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ABSTRACT

We continue the description of a lowMach number hydrodynamics algorithm for reacting, full star flows. Here we
demonstrate how to accurately incorporate reactions using a second-order accurate Strang-splitting technique. We also
improve the fidelity of the model by allowing the base state to evolve in response to large-scale convection as well as
large-scale heating, taking care to account for the compositional changes to the base state as well. The new algorithm
is tested via comparisons with a fully compressible code and shown to be in good agreement. The resulting code,
MAESTRO, once extended to incorporate a spherically symmetric base state, will be used to study the convection
and ignition phases of Type Ia supernovae.

Subject headinggs: convection — hydrodynamics — methods: numerical — nuclear reactions, nucleosynthesis,
abundances — supernovae: general — white dwarfs

1. INTRODUCTION

In the generally acceptedmodel of Type Ia supernovae (SNe Ia),
a white dwarf accretes mass from a companion until it reaches
the Chandrasehkar mass (see Hillebrandt & Niemeyer 2000 for a
recent review). For centuries, subsonic convection (Mach num-
ber,M,�0.01Y0.1) transports heat generated at or near the center
throughout the star (Baraffe et al. 2004; Woosley et al. 2004;
Wunsch & Woosley 2004; Kuhlen et al. 2006). Only in the last
second before the star unbinds does the Mach number approach,
and possibly exceed, unity. It is the details of this convective phase
that determine initial conditions for the subsequent explosion. Sim-
ulations have shown that different approximations for the initial
conditions lead to very different explosion behaviors (Niemeyer
et al. 1996; Plewa et al. 2004; Garcı́a-Senz & Bravo 2005; Livne
et al. 2005; Röpke et al. 2006, 2007). Efficient simulation of this
convection requires modern numerical methods tuned to the con-
ditions in the star. Other astrophysical environments, such as clas-
sical novae and X-ray bursts, are also characterized by low Mach
number dynamics and could benefit from the algorithm approach
outlined below.

In this paper we continue the development of a lowMach num-
ber hydrodynamics algorithm for astrophysical flows. As shown
previously (see Almgren et al. 2006a, hereafter Paper I; Almgren
et al. 2006b, hereafter Paper II ), the low Mach number hydro-
dynamics system of equations accurately describes the typical
flows in SNe Ia conditions for Mach numbers less than 0.2, pro-
viding a robust representation of finite-amplitude density and
temperature perturbations and accurately capturing the expan-
sion of the atmosphere due to heat release. Here we generalize
the model from Paper II in two fundamental ways. First, we add
species advection with realistic burning networks to the previous
framework. Next, we modify the evolution equations to allow the
base state to evolve in response to large-scale convective motions
as well as heat release. In the next paper we will generalize the
algorithm to spherical configurations. Here, we focus on plane-
parallel geometries in order to more carefully test the new aspects

of the algorithm via straightforward comparison to compressible
codes.

The traditional approach for modeling the time evolution of
astrophysical flows uses a fully explicit time discretization of the
compressible equation set (see, e.g., Fryxell et al. 2000). An al-
ternative to this approach that is applicable for lowMach number
flows is a fully implicit method for solving the compressible equa-
tion set. A recent example of this type of approach is found in
Hujeirat et al. (2007), where an implicit solver based on nonlinear
Newton-type solvers in combination with the defect-correction
iteration procedure is introduced.

By contrast, ourwork, aswell as recentwork byLin et al. (2006),
reformulate the system analytically to generate a lowMach number
equation set, which is then solved with a projection-type method.
The method presented in Lin et al. (2006) is similar to that pre-
sented here, but with several key differences. First, their method
does not allow for base state expansion and, therefore, is restricted
to situationswhere the total energy release and large-scale convec-
tive motions are not sufficient to significantly alter the radially av-
eraged state. In addition, the form in which the equations are
solved numerically differs between the two algorithms. LowMach
number models, which include a constraint on the divergence of
the velocity field, are typically integrated using a fractional step
projection approach. In this approach, one first advances the sys-
temwithout satisfying the constraint. In the second step, a discrete
projection is then applied so that the lowMachnumber divergence
constraint is satisfied. With this type of fractional step approach it
is not possible to numerically conserve mass and energy (or en-
thalpy) while simultaneously satisfying the equation of state. In
Lin et al. (2006) the temperature is evolved and the equation of
state is used to find the new density. Instead, we solve conserva-
tive equations for both density and enthalpy and relax the equa-
tion of state. The second major difference between our approach
and that of Lin et al. relates to the projection step of the algorithm.
Lin et al. formulate a projection algorithm in terms of a constant-
coefficient pressure Poisson equation, derived from the mass con-
servation equation, to be solved at each time step. In contrast, we
define the projection as an orthogonal decomposition of velocity
in a weighted inner product space. While our approach leads to
a somewhat more expensive variable-coefficient elliptic solve,
it has the advantage that it can handle larger density contrasts
without encountering stability issues (see Bell & Marcus 1992;
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Almgren et al. 1998; Sussman et al. 1999) and has been shown
to have better convergence properties (see Nicoud 2000). Finally,
our method is based on a second-order accurate discretization in
space and time.

Our goal for the current algorithm is to simulate the convec-
tion that precedes the explosion of the white dwarf, in order to
understand how ignition occurs. Other algorithms have been used
in the literature to study this problem, including an implicit method
(Höflich& Stein 2002) and the anelastic approximation (Kuhlen
et al. 2006). Few details are provided about the implicit algo-
rithm used by Höflich & Stein (2002), so it is difficult to compare
it to our new algorithm. Direct comparisons with the anelastic
method, presented in Paper I, showed that at low Mach numbers
and small deviations of temperature and density from the back-
ground state, the low Mach number method and the anelastic
method agree well. The lowMach number method continues to
be valid for large density and temperature perturbations where
the anelastic formulation breaks down. We plan to follow the
evolution of the convection through the development of finite-
amplitude hot spots, as well as capture the expansion of the white
dwarf as it is heated by the reactions at the center.

In x 2 we discuss the lowMach number equation set with a re-
action network. In x 3 the numerical methodology is explained in
detail. Results are in x 4, including comparisons to a fully com-
pressible code and convergence tests. We conclude in x 5.

2. LOW MACH NUMBER HYDRODYNAMICS

In Paper II we derived a system of low Mach number equa-
tions for stellar atmospheres with a time-dependent background
state that depended on externally prescribed heat sources. In this
paper we generalize the low Mach number equation set from
Paper II to include reaction networks. The necessary assumption
for validity of the generalized system is, as before, that the Mach
number (M ) of the flow be small. Then we can decompose the
pressure, p(x; r; t), into a base state pressure, p0(r; t), and a per-
turbational, or dynamic, pressure, �(x; r; t), such that j�j/p0 ¼
O(M 2). Here, x represents the horizontal coordinate directions,
and r represents the radial direction. The perturbations of den-
sity and temperature need not be small. The base state is assumed
to be in hydrostatic equilibrium, i.e.,:p0 ¼ ��0ger, where �0 ¼
�0(r; t) is the base state density and er is the unit vector in the
radial direction.

We recall from Paper I the fully compressible equations of
motion in a stellar environment with species evolution equations
and reaction terms,

@�

@t
þ:= (�U ) ¼ 0; ð1Þ

@(�U )

@t
þ: = (�UU )þ :p ¼ ��ger; ð2Þ

@(�h)

@t
þ:= (U�h) ¼ Dp

Dt
þ �Hnuc þ �Hext; ð3Þ

@(�Xk)

@t
þ: = (U�Xk) ¼ �!̇k ; ð4Þ

where �, U, h, and p are the density, velocity, enthalpy, and pres-
sure, respectively. Here we have written the energy equation in
terms of enthalpy rather than total energy, as in Paper I. The spe-
cies are represented by their mass fractions, Xk , along with their
associated production rates, !̇k . Equations (1) and (4) for the mass
and species are degenerate, sinceX

k

Xk ¼ 1;

and therefore, by definition,

X
k

!̇k ¼
D

Dt

X
k

Xk ¼ 0:

In the absence of weak interactions, the nuclear energy genera-
tion rate, Hnuc (expressed in erg g�1 s�1), can be expressed in
terms of the specific binding energies, qk , as

Hnuc ¼ �
X
k

qk !̇k : ð5Þ

This is the form we use in this paper. We note that neutrino
losses can easily be added to this term as well. For generality we
retain the external heat source, Hext, from Paper II. For the plane-
parallel applications in this paper, we take the gravitational accel-
eration, g, to be constant. Finally, the system is closed with the
equation of state,

p ¼ p(�; h;Xk ):

As in Papers I and II we use a general, publicly available
stellar equation of state based on the Helmholtz free energy, with
contributions from ions, radiation, and electron degeneracy, as de-
scribed in Timmes & Arnett (1999), Timmes & Swesty (2000),
and Fryxell et al. (2000). For the calculations presented in this pa-
per and in our previous small-scale flame calculations (Bell et al.
2004), we have not included Coulomb corrections. For the com-
parisons with the compressible method we set coulomb_mult to
0.0 in the FLASH code. However, we will include these contri-
butions for our scientific investigations of full white dwarfs.
We now derive the lowMach number equation set in a manner

analogous to the derivation in Paper II, but with species and re-
action terms added. We rewrite conservation of mass as an ex-
pression for the divergence of velocity,

:= U ¼ � 1

�

D�

Dt
: ð6Þ

Differentiating the equation of state, written in the form, p ¼
p(�; T ;Xk), along particle paths, we can write

D�

Dt
¼ 1

p�

Dp

Dt
� pT

DT

Dt
�
X
k

pXk
!̇k

 !
; ð7Þ

with p� ¼ @p/@�jXk ;T
, pXk

¼ @p/@Xk jT;�;(Xj; j6¼k), and pT ¼
@p/@T j�;Xk

.
An expression for DT /Dt can be found by applying the chain

rule for h ¼ h( p; T;Xk ) to the enthalpy equation (3),

DT

Dt
¼ 1

�cp
1� �hp
� � Dp

Dt
�
X
k

��k !̇k þ �Hnucþ �Hext

" #
; ð8Þ

where cp ¼ @h/@T jp;Xk
is the specific heat at constant pressure,

hp � @h/@pjT;Xk
, and �k � @h/@Xk jT;p;(Xj; j 6¼k) for convenience.

Combining equations (6), (7), and (8) and replacing p by p0(r; t),
we arrive at the divergence constraint on the velocity field,

:= U þ �
@p0
@t

þ U = :p0

� �

¼ ��
X
k

�k !̇k þ
1

�p�

X
k

pXk
!̇k þ �Hnucþ �Hext � S; ð9Þ
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where

� � � (1� �hp)pT � �cp
�2cpp�

� �
¼ 1

�1p0
; ð10Þ

�1 � d(log p) /d(log �) at constant entropy, and � � pT /(�cpp�).
Here, we set �1¼ �1, where �1 is the lateral average of �1, i.e.,

�1(r) ¼
1

A �Hð Þ

Z
�H

�1(x; r) dA; ð11Þ

where A(�H ) �
R
�H

dA,�H is a region at constant height for the
plane-parallel atmosphere, and dA represents an area measure.
This is a departure from the construction in Papers I and II, where
we used �10 ¼ �1(�0; p0;Xk0). The variation of �1 is explored in
the numerical tests presented in x 4.2 to ensure that the use of the
averaged �1 term is reasonable.

We note that the source term, S, is the same as that in our small-
scale lowMach number astrophysical combustion algorithm (Bell
et al. 2004), with the absence of thermal conduction and the
addition of an explicit heating term. (We also note that we have
changed our notation from Papers I and II from S̃ to S. This is
consistent with Bell et al. [2004].) We recall from Papers I and II
that this constraint can be written as

:= (�0U ) ¼ �0 S � �
@p0
@t

� �
; ð12Þ

where

�0(r; t) ¼ �(0; t) exp

Z r

0

1

�1p0

@p0
@r 0

dr 0
� �

: ð13Þ

Summarizing the reacting lowMach number equation set, we
have

@(�Xk)

@t
¼ �:= (U�Xk)þ �!̇k ; ð14Þ

@(�h)

@t
¼ �:= (U�h)þ Dp0

Dt
þ �Hnuc þ �Hext; ð15Þ

@U

@t
¼ �U =:U � 1

�
:�� (�� �0)

�
ger; ð16Þ

:= (�0U ) ¼ �0 S � 1

�1 p0

@p0
@t

� �
; ð17Þ

where the total mass density is defined as

� ¼
X
k

�Xk ; ð18Þ

and S is given by

S ¼ ��
X
k

�k !̇k þ
1

�p�

X
k

pXk
!̇k þ �Hnuc þ �Hext: ð19Þ

The major difference in the constraint considered in this paper
relative to Paper II is the form of S. Now, in addition to the ex-
ternal heat source, there is a reaction heat source (theHnuc term)
and compressibility terms due solely to compositional changes
(the terms proportional to �k and pXk

). Here, !̇k is evaluated by
integrating the reaction network. The thermodynamic deriva-
tives with respect to Xk are discussed in Appendix A.

An underlying assumption in the low Mach number approx-
imation is that the pressure remains close to the background
pressure. Heat release from reactions and large-scale convective
motions in a convectively unstable background can both cause
the background state to evolve in time. As discussed in Almgren
(2000) and demonstrated numerically in Paper II for an externally
specified heating profile, if the base state does not evolve in re-
sponse to heating, the lowMach numbermethod quickly becomes
invalid.

We recall from Paper II that we can decompose the full veloc-
ity field, U, into a base state velocity, w0er, and the remaining
velocity field, Ũ, that governs the more local dynamics, i.e.,

U(x; r; t) ¼ w0(r; t)er þ Ũ(x; r; t): ð20Þ

The decomposition is uniquely determined by the requirement
that Z

�H

Ũ = er dA ¼ 0; ð21Þ

which defines

w0 ¼
1

A �Hð Þ

Z
�H

(U = er) dA: ð22Þ

Following Paper II we can separate the divergence constraint into
that governing Ũ and that governingw0, resulting in the expression

:= �0w0erð Þ ¼ �0 S � 1

�1p0

@p0
@t

� �
; ð23Þ

with

S(r) ¼ 1

A �Hð Þ

Z
�H

S dA: ð24Þ

In Paper II, given w0, we updated the base state pressure and
density using

@p0
@t

¼ �w0

@p0
@r

; ð25Þ

@�0
@ t

¼ �:= (�0w0er): ð26Þ

While these evolution equations preserve hydrostatic equilib-
rium of the base state and allow expansion of the base state due
to nonzero S, they neglect base state changes that could occur
due to significant convective overturning. To quantify this effect,
we first define �0 ¼ �� �0. Using this definition and the velocity
decomposition equation (20), the evolution of �0 can bewritten by
subtracting equation (26) from equation (1),

@�0

@ t
¼ �:= �0Ũ

� �
�: = �0w0erð Þ �:= �0Ũ

� �
: ð27Þ

The horizontal average of each of the first two terms on the right-
hand side of equation (27) is zero, but the average of the third
term, in general, is not. Consequently, �0, the horizontal aver-
age of �0, can change over time. In particular,

@

@t
�0 ¼ � @

@r
�0w̃ð Þ; ð28Þ

where w̃ ¼ Ũ = er.
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In the algorithm as presented in Paper II, the nonzero right-
hand side in equation (28) allowed the base state density and
average density to gradually drift apart. As a result, the base state
pressure could also drift away from hydrostatic balance deter-
mined from the average density. For the nearly isentropically
stratified flows considered in that paper, this drift is negligible.
However, in a more general case where there is significant con-
vective overturning or when reactions produce significant changes
in composition, this effect can lead to a loss of physical fidelity
over time.

In this paper we correct for this drift from the average. We re-
tain our velocity decomposition, but alter the base state evolution
equations. Guided by equation (28), we replace equation (26) by

@�0
@t

¼ �:= �0w0erð Þ �:= ��er
� �

; ð29Þ

where we define

��(r) ¼ �0w̃ð Þ ¼ 1

A �Hð Þ

Z
�H

(�0w̃) dA: ð30Þ

This has the consequence that if �0 ¼ 0 at t ¼ 0, then �0 ¼ 0
for all time.

We can derive the base state pressure evolution directly from
the hydrostatic balance equation. Starting with the equation of
hydrostatic equilibrium, @p0/@r ¼ ��0g, and using the new base
state density equation (29), one can show that in the case of plane-
parallel geometry with constant gravity, g, the base state pressure
is governed by

@p0
@ t

¼ w0�0gþ ��g ¼ �w0

@p0
@r

þ ��g: ð31Þ

We define the Lagrangian change in the base state pressure as

 � D0 p0

Dt
; ð32Þ

whereD0/Dt � @/@t þ w0 @/@r. Note that for plane-parallel geom-
etries, equation (31) can also be written as  ¼ ��g. The evolu-
tion equation for p0 in spherical coordinates will be discussed in
a forthcoming paper. With this definition, we can write the full
enthalpy equation (eq. [3]) as

@(�h)

@t
þ:= (U�h) ¼  þ Ũ = er

� � @p0
@r

þ �Hnuc þ �Hext ð33Þ

and the temperature evolution equation (eq. [8]) as

DT

Dt
¼ 1

�cp

(
1� �hp
� �

 þ Ũ = er
� � @p0

@r

� �

�
X
k

��k !̇k þ �Hnucþ �Hext

)
: ð34Þ

In Paper II we also defined an evolution equation for the base
state enthalpy, so that we could construct the fluxes used in the
enthalpy evolution equation in perturbational form. Numerical
experiments conducted later indicated that an alternate formula-
tion, described below in this paper, had better numerical proper-
ties, although analytically equivalent. Thus, we no longer utilize a
base state enthalpy or base state species concentration; only the

base state density and pressure are essential to the lowMach num-
ber formulation.
Finally, we use equations (23) and (31) to define w0. In plane-

parallel geometry,

@w0

@r
¼ 1

�0

:= (�0w0er)� w0

1

�0

@�0

@r

¼ S � 1

�1 p0

@p0
@t

� �
� w0

1

�0

@�0

@r

¼ S � 1

�1 p0

@p0
@t

þ w0

@p0
@r

� �

¼ S � 1

�1 p0
��g; ð35Þ

wherewe have used (�1 p0)
�1(@p0/@r) ¼ ��1

0 (@�0/@r), as shown
in Paper I. A different constraint equation for w0 would be needed
for spherical coordinates.
In writing the evolution of the velocity field, we make a slight

correction to the evolution equation for Ũ given in Paper II,
equation (23). There we incorrectly split the dynamics between
Ũ and w0; in effect, we neglected the perturbational pressure term
that appears in the evolution of w0. Here, after correctly splitting
the dynamics, we now have

@w0

@t
¼� w0

@w0

@r
� 1

�0

@�0
@r

; ð36Þ

@Ũ

@t
¼� Ũ = :Ũ � w0

@Ũ

@r
� Ũ = er
� � @w0

@r
er

� 1

�
:�þ 1

�0

@�0
@r

er �
(�� �0)

�
ger; ð37Þ

where we have introduced a new term, (1/�0)(@�0/@r), that con-
tributes to the change in w0. We note that without this term in
equation (36), an initially zero w0 would remain zero for all time.
Similarly to �, the magnitude of �0 is such that j�0j/jp0j ¼
O(M 2

0 ), where M0 ¼ jw0j/c, so we can neglect its effect on ther-
modynamic relations.
In practice, we calculate w0 by integrating the one-dimensional

divergence constraint (see eq. [35]). Then we define

� 1

�0

@�0
@r

¼ @w0

@t
þ w0

@w0

@r
; ð38Þ

once w0 at the old and new times is known, and the advective
term is computed explicitly. Then we can include this for com-
pleteness in the update for Ũ. The constraint equation for Ũ re-
mains as in Paper II,

:= �0Ũ
� �

¼ �0 S � S
� �

: ð39Þ

3. NUMERICAL METHODOLOGY

The numerical methodology in this paper is more complicated
than that outlined in Paper II because of the need to integrate the
reaction network. Again, we use a predictor-corrector formalism.
In the predictor step we compute an estimate of the expansion of
the base state, then compute an estimate of the state at the new
time level. In the corrector step we use the results of the previous
state update to compute a new base state update aswell as full state
update. We include the reactions using Strang-splitting to achieve
second-order accuracy in time.
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3.1. Notation

Wemake use of the following shorthand notations in outlining
the algorithm.

1. For any quantity, �, we define � ¼ Avg(�), the average
over �H , as

�(r) ¼ 1

A �Hð Þ

Z
�H

�(r; x) dA: ð40Þ

2. React State½�in; (�h)in; X in
k ; T

in; (�Hext)
in�! ½�out; (�h)out;

X out
k ;T out; (�!̇k)

out� is the process by which we evolve the spe-
cies and enthalpy from X in

k !X out
k and (�h)in ! (�h)out by solv-

ing the following system of equations over a time interval of
�t/2,

@Xk

@t
¼ !̇k ; ð41Þ

@(�h)

@t
¼ �Hnuc þ �Hext: ð42Þ

In particular, to evolve the species, we solve the system

dXk

dt
¼ !̇k(�;Xk ; T ); ð43Þ

dT

dt
¼ 1

cp
�
X
k

�k !̇k þ Hnuc

 !
; ð44Þ

using the stiff ordinary differential equation integration meth-
ods provided by the VODE package (Brown et al. 1989). The
absolute error tolerances are set to 10�12 for the species, and a
relative tolerance of 10�5 is used for the temperature. The inte-
gration yields the new values of the mass fractions, X out

k . Equa-
tion (44) is derived from equation (8) by assuming that the pressure
is constant during the burn state. In evolving these equations, we
need to evaluate cp and �k . In theory, this means evaluating the
equation of state for each right-hand side evaluation that VODE
requires. In practice, we freeze cp and �k at the start of the in-
tegration time step and compute them using � in, X in

k , and T in as
inputs to the equation of state. We note that while temperature is
evolved when solving these equations, we do not keep the final
temperature, nor do we use it to compute the final change in en-
thalpy. Therefore, T out ¼ T in. Also, note that the density remains
unchanged during the React State step, i.e., �out ¼ � in.

After the new mass fractions have been computed, the reac-
tion rates are defined as

(�!̇k)
out ¼

�out X out
k � X in

k

� �
�t=2

; ð45Þ

and the nuclear energy generation rate is defined as

(�Hnuc) ¼ �
X
k

(�!̇k)
outqk : ð46Þ

The enthalpy update incorporates the external heating, (�Hext)
in,

and is updated by

(�h)out ¼ (�h) in þ �t

2
(�Hnuc)þ

�t

2
(�Hext)

in: ð47Þ

3. Advect Base(� in0 ; p
in
0 ; �

in
0 ;w

in
0 ;  

in)! (�out0 ; �out;nþ1/2
0 ; pout0 )

is the process by which we update the base state through �t in

time given the radial velocity w in
0 . Here we discuss the algorithm

for plane-parallel geometries. The base state arrays are all one-
dimensional in the radial coordinate; we think of the base state
quantities as defined at cell centers, with w0 and �0 defined half-
way in-between.

a) For the density update, we discretize equation (29), neglect-
ing the �� term, to compute the new base state density,

�out0; j ¼ � in0; j �
�t

�r

�
�
out;nþ1=2
0 w in

0

� �
jþ1=2

� �
out;nþ1=2
0 w in

0

� �
j�1=2

�
;

where j refers to the one-dimensional index in the radial direc-
tion. The interface states, �out;nþ1/2

0 , are found via the procedure
described in Paper II, Appendix A, and are saved for use later in
the overall algorithm.

b) For the pressure update, we discretize equation (31) to com-
pute the new base state pressure,

pout0; j ¼ p in
0; j �

�t

2�r
w in
0; jþ1=2þ w in

0; j�1=2

� �
; p

nþ1=2
0; jþ1=2 � p

nþ1=2
0; j�1=2

� �
þ�t in

j ; ð48Þ

where the interface states are again found via the procedure de-
scribed in Paper II, Appendix A.

4. Correct Base(� in0 ; �
in
� )! (�out0 ) is the process by which we

adjust the base state density given �� using

�out0; j ¼ �in0; j �
�t

�r
� in�; jþ1=2� � in�; j�1=2

� �
: ð49Þ

3.2. Time Advancement Algorithm

We now describe the full time advancement algorithm, making
frequent use of the shorthand developed above. Here, we assume
that the problem is already properly initialized. We describe the
details of the initialization in x 3.3.

In Paper II we discretized the density and enthalpy evolution
equations in perturbational form, arguing that this would be less
susceptible to grid effects. In the present algorithm, the analog
would be to use a perturbational form of the species equations.
Numerical testing has shown that the form of the algorithm pre-
sented here is in fact more robust than the perturbational form
when the base state mixing terms (��) are included. In the al-
gorithm described below, density is still extrapolated to edges in
perturbational form, but we treat Xk and h in nonperturbational
form.

Step 1. Define the average expansion at time t nþ1/2 and the
new w0.

a) At the beginning of each time step, we need an estimate for
the time-centered source term in the velocity divergence con-
straint (see eq. [9]). If this is the first step of the calculation (n ¼ 0),
we set

S1=2;?¼ S 0þ S1

2
;

where S1 is found through the iterative process that initializes
the calculation. Otherwise, following the method used in our
small-scale low Mach number algorithm (Bell et al. 2004), we

LOW MACH NUMBER MODELING OF SNe Ia. III. 453No. 1, 2008



extrapolate to the half-time using the source terms at the pre-
vious and current time levels,

S nþ1=2;?¼ S nþ �t n

2

S n� S n�1

�t n�1
: ð50Þ

b) Define

S
nþ1=2;?¼ Avg S nþ1=2;?

� �
:

c) Construct w
nþ1/2;?
0 by integrating equation (35) using the

lagged  n�1/2,

@w
nþ1=2;?
0

@r
¼ S

nþ1=2;?� 1

�
n

1 p
n
0

 n�1=2: ð51Þ

For spherical geometries, this equation would be modified.
d ) Using equation (38), define the scaled pressure gradient

� 1

�n
0

@�(1)0

@r

 !
¼ w

nþ1=2;?
0 � w

n�1=2
0

(�t n þ�t n�1)=2
þ w

n;?
0

@w0

@r

� �n;?
; ð52Þ

where w
n;?
0 and (@w0/@r)

n;? are

w
n;?
0 ¼ �t nw

n�1=2
0 þ�t n�1w

nþ1=2;?
0

�t n þ�t n�1
; ð53Þ

@w0

@r

� �n;?
¼ 1

�t n þ�t n�1

"
�t n

@w0

@r

� �n�1=2

þ�t n�1 @w0

@r

� �nþ1=2;?
#
: ð54Þ

If n ¼ 0, we use �t�1 ¼ �t 0.

Step 2.Construct the provisional edge-based advective velocity,
ŨADV;(1). The procedure to construct ŨADV;(1) is described in
detail in Appendix B. We note that ŨADV;(1) satisfies the discrete
versions of equations (21) and (39), in particular,

:= � n
0 Ũ

ADV;(1)
� �

¼ � n
0 S nþ1=2;?� S

nþ1=2;?
� �

: ð55Þ

Step 3. React the full state through the first time interval of
�t/2.

a ) React State ½�n; (�h)n; X n
k ; T

n; (�nHext)�! ½�(1); (�h)(1);
X

(1)
k ; T (1); (�!̇k)

(1)�.
b) Define

�
(1)

1 ¼ Avg �1(�
(1); pn0;X

(1)
k )

h i
;

� (1)
0 ¼ � �n0 ; p

n
0 ;�

(1)

1

� �
: ð56Þ

Step 4. Advect the base state, then the full state, through a time
interval of �t.

a ) Advect Base (�n
0; p

n
0 ; �

(1)
0 ; wnþ1/2;?

0 ;  n�1/2) ! (� (2);?
0 ;

�nþ1/2;?;pred
0

; pnþ1;?
0 ).

b) Compute the edge states, (�Xk)
(1);nþ1/2;? and (�h)(1);nþ1/2;?,

for the conservative update of (�Xk) and (�h). Here we predict
�0, T, and Xk to the edges, using a second-order Taylor expan-
sion in space and time, as described in Paper II, Appendix A, us-
ingV ¼ ŨADV;(1) þ w

nþ1/2;?
0 er. We explicitly include the reaction

terms in the temperature prediction, since we did not update the
temperature in React State. We use the equation of state and base
state density, �0, to convert these to edge states for (�Xk) and (�h).
We define �(1);nþ1/2;? ¼

P
k (�Xk)

(1);nþ1/2;?.
c) Evolve (�Xk)

(1) ! (�Xk)
(2);? and (�h)(1) ! (�h)(2);? with-

out explicitly including the reaction terms,

(�Xk)
(2);?¼ (�Xk)

(1)��t

; : = ŨADV;(1)þw
nþ1=2;?
0 er

� �
(�Xk)

(1);nþ1=2;?
h in o

; ð57Þ

(�h)(2);?¼ (�h)(1)��t
n
:=
h

ŨADV;(1) þ w
nþ1=2;?
0 er

� �
; (�h)(1);nþ1=2;?

io
þ�t ŨADV;(1) = er

� � @p0
@r

� �n
þ�t n�1=2;

ð58Þ
�(2);?¼

X
k

(�Xk)
(2);?; ð59Þ

X
(2);?
k ¼ (�Xk )

(2);?=�(2);?; ð60Þ

T (2);? ¼ T �(2);?; (�h)(2);?;X (2);?
k

� �
ð61Þ

using the equation of state.
d ) Correct Base(�(2);?0 ; � n�1/2

� ) ! (�nþ1;?
0 ).

e) Define an edge-centered � nþ1/2;?
� and cell-centered  nþ1/2;?

j ,

� nþ1=2;?
� ¼Avg ŨADV;(1) = erþ w

nþ1=2;?
0

� �
�(1);nþ1=2;?

h i
�w

nþ1=2;?
0 �

nþ1=2;?;pred
0 ;

 
nþ1=2;?
j ¼ 1

2
�
nþ1=2;?
�; j�1=2 þ �

nþ1=2;?
�; jþ1=2

� �
g: ð62Þ

For spherical geometries,  nþ1/2;?
j would have a different form.

Step 5. React the full state through a second time interval of
�t/2.

a ) React State ½�(2);?; (�h)(2);?; X (2);?
k ; T (2);?; (�(2);?Hext ) � !

½�nþ1;?; (�h)nþ1;?;X nþ1;?
k ; Tnþ1;?; (�!̇k)

(2);?�.
b) Define

�
nþ1;?

1 ¼ Avg �1 �nþ1;?; pnþ1;?
0 ; X nþ1;?

k

� �h i
;

� nþ1;?
0 ¼ � �nþ1;?

0 ; pnþ1;?
0 ;�

nþ1;?

1

� �
: ð63Þ

Step 6. Define a new average expansion rate at time t nþ1/2.

a) Define

S nþ1;? ¼� �
X
k

�k (!̇k)
(2);? þ �H (2);?

nuc

þ 1

�p�

X
k

pXk
(!̇k )

(2);?þ �Hext; ð64Þ

where (!̇k)
(2);?¼ (�!̇k )

(2);?/�(2);? and the remaining quantities are
defined using X nþ1;?

k
, �nþ1;?, and T nþ1;? from step 5. Then define

S nþ1=2 ¼ S nþ S nþ1;?

2
:

b) Define

S
nþ1=2 ¼ Avg S nþ1=2

� �
:
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c) Construct wnþ1/2
0 by integrating equation (35),

@w
nþ1=2
0

@r
¼ S

nþ1=2;?� 1

�
nþ1=2;?

1 p
nþ1=2;?
0

 nþ1=2;?; ð65Þ

for plane-parallel geometries, where �
nþ1/2;?

1 ¼ (�
n

1 þ �
nþ1;?

1 )/2
and pnþ1/2;?

0
¼ ( pn

0 þ p
nþ1;?
0 )/2.

d ) Using equation (38), define

� 1

�n
0

@�(2)0

@r

 !
¼ w

nþ1=2
0 � w

n�1=2
0

1=2ð Þ(�t n þ�t n�1)
þ wn

0

@w0

@r

� �n
; ð66Þ

where wn
0 and (@w0/@r)

n are defined analogously to equa-
tions (53) and (54).

Step 7. Construct the final edge-based advective velocity,
ŨADV;(2). The procedure to construct ŨADV;(2) is described in
detail in Appendix B and is analogous to the procedure used
in step 2, but with updated values for w0 and �0. We note that
ŨADV;(2) satisfies the discrete versions of equations (21) and (39),
in particular,

:= � nþ1=2;?
0 ŨADV;(2)

� �
¼ �

nþ1=2;?
0 S nþ1=2� S

nþ1=2
� �

; ð67Þ

where � nþ1/2;?
0 ¼ (� n

0 þ � nþ1;?
0 )/2.

Step 8. Advect the base state, then the full state, through a time
interval of �t.

a) Advect Base (�n
0 ; p

n
0 ; �

(1)
0 ; w nþ1/2

0 ;  nþ1/2;?) ! (� (2)
0 ;

�nþ1/2;pred
0

; pnþ1
0 ).

b) Compute the edge states, (�Xk )
(1);nþ1/2 and (�h)(1);nþ1/2,

for the conservative update of (�Xk ) and (�h). Here we predict �
0,

T, and Xk to the edges, using a second-order Taylor expansion
in space and time, as described in Paper II, Appendix A, using
V ¼ ŨADV;(2)þ wnþ1/2

0 er. Again, we explicitly include the reac-
tion terms in the temperature prediction, since we did not update
the temperature in React State. We use the equation of state and
base state density, �0, to convert these to edge states for (�Xk )
and (�h). We define �(1);nþ1/2 ¼

P
k (�Xk )

(1);nþ1/2.
c) Evolve (�Xk)

(1) ! (�Xk)(2) and (�h)(1) ! (�h)(2),

(�Xk)
(2) ¼ (�Xk)

(1)��t
n
: =
h�

ŨADV;(2)

þw
nþ1=2
0 er

�
(�Xk )

(1);nþ1=2
io
; ð68Þ

(�h)(2) ¼ (�h)(1)��t
n
: =
h

ŨADV;(2)þw
nþ1=2
0 er

� �
; (�h)(1);nþ1=2

io
þ �t

2
ŨADV;(2) = er
� �

;
@ p0
@r

� �n
þ @ p0

@r

� �nþ1
" #

þ�t nþ1=2;?; ð69Þ

�(2) ¼
X
k

(�Xk)
(2); ð70Þ

X
(2)
k ¼ (�Xk)

(2)=�(2); ð71Þ

T (2) ¼ T �(2); (�h)(2);X (2)
k

� �
ð72Þ

using the equation of state.
d ) Correct Base(�(2)0 ; �

nþ1/2;?
� ) ! (�nþ1

0 ).

e) Define an edge-centered � nþ1/2
� and a cell-centered  nþ1/2

j ,

� nþ1=2
� ¼Avg ŨADV;(2) = er þ w

nþ1=2
0

� �
�(1);nþ1=2

h i
� w

nþ1=2
0 �

nþ1=2;pred
0 ;

 
nþ1=2
j ¼ 1

2
�
nþ1=2
�; j�1=2 þ �

nþ1=2
�; jþ1=2

� �
g: ð73Þ

Step 9. React the full state through a second time interval of
�t/2.

a) React State ½� (2); (�h) (2); X (2)
k ; T (2); (� (2)Hext ) �!½�nþ1;

(�h)nþ1;X nþ1
k ; T nþ1; (�!̇k)

(2)�.
b) Define

�
nþ1

1 ¼ Avg �1 �
nþ1; pnþ1

0 ;X nþ1
k

� �	 

;

� nþ1
0 ¼ � �nþ1

0 ; pnþ1
0 ;�

nþ1

1

� �
: ð74Þ

Step 10. Compute S nþ1 for the final projection.

a) Define

S nþ1 ¼� �
X
k

�k (!̇k)
(2) þ �H (2)

nuc

þ 1

�p�

X
k

pXk
(!̇k)

(2)þ �Hext; ð75Þ

where (!̇k)
(2) ¼ (�!̇k)

(2)/�(2) and the remaining quantities are de-
fined using X nþ1

k
, �nþ1, and T nþ1 from step 9.

b) Define

S
nþ1 ¼ Avg S nþ1

� �
:

Step 11.Update the velocity. The velocity update happens anal-
ogously to Paper II, using S nþ1 from step 10. We update the ve-
locity field Ũ n to Ũ nþ1;? by discretizing equation (37),

Ũ nþ1;? ¼ Ũ n ��t ŨADV;(2) þ w
nþ1=2
0 er

� �
=:

h i
Ũ

n onþ1=2

��t ŨADV;(2) = er
� � @w

nþ1=2
0

@r

 !
er

þ�t � 1

�nþ1=2
G�n�1=2þ 1

�0
G�(2)0 �

�nþ1=2� �
nþ1=2
0

� �
�nþ1=2

ger

2
4

3
5;

ð76Þ

where �nþ1/2 ¼ (�n þ �nþ1)/2 andG approximates a cell-centered
gradient from nodal data. The construction of (½(ŨADV;(2) þ
wnþ1/2
0 er) = : �Ũ )nþ1/2 is described in Paper II, Appendix A, with

V ¼ ŨADV;(2) þ wnþ1/2
0 er and s set to each component of Ũ n

individually.
Finally, we impose the divergence constraint from equation (39),

: = �
nþ1=2
0 Ũ nþ1

� �
¼ �

nþ1=2
0 S nþ1 � S

nþ1
� �

;

by defining V ¼ Ũ nþ1;?þ (�t=�nþ1/2)G�n�1/2 and solving

L
�
��¼ D �

nþ1=2
0 V

� �
� �

nþ1=2
0 S nþ1 � S

nþ1
� �

; ð77Þ
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for nodal values of �, where � nþ1/2
0 ¼ (� n

0 þ � nþ1
0 )/2 and L

�
� is

the standard bilinear finite element approximation to := (� nþ1/2
0

/
�nþ1/2):. In this step, D is a discrete second-order operator that
approximates the divergence at nodes from cell-centered data and
satisfies G ¼ �DT . (See Almgren et al. [1996] for a detailed dis-
cussion of this approximate projection; see Almgren et al. [2000]
for a discussion of this particular form of the projection operand.)
We solve the linear system of equation (77) using multigrid
V-cycles with Gauss-Seidel relaxation.

We determine the new time velocity field from

Ũ nþ1 ¼ V � 1

�nþ1=2
G�; ð78Þ

and the new time-centered perturbational pressure from

�nþ1=2 ¼ 1

�t
�:

Step 12.Compute a new�t.Compute�t for the next time step
with the procedure described in x 3.4, using w0 as computed in
step 6 and Ũ nþ1 as computed in step 11.We use this�t in the next
time step.

This completes the time advancement of the algorithm.

3.3. Initialization

We start each calculation with user-specified initial values for
�,Xk , and T, as well as an initial background state. In order for the
low Mach number assumption to hold, the initial data must be
thermodynamically consistent with the initial background state.
In addition, the initial velocity field must satisfy an initial approx-
imation to the divergence constraint. We use an iterative proce-
dure to compute both an initial right-hand side for the constraint
equation and an initial velocity field that satisfies the constraint.
The user specifies the number of iterations,NS

iters, in this first step
of the initialization procedure.

The initial perturbational pressure also needs to be determined
for use in steps 2, 7, and 11. This is done through a second iter-
ative procedure which follows the time advancement algorithm
as described in steps 1Y11 in x 3.2. The user specifies the number
of iterations, N �

iters, in this second step of the initialization pro-
cedure. The details for both iterations are given below.

Step 0. Initialization. Start with initial data X init
k , � init, T init, an

initial base state, and an initial guess for the velocity,Uinit. Use the
equation of state to determine (�h) init. Setw1

0 ¼ 0 as an initial ap-
proximation. Compute � init

0 as a function of the initial data. Then,
projectU init using � init

0 and S¼ �Hext, givingU
0;1. The next part

of the initialization process proceeds as follows.

a) Do 	 ¼ 1; : : : ;NS
iters.

i) Estimate �t 	 using U 0;	 and w	
0 .

ii) React State½� init; (�h) init; X init
k ; T init; (� initHext)�! ½�out;

(�h)out;X out
k ; T out; (�!̇k )0;	 �.

iii) Compute S 0;	 from equation (19) using (�!̇k)
0;	 and the

initial data.
iv) Compute S

0;	 ¼ Avg(S 0;	).
v) Compute w	þ1

0 as in step 1c using S
0;	

and  n�1/2 ¼ 0.
vi) Project U 0;	 using � init

0
and (S 0;	 � S 0;	) as the source

term. This yields U 0;	þ1.

End do.
Define S 0 ¼ S 0;NS

iters , w�1/2
0 ¼ w

N S
iters

þ1

0 , �t 0 ¼ �t N
S
iters , and

U 0 ¼ U 0;NS
iters

þ1.

Next, we need to construct an approximation to the time-
centered perturbational pressure, �, and an approximation to

the divergence constraint at the end of the first time step. As
initial approximations, set S1;0 ¼ S 0, ��1/2

� ¼ 0,  �1/2 ¼ 0, and
��1/2 ¼ 0.
b) Do 	 ¼ 0; : : : ;N �

iters � 1.

i) Perform steps 1Y11 as described above, using S1/2;?¼ (S 0 þ
S1; 	 )/2 in step 1 as described. The only other difference in the time
advancement is that in step 11 we define V ¼ (Ũ1;? � Ũ 0) and
solve (the motivation for this form of the projection in the initial
pressure iterations is discussed in Almgren et al. 2000)

L
�
�� ¼ D �

1=2
0 V

� �
� �

1=2
0 S1� S

1
� �

� S 0� S
0

� �h i
: ð79Þ

We discard the new velocity resulting from this, but keep the new
value for �1/2 ¼ ��1/2þ (1/�t)�. These steps also yield new sca-
lar data at time �t, which we discard, and new values for � 1/2

�

(step 8),  1/2 (step 8), S1;	þ1 (step 10), and �1/2 (step 11), which
we keep.
ii) Set ��1/2 ¼ �1/2, ��1/2

� ¼ �1/2� , and  �1/2 ¼  1/2.

End do.
Finally, we define S1 ¼ S1;N

�
iters .

3.4. Computing the Time Step

There are several constraints on the time step. Effectively, we
compute the time step based on each constraint separately, then
take the minimum value of the various time steps computed.
The first set of constraints is based on the standard CFL con-

dition for explicit methods. The user sets a CFL factor, �CFL, be-
tween 0 and 1. Because we advance the base state with w0 only
and the full statewith (Ũ þ w0er), we have two separate constraints
based on the CFL condition. For a calculation in ndim dimensions
(ndim ¼ 2 or 3), the first constraint is

�tU ¼ �CFL min
i¼1 : : : ndim

�tif g; ð80Þ

where

�ti ¼ minx
�xi

Ũiþ w cell
0 er = ni

�� ��
( )

: ð81Þ

Here w cell
0 is the value of w0 averaged from the cell edges to each

cell center, ni is the normal in the ith coordinate direction, and
minx is theminimum taken over all computational grid cells in the
domain.
The second constraint is based entirely on w0,

�tw0
¼ �CFLminj

�r

jw0jj

� 
; ð82Þ

where�r is the spacing of the radial arrays such as the base state
and w0j is the value of w0 at a radius of j�r. For plane-parallel
simulations �r ¼ �x, but in the spherical simulations �r and
�x need not be the same.
An additional constraint is based on the forcing terms rather

than the velocities. This constraint is necessary when a calculation
is started from rest, since in that case the velocity-based time step
would be infinite.
Here, we define

�tF ¼ min
i¼1 : : : ndim

�tFi
f g; ð83Þ

where

�tFi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�xi=Fimax

p
; ð84Þ
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where Fimax is the maximum buoyancy force in the ith coordi-
nate direction.

A final time step constraint is needed to prevent local expan-
sion from numerically emptying a cell. We require that the den-
sity be reduced by no more than 40% in a single time step; this is
expressed in terms of constraining the time step so that�t � �tS ,
where �tS is defined at the beginning of each time step so that

�tS : = Ũ n
� �

� 0:40; ð85Þ

in every cell.
For the initial iterations described in x 3.3 above, none of these

methods may give a reasonable time step if there is no initial ve-
locity field. In that case, we set the time step to the fully compres-
sible time step constraint—i.e., that determined by the bulk velocity
plus the sound speed.

4. NUMERICAL RESULTS

In this section we present results exploring different features
of the lowMach number algorithm in a plane-parallel geometry.
The first set of simulations are bubble rise problems with re-
actions. We compare the low Mach number results with com-
pressible results and also perform a convergence study of the
low Mach number method. The second set of simulations are of
long-timescale convection; again we compare with compressible
results and, in addition, examine the long-time behavior of the
thermodynamic pressure relative to the background pressure to
verify that the model assumptions continue to hold. All of these
tests are performed with the general astrophysical equation of
state (Timmes & Swesty 2000), suitable to the conditions in a
white dwarf.

4.1. Background State

For each of our numerical tests we define the background state
in three parts, as in Paper II. The central portion of the domain
is initialized with a one-dimensional hydrostatic white dwarf
model. The model is created by specifying a base density of 2:6 ;
109 g cm�3 and base temperature of 7 ; 108 K and integrating the
equation of hydrostatic equilibrium outward while constraining
the model to be isentropic. The composition is held constant at
0.3 12C and 0.7 16O, and the gravitational acceleration is fixed at
�1:5 ; 1010 cm s�2. This procedure provides a reasonable ap-
proximation of the state of the white dwarf just before runaway.

Below this layer, we decrease the entropy by a factor of 3 and
create a convectively stable layer by integrating downward with
a constant entropy gradient, so that the entropy decreases slowly
toward the bottom of the domain. This layer acts as part of the
lower boundary condition to insulate the dynamics in the unstable
layer from the effects of the lower boundary of the computational
domain. The entropy drop here is large enough that the tempera-
tures in this layer are<107 K, and the thermonuclear reactions are
effectively turned off.

The upper portion of the domain represents the region beyond
the outer boundary of the white dwarf, and different approxima-
tions are used there for the compressible and low Mach number
models. For each model we define a ‘‘density cutoff.’’ Once the
density drops below this value, the integration is stopped and the
material above it is held at constant density and temperature. In
the compressible case the pressure is evaluated from the density
and temperature; in the low Mach number model the base state
pressure is held constant.

For the compressible calculations, the density cutoff is set to
10�4 g cm�3. We also impose that the temperature is never al-

lowed to drop below 107 K. Figure 1 of Paper II shows the ini-
tial temperature, density, entropy, and adiabatic indices [�1 and

e � p/(�e)þ 1] as a function of height for the compressible
background.

For the lowMach number model, we also impose an ‘‘anelastic
cutoff ’’; this is the value of density below which we define �0 by
keeping �0/�0 constant and is used in order to suppress spurious
wave formation at the outer boundary of the star. In the calcula-
tions shown here, both the density cutoff and the anelastic cutoff
are set to 3 ; 106 g cm�3.

4.2. Reacting Bubble Rise

To test the coupling of reactions to the hydrodynamics, we con-
sider a plane-parallel carbon/oxygen white dwarf model seeded
with temperature perturbations. For these calculations we restrict
ourselves to a plane-parallel geometry in order to more easily fa-
cilitate the comparisons to a fully compressible code.

We use a single-step 12C(12C; 
) 24Mg reaction. The carbon
mass fraction equation appears as

DX 12Cð Þ
Dt

¼ � 1

12
�X 12C
� �2

fCoul NAh�vi½ �; ð86Þ

where NAh�vi is evaluated using the reaction rate from Caughlan
& Fowler (1988). The Coulomb screening factor, fCoul, is eval-
uated using the general routine from the Kepler stellar evolu-
tion code (Weaver et al. 1978), which implements the work of
Graboske et al. (1973) forweak screening and thework of Alastuey
& Jancovici (1978) and Itoh et al. (1979) for strong screening.
Larger networks can easily be accommodated.

The initial conditions for the bubble rise problem are defined
to be the background state, as defined in x 4.1, perturbed by the
addition of local temperature variations (with corresponding den-
sity perturbations that keep the perturbed regions in pressure equi-
librium with the background) of the form

Ti; j ¼ (Tinit)j 1þ
X3
m¼1

am 1þ tanh 2� dm

�m

� �� �( )
;

�i; j ¼ � p0 j; Ti; j; (Xk; init )j

� �
: ð87Þ

Here, i and j are the lateral and vertical zone indices, respec-
tively, Tinit is the initial background temperature, p0 is the base
state pressure, and Xk;init is the initial mass fraction of species k.
The distance dm is simply found as d 2

m ¼ (xi � xm)
2 þ (rj � rm)

2.
No explicit heating source term is included—these perturbations
are large enough to begin localized carbon burning in the model
star. In addition to the burning in the rising bubbles, the conditions
at the base of our convectively unstable layer (where � ¼ 2 ;
109 g cm�3 and T ¼ 7 ; 108 K), which correspond to those at
the center of a white dwarf a short time before a SN Ia, are such
that low-level reactions also occur here.

4.2.1. Comparison with Compressible

This first test is similar to that presented in Paper II, except
now the heating is provided by reactions. For this test we use three
perturbations, whose coordinates xm and rm, width �m, and ampli-
tude am are listed in Table 1. We compare the low Mach number
results with both an unsplit and dimensionally split implementa-
tion of the compressible upwind method of Colella (1990).

The domain is 2:16 ; 108 cm by 3:6 ; 108 cm, of which the
bottom 0:5 ; 108 cm is the low-entropy layer. The resolution is
384 ; 640 cells. Periodic boundary conditions are used on the
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left and right domain edges. The low Mach number runs use a
solid wall boundary at the lower boundary and outflow at the up-
per boundary. The fully compressible simulations use a hydro-
static lower boundary (with the velocity given a zero gradient)
and a zero-gradient upper boundary (with the velocity restricted

from inflowing, i.e., it is set to 0 if it is negative). The compres-
sible boundaries are described in more detail in Zingale et al.
(2002).
Figure 1 shows the temperature (calculated from the equation

of state given enthalpy, density, and composition) and 24Mg abun-
dance after 2.5 s of evolution, for the split and unsplit compres-
sible algorithms and the low Mach number algorithm. Generally,
the results agree well between the algorithms. As discussed in
Papers I and II, the bubbles in the low Mach number case are
slightly narrower than those from the compressible runs, but as
we showed there, the magnitude of the disparity is comparable
to that between different compressible algorithms. We note that
the dimensionally split compressible algorithm used in this paper
is different from the split algorithm used in Papers I and II. With
this new algorithm, we do not see the temperature oscillations that
we attributed to dimensional splitting in Paper I.

TABLE 1

Parameters for Initial Temperature Perturbations

m am

xm
(cm)

rm
(cm)

�m
(cm)

1........................... 0.15 5:0 ; 107 6:5 ; 107 2:5 ; 106

2........................... 0.30 1:2 ; 108 8:5 ; 107 2:5 ; 106

3........................... 0.225 2:0 ; 108 7:5 ; 107 2:5 ; 106

Note.—See eq. (87).

Fig. 1.—Comparison of the lowMach number (left) and compressible (right) solutions for the three-bubble test. Shown are the log of temperature (top row) and 24Mg
mass fraction (bottom row) at t ¼ 2:5 s.
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Another feature of the algorithm that we explore with this sim-
ulation is the effect of replacing �1 by �1 in the definition of �
(see eq. [10]). We consider equation (9) in the form

:=U þ 1

�1 p0

Dp0

Dt
¼ S:

We argued in Paper I that we could replace�1 in the above equa-
tion by �1, allowing us to write equation (9) in the form of equa-
tion (12). Instead, we could substitute a more general expression,
�1 ¼ �1 þ ��1, into equation (9), giving

:=U þ 1

�1 þ ��1

� �
p0

U =:p0 ¼ S � 1

�1 þ ��1

� �
p0

@p0
@t

:

Assuming that ��1T�1, we then have

:= U þ 1

�1 p0
U =:p0

¼ S � 1

�1 p0

@p0
@t

þ ��1

�
2

1 p0

@p0
@t

þ ��1

�
2

1 p0
U =:p0; ð88Þ

The base state evolution equation is the average of this over a
layer,

:=w0 er þ
1

�1 p0
w0er = :p0

¼ S � 1

�1 p0

@p0
@t

þ ��1

�
2

1 p0
Ũ =:p0

 !
:

Subtracting this from equation (88), we have

:= Ũ þ 1

�1 p0
Ũ = :p0

¼ S � S þ ��1

�
2

1 p0
 þ Ũ =:p0
� �

� ��1

�
2

1 p0
Ũ =:p0

 !
:

These can be written more compactly as

@w0

@r
¼ S � 1

�1p0
 þ ��1

�
2

1 p0
Ũ =:p0

 !
; ð89Þ

for plane-parallel geometries (analogous to eq. [35]), and

:= �0Ũ
� �

¼ �0

"
S � S þ ��1

�
2

1 p0
 

þ ��1

�
2

1 p0
Ũ =:p0�

��1

�
2

1 p0
Ũ = :p0

 !#
; ð90Þ

instead of equation (39). In order to solve this equation using
the projection methodology, we consider a time-lagged approxi-
mation to the Ũ = :p0 terms appearing on the right-hand side. We
explore the effect of substituting equation (90) for equation (39) in
both the final MAC projection (step 7) and the final projection
(step 11) and the effect of using equation (89) in step 6.

Figure 2 shows a superposition of contours of the temperature
from the original simulation (using just�1 in eq. [9]) and the tem-
perature from the same simulation except using the ��1 correction

in the projections. We see that there is very little difference in the
two temperature fields in the region surrounding the bubbles, sup-
porting our original substitution of �1 for �1 in the velocity con-
straint equation. The region at the top of the atmosphere in the
calculation with the ��1 terms develops some vortices—this is
likely an interaction between these additional terms and the steep
falloff at the top of the initial model. Since this is far from the re-
gion of interest (the bubbles) and since these correction terms are
not part of the regular algorithm, we did not explore this vortex
generation in detail. In future calculations, we will continue to
monitor ��1 to further assess whether additional corrections are
needed.

4.2.2. Convergence Study

In the calculations considered here we zoom in on a single re-
acting bubble, corresponding to m ¼ 2 in Table 1. The domain
spans 1:44 ; 108 cm in the horizontal and vertical directions, of
which the bottom 0:1 ; 108 cm is the low-entropy layer. We cen-
ter the hot spot laterally in the domain. The calculations are run
with a fixed time step to t ¼ 1:0 s, and data is presented at intervals
of 0.2 s. The time steps for the coarse, medium, and fine resolu-
tions are�t ¼ 0:02, 0.01, and 0.005 s, respectively. The resolu-
tions are �r ¼ 1:125 ; 106, 5:625 ; 105, and 2:8125 ; 105 cm,

Fig. 2.—Comparison of the effect of using only �1 (red ) vs. the lagged ��1

correction (green). Here, the temperature is plotted, with 12 contours equally
spaced in log T in the range 107 K � T � 8 ; 108 K.We see excellent agreement
between the simulations, demonstrating that it is reasonable to use only �1 in
eq. (10).

LOW MACH NUMBER MODELING OF SNe Ia. III. 459No. 1, 2008



respectively. The boundary conditions are solid wall on the lower
boundary, periodic on the lateral boundaries, and outflow at the
upper boundary.

To compute rates of convergence, we first compute the errors
between data differing by a factor of 2 in resolution. The error is
defined at the coarser of the two resolutions by the difference
between the coarser calculation and the volumetrically aver-
aged finer calculation of each set. The L1 norm of each error is
then computed, and the ratio of the coarseYmedium error to the
mediumYfine error is computed and presented in the table. Ratios
of approximately 4 denote second-order convergence.

For these simulations, the sharpness of the transition at the ar-
tificial low-entropy layer at the bottom of the domain introduces
errors at the interface that obscure the convergence behavior of
the scheme. In addition, we want to focus on the bubble dynamics
rather than the upper atmosphere where the flow is smoother. For
these reasons, we measure errors in a subset of the domain, from
0:27 ; 108 cm to 0:81 ; 108 cm in the vertical direction. Figure 3
shows the temperature field at t ¼ 1 s in the region of interest.

In Table 2 we present the ratios of the L1 norms of the errors in
velocity, perturbational density, enthalpy, and 24Mg abundance.
At early times, the data shows second-order behavior for all of
the primary variables and a reduced rate for the enthalpy, which
is caused by the interaction of the interpolated initial data with
the equation of state. At intermediate times, we begin to see a
reduced convergence rate�h1:5 in the 24Mg abundance and per-
turbational density.We believe that this reduced rate results from
the extreme sensitivity of the reaction rate to temperature,O(T 23)
(Woosley et al. 2004).

Another important test of the behavior of the methodology is
the degree to which the solution drifts from the equation of state,
i.e., the degree to which the thermodynamic pressure, defined by
the equation of state as a function of density, enthalpy, and com-
position, differs from p0 over time. This drift occurs because the
algorithm enforces the Lagrangian derivative of the equation of

state through the divergence constraint on velocity, but does not
strictly enforce the equation of state itself at each time step. Con-
sequently, although p(�; h;Xk) � p0 at initial time, this equality
is not strictly maintained over time.
In this calculation, in addition to measuring the difference be-

tween coarse and fine solutions, we monitor two quantities that
reflect this drift. The first is (�p)drift ¼ jp(�; h;Xk )� p0j, and the
second is (�T )drift ¼ jTp � Thj, where Tp is defined from the equa-
tion of state using �, p0, andXk , andTh is defined from �, h, andXk .
In Table 3 we present the convergence rates of (�p)drift/p0 and

(�T )drift. We note that the magnitude of (�p)drift never exceeds
0.01% of p0 at any point in the region of interest. Furthermore,
the magnitude of (�T )drift never exceeds 1% of Th. In addition,
we see from Table 3 that both of these quantities show strict
second-order convergence. We note that no values are shown
for t ¼ 0:0 in Table 3 because (�p)drift and (�T )drift are identically
zero there at all resolutions.

4.3. Plane-Parallel Convection

In this section we consider longer time convection in our model
atmosphere, again in a plane-parallel geometry for the purpose of
easier comparison between the compressible and lowMach num-
ber algorithms. In order to allow for better control over the heating
that drives the convection, we use a prescribed heating rate, spec-
ified through Hext as defined in the above algorithm.
For the tests presented in this section, we use a heating term of

the form

Hexti; j ¼H0 exp
�(rj � rlayer)

2

W 2

� �

; 1þ
Xnpert

m¼1

bm sin
km�xi
Lx

þ�m

� �" #
: ð91Þ

Here, H0 is the absolute heating rate (to be specified below),
r layer is the height at which the heating is centered, and Lx is the
width of the domain. The amplitudes, bm, modes, km, and phases,
�m, of the sinusoidal perturbations are listed in Table 4.

4.3.1. Sponge Layer

The large drop in density at the surface of the star results in high
velocities in the region above the surface when high heating rates

Fig. 3.—Log of temperature at t ¼ 1 s in the region of interest of the bubble
rise problem used for the convergence study.

TABLE 2

Ratios of L1 Errors of Dynamic and Thermodynamic Variables

t u v �� �0 h X (24Mg)

0.0................... 4.2 4.0 4.0 3.5 . . .

0.2................... 3.8 4.0 3.8 3.2 4.1

0.4................... 3.7 3.9 3.9 3.7 3.3

0.6................... 3.8 3.9 3.9 3.8 3.6

0.8................... 3.8 4.2 3.5 3.8 2.8

1.0................... 4.1 4.0 2.8 3.6 2.9

TABLE 4

Parameters for Heating Rates

m bm km �m

1.................................. 0.00625 2 0

2.................................. 0.01875 6 �/3
3.................................. 0.01250 8 �/5

4.................................. 0.00250 1 0.562

Note.—See eq. (91).

TABLE 3

Ratios of L1 Errors of (�p)drift /p0 and (�T )drift

t (�p)drift /p0 (�T )drift

0.2............................... 3.8 3.5

0.4............................... 4.2 4.0

0.6............................... 4.2 3.9

0.8............................... 4.2 4.0

1.0............................... 4.0 3.9
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are used in a plane-parallel geometry. This region should not affect
the dynamics below the surface in the convecting regions of the
star. However, because the time step in the lowMach number code
is limited by the highest velocity in the computational domain, the
efficiency gains of the lowMach number algorithm are reduced if
those velocities persist.

To address this we employ a damping technique commonly
used in modeling atmospheric convection (see, e.g., Durran
1990). A forcing term is added to the velocity update before the
final projection at the end of each time step in the form

U new ¼ U old��t�fdampU
new:

We note that solving this implicitly for U new is equivalent to
multiplying U old by the factor 1=(1þ�t�fdamp) to define
U new.

The sponge profile, fdamp, takes the form

fdamp ¼

0; z < zsp;

1

2
1� cos �

z� zsp

ztp � zsp

� �� �� 
; zsp � z < ztp;

1; z � ztp:

8>>><
>>>:

ð92Þ

Here, zsp is the height above which the damping term becomes
nonzero, and ztp is the height at which the forcing reaches its
maximum. We can think of 1/� as the timescale over which we
want to drive the velocities back to zero. Since the background
profiles are allowed to shift, we define the location of the sponge
dynamically in terms of the background density.

For the lowMach number algorithm we simply multiply Ũ nþ1;?

in step 11 by the factor above before solving the elliptic equation
to impose the divergence constraint. In the compressible algo-
rithm, the velocity is multiplied by this factor at the end of each
time step. In x 4.3.2 we explore the effect of the damping by con-
trasting compressible calculations with and without the sponge
layer as well as the low Mach number calculation with a sponge
layer.

4.3.2. Convection Example: Comparison with Compressible

The first convection problem we consider is run with 320 ;
512 cells in a domain of 2:5 ; 108 cm by 4:0 ; 108 cm, of which
the bottom 108 cm is the low-entropy layer.We note that this layer
is thicker than that used in the bubble rise simulations, because we
wish to further insulate the convection from the effects of the
lower boundary. For the sponge layer � ¼ 100 s�1. The average
time step in the lowMach number calculations is�t � 10�3 s, so
our choice of � means that the velocities in the sponge layer will
be damped over (1/�)/�t � 10 time steps. In order to compare
our low Mach number results with those from the compressible
algorithm, for these simulationswe fix the sponge transition heights
at zsp ¼ 2:19140625 ; 108 cm and ztp ¼ 2:97265625 ; 108 cm.
As with the bubble rise calculations, the lateral boundary con-
ditions are periodic. In the compressible simulations, the upper
boundary is again zero gradient (with the velocity prevented from
inflowing) and the lower boundary is hydrostatic (with the veloc-
ity given a zero gradient), while in the lowMach number simula-
tion the lower boundary is solid wall while the upper boundary is
outflow.

For the heating we choose r layer ¼ 1:25 ; 108 cm (i.e., just
250 km above the base of our convectively unstable layer) and
W ¼ 107 cm. For this example, we include only the first three
perturbational modes (npert ¼ 3) fromTable 4.Wewant to choose
H0 large enough that the compressible algorithm can be used for

comparison, but not so large that we exceed the limits of validity
of the low Mach number approach. We find that H0 ¼ 2:5 ;
1016 erg g�1 s�1 results in a Mach number that remains below
0.4 in the atmosphere. For reference, the thermonuclear energy
generation rate at the base of the convectively unstable layer
(away from the perturbations) in the previous test was �3 ;
1013 erg g�1 s�1, very close to the analytic estimate provided
by Woosley et al. (2004) for our base conditions (� ¼ 2 ;
109 g cm�3 and T ¼ 7 ; 108 K). Since our choice of H0 is much
higher than the energy generation rate wewould expect during the
smoldering phase of SNe Ia evolution, we expect this to be a very
demanding test of the low Mach number algorithm.

Figure 4 shows the temperature field after 5 s and after 10 s for
the low Mach number algorithm and for the compressible algo-
rithmwith and without the sponge layer. We consider a region of
interest, which we define as 108 cm � r � 2:2 ; 108 cm—i.e.,
the domain excluding the low-entropy region at the bottom and
sponge layer at the top. In the region of interest we see good
qualitative agreement in the overall features of the solution in all
three cases; however, because of the highly unstable character of
convection over long times we do not expect point-by-point agree-
ment. A more appropriate comparison is to examine the overall
statistics of the convective flow. Here, since we are not including
reactions we focus on the average and rms fluctuations of temper-
ature. In particular, we define the lateral average of T,

hT ij ¼
1

Nx

XNx

i¼1

Ti; j; ð93Þ

where Nx is the number of cells in the lateral direction, and the
rms fluctuations,

(�T )j ¼
1

Nx

XNx

i¼1

Ti; j�hT ij
� �2" #1=2

: ð94Þ

Figure 5 shows both the average and deviation of the temper-
ature at both times. First, we examine the difference between the
compressible solution with and without the sponge layer. At both
5 and 10 s, we see very strong agreement between these two runs
in the region of interest. While the solutions differ both above and
below the region of interest, this result gives us confidence in the
location and strength of the sponge layer.

Next we compare the compressible and low Mach number
solutions. Again, the solutions agree very well in the region of
interest. In the low-entropy layer below the region of interest, we
do see noticeable differences between the solutions; however,
these deviations are small in magnitude and do not appear to af-
fect the solution in the region of interest. (We attribute the low
Mach number results to the small vortices penetrating the low-
entropy layer from above, as seen in Fig. 4.We suspect the presence
of these vortices is due to the reflecting wall boundary condition
at the lower boundary.) For this calculation, we note that the mag-
nitude of (�p)drift/p0 never exceeds approximately 1% in the con-
vectively unstable region below the sponge layer.

4.3.3. Convection Example: Long-Time Study

In our final simulation, we reduce the magnitude of the heat-
ing and simulate for a longer time. The domain for this simula-
tion is 5 ; 108 cm by 3:5 ; 108 cm, of which the bottom 0:5 ;
108 cm is the low-entropy layer. We use 640 ; 448 cells and fol-
low the large-scale convection to t ¼ 60 s, with a time step set
using a CFL number of 0.9. The location of the sponge is adjusted
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dynamically as discussed in x 4.3.1, and we set � ¼ 100 s�1. In
particular, we define the middle of the transition region, zmd ¼
1
2
(ztp þ zsp), to be the location of the density cutoff, i.e., where �0

reaches 3:0 ; 106 g cm�3. We define zhw as the location where
�0 ¼ 107 g cm�3. Then zsp ¼ zmd � 2(zmd � zhw), and ztp ¼
zmd þ 2(zmd � zhw). The heating is again in the form of equa-
tion (91) with r layer ¼ 7:5 ; 107 cm, W ¼ 107 cm, and H0 ¼
1:0 ; 1014. Here we use four perturbational modes (npert ¼ 4),
with the amplitudes, bm, modes, km, and phases,�m, of the sinu-
soidal perturbations given in Table 4.

Figure 6 shows a time sequence of temperature and vorticity
from this calculation in the lower 2:5 ; 108 cm of the domain. In
this example, the early-time dynamics shows the emergence of
large-scale regular structures in the principal region of interest
with some small-scale mixing at the boundary of the low-entropy
region. At t ¼ 20 s we begin to see the breakdown into smaller
structures. At later times the temperature shows a large-scale lay-

ered structure with small-scale perturbations, while the vorticity
shows that the flow is now dominated by small-scale mixing. For
this simulation, the sponge effectively suppresses unphysical high
velocities above the anelastic cutoff. Examination of the Mach
number shows that the Mach number remains below 0.3 for the
entire simulation, so that at this reduced heating the flow remains
in the low Mach number regime.
Figure 7 shows the magnitude of (�p)drift/p0. For this calcula-

tion, we also note that this never exceeds approximately 1% in
the convectively unstable region below the sponge layer, in spite
of the long-time integration.

4.4. Large-Scale Convective Overturning

A new feature of the algorithm is the presence of ��. This term
serves to keep �0 equal to the average density in a layer and keep
p0 equal to the hydrostatic pressure as determined by the average
density.

Fig. 4.—Temperature at t ¼ 5 and 10 s in the first convection example. Shown are results using the compressible algorithmwith andwithout a sponge layer and the low
Mach number algorithm with a sponge layer.
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In typical problems of interest the evolution of the base state
is very gradual relative to other motions, making it hard to see the
effects of the �� term. Here we present an example specifically
designed to generate large-scale overturning of the density pro-
file. This problem has no net heating; therefore, using the algo-
rithm as presented in Paper II there would be no change in the

base state. However, in this example the average density changes
dramatically, and it is clear that the base state should reflect the
change in average profiles.

The computational domain for this example is a box 0:3 ;
108 cm wide and 1:2 ; 108 cm high, from z ¼ 1:6 ; 108 to 2:8 ;
108 cm. We define the profile for density as f (zmodel) for

Fig. 5.—Comparison of the average temperature as a function of height, hTi, and the deviation of temperature from the average, �T , for the compressible (solid
curves), compressible with sponge (dashed curves), and lowMach number with sponge (dotted curves) calculations. Our region of interest is 108 cm � r � 2:2 ; 108 cm.
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zmodel ¼ 1:6 ; 108Y2:5 ; 108 cm using interpolation of the model
described in x 4.1. Then the base state density is defined by

�0(z) ¼
f (z); 1:6 ; 108 cm � z < 1:75 ; 108 cm;

f (3:5 ; 108 cm� z); 1:75 ; 108 cm � z < 1:9 ; 108 cm;

f (z� 0:3 ; 108 cm); 1:9 ; 108 cm � z � 2:8 ; 108 cm:

8><
>:

We note that this density profile is no longer monotonic with
height. The base state pressure is defined by setting the pressure
at the top of the domain to the model pressure at zmodel ¼ 2:5 ;
108 cm, then integrating hydrostatically downward in the do-
main. As in the previous examples, the composition is held
constant at 0.3 12C and 0.7 16O.
We set the initial data to be identical to the base state at t ¼ 0.

The gravitational acceleration is fixed at �1:5 ; 1010 cm s�2.
The initial density profiles are included in Figure 8.

Fig. 6.—Temperature and vorticity evolution for the low heating rate, long-time evolution calculation, shown (from top to bottom) at 15, 20, 40, and 60 s. Note that the
true range in vorticity for this simulation is �153 s�1 to 152 s�1—the scale in the plot is reduced to show detail.
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In order to trigger the convective overturning, for 1:75 ;
108 cm < z < 1:9 ; 108 cm we set the initial velocity field to a
large-scale rotational flow defined by

Ũ(z) ¼
	
�200 sin (4�zs) cos (4�zs) sin

2(�xs);

200 sin (�xs) cos (�xs) sin
2(4�zs)



;

where xs ¼ x /(0:3 ; 108 cm) and zs ¼ (z� 1:75 ;108 cm)/(1:2 ;
108 cm); in the rest of the domain the initial velocity is set to
zero. The initial projection thenmodifies this field to enforce the
divergence constraint.

We present results at t ¼ 0 and 0.85 s from two different cal-
culations, both runwith 128 ; 512 cells.We note that at t ¼ 0:85 s
the maximum Mach number is approximately 0.24 in both cal-
culations, so we are still within the range of validity of the low
Mach number approach. The first calculation incorporates the ��
term as introduced in x 2; the second calculation sets this term to
zero. (We refer to the latter calculations as the �� � 0 case.) We
use this comparison to isolate the significance of the �� term in
the method.

In Figure 8 we plot the average density, �, and base state
density, �0, at t ¼ 0 and 0.85 s for both calculations.We see from
this figure that the presence of the �� term successfully enforces
that �0 ¼ � at all times; by contrast, the base state remains un-
changed in the �� � 0 case. We also note that the actual solution
(in the form of �) in fact changes when the �� term is included;
this difference is visible in the region of convective overturn-
ing and is present but difficult to see in the region above the
overturning.

In Figure 9we see the hydrostatic pressure, pHSE, and base state
pressure, p0, at t ¼ 0 and 0.85 s. We define pHSE as the discrete
integral of (��g) from the pressure at the top of the domain
downward. The data in Figure 9 are plotted as a ratio relative to the
initial base state pressure. We note several things from this fig-
ure. First, recalling that pHSE is the integral of � and � ¼ �0 for
the current algorithm, the fact that pHSE ¼ p0 at t ¼ 0:85 s (dotted
curve) confirms that although the discrete updates of �0 and p0 do
not explicitly maintain hydrostatic equilibrium, the discretization
of the update equations is sufficiently accurate that hydrostatic
balance, which follows from the analytic form of the equations,
is in fact discretely maintained. Second, we note that there is a
roughly 2% deviation of the hydrostatic pressure from its initial
value in the �� � 0 case; this time variation is not reflected in p0.
Finally, we observe that in the region above the convective over-
turning the dashed curve, representing pHSE (calculated from an
incorrect �) at t ¼ 0:85 s for the �� � 0 case, matches the orig-
inal p0, indicating that the average density and pressure have not
evolved in time. Physically, this could only occur if the convec-
tive overturning had happened in a region of constant entropy.
Thus, we conclude that the fact that p0 does not represent the av-
erage hydrostatic pressure in fact results in a hydrostatic pressure
that is physically incorrect.

Finally, we note the magnitude of (�p)drift is comparable for
both the current algorithm and the �� � 0 case and never exceeds
approximately 0.1%. This is as expected; as noted above, (�p)drift
represents how well the constraint equation (see eq. [12]) con-
strains the dynamics so that the local thermodynamic pressure is
close to p0 and is independent of how accurately p0 represents
pHSE.

Fig. 7.—Plot of log ½j(�p)driftj/p0� at t ¼ 60 s.

Fig. 8.—Shown here are �0 and � at t ¼ 0 and 0.85 s. The solid curve is � and
�0 at t ¼ 0 for both calculations, as well as �0 at t ¼ 0:85 s for the calculation
with �� � 0. The dotted curve shows � as well as �0 at t ¼ 0:85 s for the current
algorithm; the dashed curve is � at t ¼ 0:85 s for the �� � 0 case.

Fig. 9.—Ratio of p0 and pHSE at t ¼ 0:85 s to p0 at t ¼ 0. The solid curve
represents p0 at t ¼ 0:85 s for the �� � 0 case. The dotted curve represents p0 and
pHSE at t ¼ 0:85 s for the current algorithm. The dashed curve is pHSE for the
calculation with �� � 0.
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5. CONCLUSIONS

This paper is the third in a set of papers that has demonstrated
a new algorithm for evolving lowMach number reacting flows in
Type Ia supernovae. In Paper I we demonstrated the accuracy of
the low Mach number approach for nonreacting flows, with no
base state adjustment, in a stellar atmosphere. In Paper II we ex-
tended the methodology to allow for time evolution of the base
state in response to significant heating.

In this paper we have modified the evolution equations to al-
low the base state to evolve in response to large-scale convective
motions as well as heat release. We have extended the algorithm
to incorporate nuclear chemistry characteristic of the early stages
of Type Ia supernovae. We have demonstrated that, in the pres-
ence of reactions, we can attain second-order accuracy in the ther-
modynamic variables. We further demonstrated that our method
remains stable over long-timescale evolution of fully convective
flow in plane-parallel geometry and that the thermodynamic pres-
sure calculated from the equation of state does in fact remain close
to the time-dependent background pressure. The simulation code
described here, named MAESTRO, will be our primary tool for
exploring the conditions leading up to the explosion of Type Ia
supernovae.

Throughout the development of this new algorithm, we have
validated the newmethodologywith detailed comparisons to fully
compressible codes. Because of their wide availability and ease
of implementation, compressible algorithms are the current work-
horse of multidimensional stellar astrophysics. We have shown
that the low Mach number algorithm remains stable and captures
the essential features of the flow even forMach numbers in excess
of 0.2. Although the low Mach number algorithm is more com-
plicated than compressible algorithms, it reduces the number of
time steps needed to reach a particular time by a factor of �1/M
relative to compressible codes.

Our next step in the development of this methodology will be
to complete the implementation in three dimensions and address
the remaining numerical issues needed to model a spherical star
in Cartesian geometry. Some initial tests of MAESTRO evolving
a full self-gravitating star can be found in Almgren et al. (2007).
The main changes required are a different treatment of the hydro-
static adjustment process, taking into account expansion in a self-
gravitating star, and a procedure to map the one-dimensional radial
base state to and from the Cartesian grid. Further improvements
include adaptive mesh refinement and more sophisticated reaction
networks. Ultimately, we will augment the present algorithm with
methodology for capturing long-wavelength acoustics in order to
be able to evolve the flow from the very subsonic regime through
Mach numbers close to unity.

We thank Alan Calder, Jonathan Dursi, Gary Glatzmaier, and
Stan Woosley for helpful comments on this manuscript and Frank
Timmes formaking his equation of state routines publicly available.
We also thank Mike Lijewski for his work on extending the func-
tionality and efficiency of the new code andChrisMalone for help
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comments on themanuscript, including themotivation formaking
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was supported by the SciDAC Program of the DOE Office of
Mathematics, Information, and Computational Sciences under the
US Department of Energy under contract DE-AC02-05CH11231
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vestigator award, grant DE-FG02-06ER41448, to SUNY Stony
Brook. The compressible calculations presented here used por-
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DOE-supported ASC/Alliance Center for Astrophysical Thermo-
nuclear Flashes at the University of Chicago.

APPENDIX A

EVALUATING �k AND pXk

Adding the reactions to the equation set brings with it two additional thermodynamic quantities that we need to evaluate,

�k ¼
@h

@Xk

����
p;T ;(Xj; j 6¼k)

; pXk
¼ @p

@Xk

����
�;T ;(Xj; j 6¼k)

:

In evaluating these expressions, it is important to note what is being held constant. The stellar equation of state we use (Timmes &
Swesty 2000) is a function of �, T, Ā, and Z̄, where the latter two variables are composition terms,

Ā �
X
k

Xk

Ak

 !�1

; Z̄ � Ā
X
k

ZkXk

Ak

;

where Ak is the atomic mass of species k and Zk is the charge. The thermodynamic derivatives returned by the equation of state routine
are with respect to one of these variables while holding the others fixed. Therefore, we want to express these quantities in terms of
derivatives with respect to �, T, Ā, and Z̄. This means that we need to find an alternate expression for �k, so that � and T are held
constant, rather than p and T, and we need to express both �k and pXk

as derivatives with respect to Ā and Z̄.
In deriving the temperature equation, equation (8), we started with the enthalpy, which is the most natural thermodynamic quantity

when pressure is one of the independent variables. Here, we want � to be an independent variable, so starting with the internal energy,
e, is more natural. The internal energy evolution of the system is governed by

�
De

Dt
þ p:=U ¼ �Hnuc; ðA1Þ

or, using the mass continuity equation,

�
De

Dt
¼ p

�

D�

Dt
þ �Hnuc: ðA2Þ

ALMGREN ET AL.466 Vol. 684



Now, taking e ¼ e(�; T ;Xk), we have

De

Dt
¼ @e

@T

����
�;Xk

DT

Dt
þ @e

@�

����
T ;Xk

D�

Dt
þ
X
k

@e

@Xk

����
�;T ;(Xj; j6¼k)

DXk

Dt
:

Identifying the specific heat at constant volume as cv ¼ @e/@T j�;Xk
, defining e�� @e/@�jT ;Xk

and eXk
� @e/@Xk j�;T ;(Xj; j6¼k), and using

the species conservation equation, this is

De

Dt
¼ cv

DT

Dt
þ e�

D�

Dt
þ
X
k

eXk
!̇k :

Substituting this into equation (A2), we have

�cv
DT

Dt
¼ �

p

�2
� e�

� �
D�

Dt
�
X
k

�eXk
!̇k þ �Hnuc: ðA3Þ

We can eliminate D�/Dt using equation (7), giving

� cv þ
p

�2
� e�

� �
pT

p�

� �
DT

Dt
¼ �

p�

p

�2
� e�

� �
Dp

Dt
�
X
k

� eXk
þ 1

p�

p

�2
� e�

� �
pXk

� �
!̇k þ �Hnuc: ðA4Þ

Comparing to equation (8), we see that the specific heats are related via

cp ¼ cvþ
p

�2
� e�

� �
pT

p�
: ðA5Þ

The coefficient of the Dp/Dt term gives

hp ¼
1

�
1� p

�p�

� �
þ 1

p�
e�; ðA6Þ

which was used in Paper I when computing �. Finally, we have

�k ¼ eXk
þ 1

p�

p

�2
� e�

� �
pXk
; ðA7Þ

where all the derivatives on the right-hand side are either at constant T or constant �. This is the form we need when computing �k
from our equation of state.

As discussed in Dursi & Timmes (2006), we can evaluate the derivatives with respect to the species from the average compositional
variables Ā and Z̄, using the chain rule, as the equation of state routine does when it returns derivatives with respect to Ā and Z̄. We
write eXk

and pXk
as

pXk
¼ @p

@Ā

����
�;T ; Z̄

@Ā

@Xk

þ @p

@Z̄

����
�;T ; Ā

@Z̄

@Xk

¼ � Ā2

Ak

@p

@Ā

����
�;T ; Z̄

þ Ā

Ak

Zk � Z̄
� � @p

@Z̄

����
�;T ; Ā

; ðA8Þ

eXk
¼ @e

@Ā

����
�;T ; Z̄

@Ā

@Xk

þ @e

@Z̄

����
�;T ; Ā

@Z̄

@Xk

¼ � Ā2

Ak

@e

@Ā

����
�;T ; Z̄

þ Ā

Ak

Zk � Z̄
� � @e

@Z̄

����
�;T ; Ā

: ðA9Þ

Then �k can be evaluated from equation (A7).

APPENDIX B

CONSTRUCTION OF ADVECTIVE VELOCITIES

To construct the advective velocities we first extrapolate only the normal component of Ũ from cell centers at t n to edges at t nþ1/2

using a second-order Taylor series expansion in space and time. The time derivative is replaced using equation (37), the evolution
equation for Ũ ¼ (ũ; w̃). In all of the equations below,w0 ¼ w

nþ1/2;?
0 , �0 ¼ �(1)0 , and ŨADV;? ¼ ŨADV;(1);? for the construction of ŨADV;(1),

and w0 ¼ wnþ1/2
0 , �0 ¼ �(2)0 , and ŨADV;?¼ ŨADV;(2);? for the construction of ŨADV;(2).

For simplicity we present the construction in two dimensions, although extension to three dimensions is straightforward and is given in
detail in Almgren et al. (1998). In the nonradial direction, we have

ũ L
iþ1=2; j �ũ n

i; j þ
�x

2
ũx þ

�t

2
ũt

¼ ũi; j þ
�x

2
� ũi; j

�t

2

� �
ũ lim
x

� �
i; j
��t

2
w̃þ w0ð Þũr½ �transi; j � �t

2

1

�n
Gx�

n�1=2

� �
i; j

; ðB1Þ
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extrapolated from (i; j), and

ũ R
iþ1=2; j � ũniþ1; j�

�x

2
ũxþ

�t

2
ũt

¼ ũiþ1; jþ ��x

2
� ũiþ1; j

�t

2

� �
ũ lim
x

� �
iþ1; j

� �t

2
w̃þ w0ð Þũr½ �transiþ1; j�

�t

2

1

�n
Gx�

n�1=2

� �
iþ1; j

; ðB2Þ

extrapolated from (iþ 1; j).
In evaluating these terms, the first derivatives normal to the face (in this case ũ lim

x ) are evaluated using a monotonicity-limited fourth-
order slope approximation (Colella 1985). The construction of the transverse derivative terms (½(w̃þ w0) ũr�trans in this case) is described in
detail inAlmgren et al. (1998). The pressure gradient terms use a discretization of the gradient operator,G ¼ (Gx;Gr), which defines a cell-
centered gradient from a node-based pressure field; this is the same gradient operator used in the final projection in step 11.

Analogous formulae are used to predict values for w̃T /B
i; jþ1/2,

w̃B
i; jþ1=2 � w̃n

i; j þ
�r

2
w̃r þ

�t

2
w̃t

¼ w̃i; j þ
�r

2
� w̃þ w0ð Þi; j

�t

2

� �
w̃ lim
r

� �
i; j
� �t

2
ũw̃xð Þtransi; j

� �t

2
w̃(w0)r½ �i; j �

1

�
Gr�

n�1=2

� �
i; j

þ 1

�n
0

Gr�0

� �
i; j

þ �n � �n
0

�n
g

� �
i; j

( )
; ðB3Þ

extrapolated from (i; j), and

w̃T
i; jþ1=2 � w̃n

i; jþ1�
�r

2
w̃rþ

�t

2
w̃t

¼ w̃i; jþ1þ ��r

2
� w̃þ w0ð Þi; jþ1

�t

2

� �
w̃ lim
r

� �
i; jþ1

��t

2
ũw̃xð Þtransi; jþ1

��t

2
w̃(w0)r½ �i; jþ1�

1

�
Gr�

n�1=2

� �
i; jþ1

þ 1

�n
0

Gr�0

� �
i; jþ1

þ �n � �n
0

�n
g

� �
i; jþ1

( )
; ðB4Þ

extrapolated from (i; jþ 1).
Upwinding is used to determine ŨADV;? at each edge as

ũ
ADV;?
iþ1=2; j ¼

1

2
ũ L
iþ1=2; jþ ũ R

iþ1=2; j

� �
; ũ L

iþ1=2; jþ ũ R
iþ1=2; j ¼ 0 or ũ L

iþ1=2; j < 0; ũR
iþ1=2; j> 0;

ũ L
iþ1=2; j; ũ L

iþ1=2; jþ ũ R
iþ1=2; j> 0;

ũ R
iþ1=2; j; ũ L

iþ1=2; jþ ũ R
iþ1=2; j< 0;

8>>><
>>>:

and similarly for defining w̃
ADV;?
i; jþ1/2. For the construction of ŨADV;(1), we enforce the divergence constraint by solving

DMAC � n
0

�n
GMAC�MAC;(1)

� �
¼ DMAC � n

0 Ũ
ADV;(1);?

� �
� � n

0 S nþ1=2;?� S
nþ1=2;?

� �
ðB5Þ

for �, whereDMAC represents a centered approximation to a cell-based divergence from edge-based velocities andGMAC represents a
centered approximation to edge-based gradients from cell-centered data. We solve the linear system from equation (B5) using multi-
grid V-cycles with Gauss-Seidel red-black relaxation. The provisional advective velocity, ŨADV;(1), is then

ŨADV;(1) ¼ ŨADV;(1);?� 1

�n
GMAC�MAC;(1); ðB6Þ

which satisfies

DMAC � n
0 Ũ

ADV;(1)
� �

¼ � n
0 S nþ1=2;?� S

nþ1=2;?
� �

; ðB7Þ

the discrete form of equation (39).
For the construction of ŨADV;(2), we enforce the divergence constraint by solving

DMAC �
nþ1=2;?
0

�nþ1=2;?
GMAC�MAC;(2)

 !
¼ DMAC �

nþ1=2;?
0 ŨADV;(2);?

� �
�� nþ1=2;?

0 S nþ1=2 � S
nþ1=2

� �
; ðB8Þ
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where �nþ1/2;?¼ (�n þ �nþ1;?)/2 and � nþ1/2;?
0 ¼ (� n

0 þ � nþ1;?
0 )/2. The final advective velocity is then

ŨADV;(2) ¼ ŨADV;(2);?� 1

�nþ1=2;?
GMAC�MAC;(2); ðB9Þ

which satisfies

DMAC �
nþ1=2;?
0 ŨADV;(2)

� �
¼ �

nþ1=2;?
0 S nþ1=2 � S

nþ1=2
� �

: ðB10Þ

APPENDIX C

COMPUTING �0

A high-order reconstruction of the integrand in the �0 integral (see eq. [13]) improves the overall solution relative to a lower order
reconstruction. Here we outline the integration procedure using piecewise linear reconstruction of the state variables. We wish to
compute

�0(r; t) ¼ �0(0; t) exp

Z r

0

1

�1 p0

@p0
@r 0

dr 0
� �

:

We split the integral such that we integrate from the low edge of each cell to the high edge, resulting in edge-centered values of �0. The
initial value of �0 on the lowest edge of the domain will be assigned the value �01/2 ¼ �01. Letting i be the index in the radial direc-
tion, we define �0 on the high edge of cell i using

�0iþ1=2 ¼ �01=2 exp �
Xi
j¼1

Z rjþ1=2

rj�1=2

�0(r
0)jg(r 0)j

�1(r 0)p0(r 0)
dr 0

" #
¼ �01=2

Yi
j¼1

exp �
Z rjþ1=2

rj�1=2

�0(r
0)jg(r 0)j

�1(r 0)p0(r 0)
dr 0

" #
: ðC1Þ

We note that in a plane-parallel setting, g(r) is constant, but for a spherical star we must compute g(r) from �0(r) before beginning the
above integration.

Beginning with �01/2, we integrate over the first cell (i ¼ 1) to define �03/2 and continue integrating cell-by-cell. We use piecewise
linear reconstruction of �0, �1, and p0,

�0(r) ¼ �0 j þ kj(r � rj); �1(r) ¼ �1j þ j(r � rj); p0(r) ¼ p0j þ 	j(r � rj):

Here, the average value of each quantity is just the zonal value, and the slopes (k, , and 	) are computed as slope-limited centered dif-
ferences. We can now compute the integral

Ij �jg(rj)j
Z rjþ�r=2

rj��r=2

�0(r
0)

�1(r 0)p0(r 0)
dr 0 ¼ jg(rj)j

Z rjþ�r=2

rj��r=2

�0 j þ kj(r 0 � rj)

�1j þ j(r
0 � rj)

h i
p0 j þ 	j(r 0 � rj)
	 
 dr 0:

Using a table of integrals, this evaluates to

Ij ¼
jg(rj)j

	j�1j � j p0 j

kj�1j

j
� �0 j

 !
ln

�1j þ j�r=2

�1j � j�r=2

 !
� kj p0 j

	j
� �0 j

� �
ln

p0 j þ 	j�r=2

p0 j � 	j�r=2

� �" #
: ðC2Þ

The interface values of �0 are then evaluated as

�0iþ1=2 ¼ �01=2

Yi
j¼1

expf�Ijg:

Cell-centered values of �0 are found by simple averaging,

�0i ¼
�0i�1=2 þ �0iþ1=2

2
:
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