99, Numerical Mathe-
matics and Advanced Applications, ed. P. Neittaanmäki et al. (Singapore:
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