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Abstract

In this paper, we develop an algorithm refinement (AR) scheme for
an excluded random walk model whose mean field behavior is given
by the viscous Burgers’ equation. AR hybrids use the adaptive mesh
refinement framework to model a system using a molecular algorithm
where desired while allowing a computationally faster continuum rep-
resentation to be used in the remainder of the domain. The focus in
this paper is the role of fluctuations in the dynamics. In particular, we
demonstrate that it is necessary to include a stochastic forcing term
in Burgers’ equation to accurately capture the correct behavior of the
system. The conclusion we draw from this study is that the fidelity of
multiscale methods that couple disparate algorithms depends on the
consistent modeling of fluctuations in each algorithm and on a cou-
pling, such as algorithm refinement, that preserves this consistency.



1 Introduction

Algorithm Refinement (AR) is an emerging paradigm in the modeling
and simulation of multiscale problems. Mathematical models use distinctly
different representations for microscopic and macroscopic scales with the
corresponding algorithms echoing this disparity. Particle-based algorithms
are a class of methods, typically used to model the microscopic scale, that
represent the physical system by discrete, interacting entities. These “parti-
cles” represent anything from individual atoms to parcels of fluid to bacteria
to automobiles. Field-based algorithms, typically used to model the macro-
scopic scale, are derived from models based primarily on partial differential
equations with the physical system represented by continuum fields.

Algorithm Refinement schemes (sometimes called “multi-algorithm hy-
brids”) couple structurally different computational schemes such as particle-
based molecular simulations with continuum partial differential equation
(PDE) solvers.! The general idea is to perform detailed calculations using
an accurate but expensive algorithm in a small region (or for a short time),
and couple this computation to a simpler, less expensive method applied to
the rest. The formulation of an AR scheme requires: projecting from the mi-
croscopic model to macroscopic; refining from macroscopic to microscopic;
and handshaking between the two representations where they are coupled.
A related issue is the establishment of “refinement criteria” that specify
when a microscopic representation is needed and when a macroscopic rep-
resentation is sufficient. Examples of Algorithm Refinement applied to fluid
dynamics may be found in [13, 15, 27, 32, 33, 36]; AR hybrids for interfacial
propagation are discussed in [25, 26, 28].

One aspect of multiscale modeling that has received insufficient atten-
tion is the presence of spontaneous fluctuations at microscopic scales and
their effect on the macroscopic scale. Accurate modeling of many phenomena
require the correct representation of the variances and correlations of fluctu-
ations, specifically when studying systems where the microscopic stochastics
drive a macroscopic phenomenon. For physical systems, the correct treat-
ment of fluctuations is especially important for stochastic, nonlinear sys-
tems, such as those undergoing phase transitions, nucleation, noise-driven
instabilities, combustive ignition, etc.. In these and related applications, the
nonlinearities can exponentially amplify the influence of the fluctuations.

Stochastic fluctuations in AR schemes have been investigated for two

!Note that other types of AR hybrids exist (e.g. coupling spectral and discrete algo-
rithms [31]).



simple diffusive systems: linear diffusion [3, 35] and the quasi-linear train
model [5]. For those parabolic problems, one finds that when a particle
algorithm is coupled to a deterministic continuum algorithm the variance
of fluctuations is reduced in the particle regime near the interface. The
variance of fluctuations within the continuum regime falls quickly away from
the interface; however, variables, such as fluid velocity in the train model,
that have long-range correlations retain these correlations of fluctuations
(though at reduced magnitude) within the deterministic continuum region.
Finally, stochastic continuum algorithms may be formulated such that when
coupled to particle schemes they correctly duplicate the physical fluctuations
throughout the computational domain.

Our longer term goal is to extend the development of AR methods with
fluctuations to an adaptive mesh and algorithm method for the fluctuat-
ing compressible Navier-Stokes using a framework analogous to the non-
fluctuating CNS solver discussed in [15]. As a prelude to that extension, in
the present work we develop an AR method for Burgers’ equation that cou-
ples nonlinear hyperbolic waves and diffusion. For the particle (microscopic)
model we consider the asymmetric excluded random walk (AERW) [23, 30].
The hydrodynamic (macroscopic) model for the AERW model is the viscous
Burgers’ equation with stochastic forcing [8, 9, 11, 18].

In the next section, we describe in detail the AERW model. In the fol-
lowing section, we introduce the form of Burgers’ equation that represents
the hydrodynamic limit of the AERW model and describe a discretization
of that equation based on a second-order Godunov scheme. In section 4,
we discuss the construction of the hybrid method that uses an overall adap-
tive mesh refinement framework to design the coupling between microscopic
and macroscopic models. Section 5 contains computational examples that
illustrate and validate the hybrid algorithm. As discussed in the concluding
section, the numerical results demonstrate the importance and challenge of
accurately modeling fluctuations to simulate and resolve both microscopic
and macroscopic phenomena.

2  Asymmetric Excluded Random Walk

2.1 Theory

The microscopic model for our system is an asymmetric excluded random
walk. The AERW model is a system of N random walker particles on a two
dimensional rectangular lattice of dimensions M, x M,,. Each site is denoted
by a coordinate pair (x;,y;) where j =1,..., M, and k =1,..., M,.



Only one particle may occupy a site; the occupation number n(z,y) =1
(or = 0) if a site is occupied (or unoccupied). We choose the horizontal, or
z-dimension of the lattice to correspond to the spatial domain of the PDE
and define the corresponding density,
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so 0 < up(x) < 1. At equilibrium w, is homogeneous and binomially dis-
tributed as the sum of M, Bernoulli random variables, each with probability
U = N/M,M, of occupation. The mean and variance are,
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In the local equilibrium approximation the equal-time correlation of fluctu-
ations is 1

(Oup(i)dup(z;)) = A, (up(2)) (1 = (up(x))) 6i (3)
At a nonequilibrium steady state the variance is more complicated due to
long-ranged correlations of fluctuations [29].

Particles on the lattice move between adjacent sites according to the
asymmetric exclusion process. Each particle waits a random time between
moves with a mean free time of 7. The next particle to move is drawn at
random by choosing a random site, (x;,yg); if the site is occupied then its
particle is selected otherwise another random site is chosen.

The selected particle may move up, down, left or right to an adjacent site,
according to the probabilities assigned to the system. We take the particles
to move horizontally or vertically with equal probability (pI = po, = k) and
the probabilities of moving up or down conditioned on vertical movement
as equal (p; = p; = k). Asymmetry is introducing by taking unequal
conditional probabilities for attempting to move left or right, that is, p. #
p_ with p_ + p_. = 1. Once the particle and move direction are chosen,
the particle moves to the destination site, if unoccupied; if the destination
site is occupied then the particle remains in place. In either case the time
is advanced and the entire process repeats.

2.2 Numerics

Given an initial density distribution u(z), the lattice is initialized by
randomly filling sites. The dynamics is advanced by randomly choosing



particles and move directions, as described above. In particle simulations
the physical time may be advanced continuously (e.g., event-driven dynam-
ics) or in time increments (e.g., molecular dynamics) and either approach
may be used for the AERW. For the former, the time between moves is
chosen as an exponential random variable with mean 7/N, where N is the
number of particles. For the latter, the number of moves that occur dur-
ing a time increment At, is a Poisson distributed random value with mean
p = NAt,/T; if At, < 7/N then the probability of a move occurring during
a particle time step At is u + O(u?).

The lattice is periodic in y so that particles attempting to move up
from row M, move to the bottom (first) row, provided it is unoccupied,
with a similar definition for particles at the bottom row attempting to move
downward. If the z-direction is also periodic, then its treatment is analogous
to the treatment of periodicity in y.

The other type of boundary condition we consider is the imposition of
Dirichlet conditions in x; in particular, fixing particle densities, vy and up
at the left and right boundaries, respectively. These boundary conditions
represent the occupation probabilities for each site on the boundary. We
view the system as being augmented with fictitious columns at 5 = 0 and
j = M, + 1 and with an effective total number of particles

N, =N + uLMy =+ uRMy . (4)

We then view the AERW as occurring on the enlarged lattice ((M;+2) x M)
with probabilistic “virtual” particles in the two boundary columns. Oper-
ationally these virtual particles enter the algorithm in two ways. First,
suppose the selected particle location for the next move is in the left bound-
ary column, say (zo, yx); with probability uz, that site is considered occupied
by a virtual particle. If the adjacent site, (x1,yg), is unoccupied then with
probability p., p_, a virtual particle moves to that destination, becoming a
real particle. Similarly, if a particle attempts to jump into the left bound-
ary from an interior position, the destination is unoccupied with probability
1 — uy, in which case the jump is accepted and the particle removed. Anal-
ogous rules apply to the right boundary.

3 Burgers’ equation and continuum method

3.1 Theory

The AERW model of the previous section is defined entirely in terms
of a discrete lattice. In order to define a macroscopic model, we spatially



embed the AERW model by assigning a spatial width Az, to the lattice
sites in the x direction. With this definition the hydrodynamic limit of the
asymmetric excluded random walk described in the previous section is the
stochastic Burgers’ equation: [18]
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where g is a stochastic flux and
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are the nonlinear advective flux (sound speed, ¢) and the diffusion flux
(diffusion constant, €). With the change of variable v’ = (1 — 2u)c this may
be written in the more traditional form,

u'y + 'y = ey + 2eg, (7)

Note that variants of the stochastic Burgers’ equation, with different types
of stochastic forcing, are common in the literature (e.g., [8]). Also note
that there are other particle models, such as the Boghosian-Levermore cel-
lular automaton, that also converge to a stochastic Burgers’ PDE in the
hydrodynamic limit [10, 22].

The wave speed and diffusion constant are determined from the AERW
parameters as,
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where ¢g = p., Az, /T is the wave speed for the completely asymmetric walk
(p— = 0 or 1). Since the wave speed f’(u) varies between +c and —c on the
range of u, we define a dimensionless cell Reynolds number as

CleAz|  fpm—3
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that characterizes the relative importance of diffusion and advection for the
dynamics at a given mesh spacing. Note that for p_, = 1 the random walk
is symmetric (pure diffusion) and Re. = 0; as p_, approaches 0 or 1 the
random walk is unidirectional (pure advection) and Re. goes to infinity.



The stochastic flux is a Gaussian white noise with zero mean and corre-
lation
(9(x,t)g(a', 1)) = Az, t)d(x — 2")o(t — ') (11)

where the brackets denote ensemble average. The noise amplitude, A(z,t),
is related the correlation of density fluctuations; in the local equilibrium
approximation,

(Su(z, t)ou(z’ ) = a(z,t)(1 — a(z,t))0(z — ') (12)
where @ is the solution to the deterministic Burgers’ equation, that is,
Uy = — f(l)q + €llgn (13)
From the above one finds,
Az, t) = 2eu(1l — a). (14)

The noise amplitude may also be obtained from the continuum limit of the
master equation for the AERW [18].

3.2 Numerics

The stochastic Burgers’ equation may be simulated numerically by a va-
riety of CFD algorithms, with the choice guided by the application. For
example, spectral methods have been developed for homogeneous, isotropic
turbulence (see [19, 24] and references therein). For our AR hybrid we choose
a cell-centered finite difference method, specifically a second-order Godunov
scheme to calculate the hyperbolic flux and a simple explicit predictor-
corrector centered difference scheme to compute the diffusion term. We
denote the spatial and temporal grid sizes as Ax and At and denote by uy
the average of u in cell-j at time n.

The second-order Godunov scheme constructs a linear profile within each
cell with the slopes estimated by a higher-order finite difference approxima-
tion " n " "
—ui o+ 8ui —8ui  +uj

12Ax
For advection-dominated problems a limiter is typically applied to these
slopes; however, in the present context, we are resolving at the viscous
length scale so no limiting is performed. These slopes are used to predict
values at cell interfaces at the half-time level *+"2. In particular, we define

(15)
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where f' = df /du. We then define the hyperbolic flux f2 = f(u"1,?)
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where u?il//; is the solution of the Riemann problem for u; + f, = 0 along
the ray =/t = 0 with left and right states u;i;/j , and u?:;ﬁr, respectively.

The diffusion and stochastic flux terms are evaluated using a predictor-
corrector scheme, treating the hyperbolic flux terms as source terms. In
particular, we first compute predicted values
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We then compute corrected values
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This can be rewritten as,
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is the total flux.
The stochastic flux for the asymmetric excluded random walk on an
M, x M, lattice is discretized as,

n.p n.p
g = A A, (22)
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and R is a Gaussian (normal) distributed random variable. Note that the
instantaneous fluctuating values are used in place of the deterministic value
(see eqn. 14), which is accurate as long as the fluctuations remain small. [16].
The scheme outlined above is stable provided it satisfies time step limits
for both the hyperbolic and diffusive terms. In particular, we require
Atmax |f/(u)] <1 and LNSE
Az Az? — 2
We also note that it is possible to use a simpler version of the scheme based
on an explicit first-order treatment of the diffusion term. For the most part,
the simpler version provides reasonable predictions; however, at larger At
the first-order scheme over-predicts the variation in the equilibrium solution
by approximately 5%, suggesting that the temporal truncation error terms
suppress the smoothing effect of the diffusion.

(24)

4 Algorithm Refinement Hybrid

In this section we develop a hybrid algorithm refinement method that
couples the AERW model introduced in section 2 with the stochastic Burg-
ers’ equation algorithm in section 3.

4.1 Basic construction

Philosophically, the construction of the hybrid is based on the notion
that the particle description provides a more accurate representation of the
solution than the stochastic PDE. Thus the basic idea is to represent the dy-
namics with the continuum model except in a localized region where higher-
fidelity particle representation is required.

Our perspective in designing the algorithm follows the adaptive mesh
and algorithm (AMAR) approach introduced in [15]. In contrast to other
AR approaches (see, e.g., [13]), the AMAR approach maintains a solution
of the macroscopic model over the entire domain (see Fig. 1). An error
estimation criterion is used to estimate where the improved-representation of
the particle method is required. That region, which can change dynamically,
is then “covered” with a particle patch. In this hierarchical representation
the solution is given by the particle solution on the region covered by the
particle patches and the continuum solution on the remainder of the domain.

The coupling between the particle and continuum regions uses the ana-
log of constructs used in developing hierarchical adaptive mesh refinement
algorithms. For simplicity we will assume that there is a single refined patch



and that the mesh spacing for the continuum solver is equal to the lattice
spacing Az,. Generalization of the approach to include multiple patches
(e.g. [37]) and allowing the continuum mesh to be an integral multiple of
Az, (e.g., [4]) is fairly straightforward.

Integration on the hierarchy is a three step process. First, we integrate
the continuum algorithm from t” to t"*1, i.e., for a continuum step At. The
old and new states, u} and U?Jrl, are retained until the particle time step is
complete. Continuum data at the edge of the particle patch is interpolated
in time to provide Dirichlet boundary conditions for the particle method.

We have considered both of the time-evolution schemes discussed in sec-
tion 2. For the equal time step version, we choose At, so that At, = At/M,
for a specified integer M;. We then advance the particle method by M; steps
until the particle and the continuum solver are at the same time. For the
random time version of the algorithm, the particle method is advanced by
moves, each with a random time increment, until the next transition would
advance the particle time beyond ¢"*! at which point the two solutions are
synchronized. We note that at the synchronization juncture the particle and
continuum solutions are not quite at the same time level. For the most part,
this has little effect on the computational results; however, it does lead to
errors of approximately 1% in the mean solution at equilibrium, which is
not observed with the temporally synchronized version.

o ) )
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Figure 1: Schematic of AERW/PDE hybrid: (A) Advance continuum solu-
tion; (B) Set boundary conditions for AERW from time-interpolated PDE
solution; (C) Advance particle system by AERW. Synchronize solutions: (D)
Replace overlaying continuum values with particle values; (E) Reset PDE
interface cells by refluxing.

10



4.2 Synchronization

The initial stage of the integration process essentially advances the macro-
scopic model separately with a one-way coupling to the microscopic model
by way of the Dirichlet boundary conditions. The macroscopic model is not
influenced by the microscopic model; the goal of the synchronization process
is to correct the macroscopic solution to reflect the effect of the microscopic
model as though the integration were tightly coupled.

There are two components to the synchronization process. First, on the
region covered by the particle representation we replace the continuum so-
lution obtained from the SPDE discretization by the more accurate particle
representation, i.e, set

My
W = oS () (25)
Y k=1
for each cell covered by the particle patch. Second, the continuum cells im-
mediately adjacent to the particle region, which supplied boundary data for
the particle region during its advance, are corrected by “refluxing.” Specif-
ically, suppose the left boundary of the particle patch occurs in cell J + 1.
The value in continuum cell J was updated with the continuum scheme

wyth =y = o (F iy, = F ) (26)

with the fluxes F* computed from the continuum values (see eqn. (20)). The
microscopically correct flux is given by the net number of particles moving
across edge J + 1/ rather than by the continuum flux F} e To perform
the refluxing correction we monitor the number of particles, Nﬂ% and

N:f_+1/2’ that move into and out of the particle region, respectively, across the

continuum/particle interface at edge J +1/2. We then correct the continuum
solution as

m—+1 _ ,n+l + At n N;‘!‘I/Q B N«;-Vz

b e EFJ+V2 N AxM,
This update effectively replaces the continuum flux component of the up-
date to u(’}“ on edge J + 1/ by the flux of particles through the edge. An
analogous refluxing step occurs in the cell adjacent to the right hand bound-
ary of the particle region. Finally, note that this synchronization procedure
guarantees exact conservation of integrated density.

(27)
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4.3 Refinement criterion and regridding

The AMAR framework allows us to dynamically change the location of
the particle region. There are several possible strategies for designing re-
finement criteria. For the examples described in section 5.3, we will focus
on criteria that identify cells where the solution has a large gradient char-
acteristic of a viscous shock profile. A straightforward measurement of the
local gradient of the solution (e.g., (uj+1—u;)/Ax) is not adequate since the
inherent fluctuations could trigger refinement even at equilibrium. What is
needed is a robust measure that identifies viscous shocks without generating
substantial “false positives” leading to unnecessary refinement. To this end
we define a regional gradient using

S S S
1 1 1 Ujgs — Ujd1—4
Di=gaz |5 ZH Uit~ g ZH b-n| =) A, ()
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where the stencil size S is specified; we take S = 4 in the computations in the
next section. From eqn. (3) one may easily estimate the expected standard
deviation ¢ of D resulting from equilibrium fluctuations and set a tolerance
of C'o where C' is a constant. To estimate where to place the particle region
in the adaptive code we compute the regional gradient at each point; if
|D;| exceeds the tolerance level, then cells j and j + 1 are tagged. Since we
restrict ourselves to a single particle patch, the largest interval containing all
tagged cells is then the new particle region. If multiple patches were allowed
then tagged cells would be collected to form particle regions; techniques for
collecting tagged cells in an optimal manner are well established in the mesh
refinement literature [7].

Once the new particle region has been identified, it must be initialized.
For continuum cells that were already in the particle region, we simply
retain the distribution of occupied sites. For cells that were not in the
previous particle region, we use the continuum density to compute Ny, the
desired number of particles for filling a column. The simple way to do
this is to take Ny = uj My rounded to the nearest integer; an alternative
approach would be to fill randomly each site with probability uy. We use the
former approach since it preserves conservation of total density (to within
quantization rounding). We note the the regridding algorithm does not need
to be done every step. Simple estimates based either on CFL considerations
or estimates of discrete traveling wave velocities can be used to determine
how often to regrid [6].
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5 Computational Examples

This section presents a series of computational examples, of progressively
increasing sophistication, that demonstrate the accuracy and effectiveness of
the Algorithm Refinement hybrid. We consider four numerical schemes: the
Asymmetric Excluded Random Walk (AERW) from section 2; the stochas-
tic PDE (SPDE) for Burgers’ equation from section 3 and two Algorithm
Refinement hybrids from section 4. The first hybrid couples the AERW
and SPDE, with the particle scheme in a single patch within the system.
The second hybrid is similar but without a stochastic flux, that is, using
a deterministic PDE (DPDE). Both fixed-patch and adaptive hybrids are
considered as well as a handful of minor variants, discussed below.

The following parameter values are common to the simulations in all the
examples: M, =150, Az = Az, =0.01, 7 =1, p, = 1, py =p| = 1o, and
co = 0.01. The particle time step is chosen to be small (At, ~ 7/(75 N)) so
the probability of a move occurring during a time step is taken as NAt, /7.
For a system length of L the viscous relaxation time is T, = L?/e; in our
simulations T, = O(10%). For the simulations of steady states the system
is initialized near the final state and allowed to relax for a time that is
long compared to the relaxation time (typically for > 1007) before taking
samples.

5.1 Equilibrium State

First we consider the simplest scenario, a system at the equilibrium state
with equal, fixed density at = —0.5 and 0.5. The probability of moving
to the right is p_, = 0.55, corresponding to a cell Reynolds number of
Re. = 0.20 (weakly hyperbolic). The single-algorithm simulations (AERW
and Burger’s SPDE) have 100 sites or grid points in the z-direction. The
AR hybrids introduce a fixed particle patch at the center of the system
between x = —0.1 and z = 0.1 with M, = 20. The hybrid simulation
is performed at three continuum time step sizes: At = 0.05, 0.1, and 0.2.
Since incremental time stepping is used in the particle algorithm, to keep
At, = At/M, < At we take three corresponding values: M; = 8000, 14000,
and 28000. Each simulation is run to a final time of T = 2 x 107, which
corresponds to Ny = T'/At continuum time steps (e.g., N; = 4 x 10® for the
smallest At).

Typical results from the various numerical schemes are shown in Fig. 2
where the mean, (u); variance, (du?); and correlation, (§udu’) of density are
plotted versus position. These three quantities are estimated from samples
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Figure 2:

Mean (u), variance (6u?(x)) and center point correlation
(ou(x)ou(0)) versus x for a system at equilibrium (uy, = ug = 0.5). Lines
are: SPDE/AERW hybrid with At = 0.05 (red dashed dot); SPDE/AERW
hybrid with At = 0.1 (solid red); SPDE/AERW hybrid with At = 0.2
(red dotted); AERW (green); SPDE with At = 0.05 (solid blue); predicted
variance (u)(1 — (u))/M, (dashed black).

0.5

Note that for the correlation

(0u(x)ou(0)) the large spike at x = 0 is omitted from the plot.
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where Ny = Ny — N, is the number of samples and N, is the number of
continuum time steps that the system is allowed to relax before sampling
begins.

Even at equilibrium the stochastic PDE scheme does not exactly match
the AERW results, for example the SPDE method has an error of about 1.8%
in the variance and a relative error in the correlation of (dudu’)/{6u?) ~ 1%.
This discrepancy is expected since the numerical scheme uses the instanta-
neous solution to compute the amplitude of the noise instead of the mean
(see equs. (14) and (23)). This effect is illustrated in Fig. 3, which compares
simulations where the mean and instantaneous state are used to calculate
the noise amplitude and verifies that the former is in agreement with the
AERW results. Obviously the mean is known at equilibrium but for time-
dependent, non-equilibrium problems the SPDE method needs to use in-
stantaneous values of the state to evaluate the noise. In any case, eqn. (14)
is only rigorously valid at equilibrium.

In general the SPDE/AERW hybrid gives good results with a small dis-
crepancy due to the effect just described regarding the noise amplitude. For
the hybrid simulations, there is a small error in the mean of approximately
0.3% of the solution which decreases to about 0.2% when At is decreased to
0.05. This error is due to the buildup of the discrepancy between SPDE and
AERW models at the boundaries of the particle patch in the hybrid. In the
variance, we see an error of about 0.6% in the SPDE part of the domain, due
to the same effect. In addition, there are spikes at the edges of the particle
patch, representing an error of 3% at At = 0.2 decreasing to about 0.3%
at At = 0.05, evidently due to the temporal truncation error in the SPDE
solver.

Figure 4 illustrates the effect on fluctuations when the continuum PDE
scheme does not include a stochastic flux. Clearly the variance drops to
near zero inside the DPDE regions, left and right of the particle patch,
yet the variance within the patch remains nearly correct except near the
interface. As discussed in the introduction, this general result was observed
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Figure 3: Center point correlation versus z for a system at equilibrium (uy, =
ur = (u) = 0.5) with the SPDE method using mean and instantaneous
solution for the noise amplitude. Lines are: SPDE: 1 using the mean (blue);
SPDE: 2 using the instantaneous solution (magenta); AERW (green). Time
step is At = 0.05.
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Figure 4: Variance (§u?(x)) and center-point correlation (§u(x)du(0)) versus
x for a system at equilibrium (ur, = ur = 0.5). Lines are: SPDE/AERW
hybrid (red); DPDE/AERW hybrid (blue) (compare with Fig. 2). For both
cases Re. = 0.20 (p— = 0.55) and At = 0.05.

in previous studies of AR hybrids for parabolic systems [4, 5] but it was not
obvious that hyperbolic systems would be similar. Even more interesting is
the appearance of a large correlation of fluctuations in the particle region
of the DPDE/AERW hybrid, an effect that will be discussed in the next
subsection.

One final note: Using periodic boundary conditions gives similar results
to those presented above for Dirichlet boundary conditions. Furthermore,
using periodic boundary conditions we confirmed that the AR hybrids con-
serve total density, ) . u;, exactly. (When the grids move dynamically this
exact conservation is lost because of quantization effects in defining a parti-
cle distribution from continuum data.)
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5.2 Rarefaction Steady State

Next we consider nonequilibrium states by taking different densities at
the left and right boundaries. For ¢ > 0 the steady solutions to Burgers’
equation are: a shock wave if u;, < ugp and a rarefaction wave if uy, > ug.
In this subsection we examine the latter, turning to shocks in the last two
examples.

The parameters used for the rarefaction steady state are up, = 0.9, ug =
0.1, L =1, Re. = 0.20 (p_, = 0.55), T = 4 x 107, and At = 0.05. In the
hybrid, M; = 8000 and the particle patch is fixed between x = —0.1 and
0.1.

Figure 5 shows typical results from the simulations. All methods give
good agreement with the AERW method in the mean. As in the equilibrium
case, the hybrid AERW /SPDE gives good agreement in the variance with
both the AERW and SPDE solvers. However, when the AERW is coupled to
the deterministic PDE solve, the variance falls to zero outside the particle
patch while remaining close to the correct value inside the particle patch
(similar to the equilibrium result of Fig. 4).

Figure 5 shows that a long-range correlation, predicted by [12, 17, 29],
is observed in the AERW, SPDE, and AERW /SPDE solvers and the three
simulations are in good agreement with each other. This figure also shows
that the AR hybrid using a deterministic PDE solver erroneously enhances
this correlation; Fig. 2 shows a similar effect appearing even at equilibrium,
where no correlation is expected. It is not clear why this occurs since the
correlation in a related AR hybrid of the “train” model is diminished [5].
One possible explanation is the induction of spurious correlations, even at
equilibrium, when a reservoir does not generate the correct fluctuations spec-
trum [34].

5.3 Shock Tracking

Unlike the rarefaction case, when uy < wug the deterministic solution
develops a shock wave in finite time propagating with speed ¢ = ¢(1 —
ur, — ugr). When viscous terms are added, the solution forms a smooth
travelling wave moving at speed o. Figures 6, 7, and 8 show examples of
propagating shock waves for increasing cell Reynolds number. For these
examples we have used the automatic criterion discussed in section 4.3 to
localize the particle region around the shock. Note that in each case the
refinement criteria does a good job of localizing the particle region near the
shock. For the most diffuse case, p_, = 0.55, the solution looks essentially
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Figure 5: Mean (u), variance (6u?(x)) and center point correlation

(0u(z)ou(0)) versus z for a rarefaction steady state (ur, = 0.9,ur = 0.1).
Lines are: Hybrid AERW/SPDE (red); Hybrid AERW/DPDE (dashed dot
red); AERW (green); SPDE (blue).
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like the deterministic solution with superimposed noise. On the other hand,
for the stronger shocks the fluctuations introduce sufficient perturbations
to noticeably shift the shock location; this drift in the shock position is
investigated further in the next subsection.

t=10000

5 05F

y Refinement region
‘ ‘ ‘ — DPDE

-0.5 0 05 1 15 2 25 3 35 4 4.5

t=70000
1 T ‘ T ‘ T

Figure 6: Instantaneous density u(z,t) versus position x for a moving shock
(ur, = 0.1,ur = 0.8) for Re. = 0.20 (p_. = 0.55), which has shock speed
o = 5x107%. Methods used are: AERW /SPDE hybrid (red); DPDE (blue);
vertical green lines delineate the AERW particle region of the hybrid.

5.4 Shock Diffusion

Motivated the observations in the previous section regarding the vari-
ation in the shock position, we consider the diffusion of the position of a
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Figure 7: Instantaneous density u(x,t) versus position x for a moving shock
(ur, = 0.1,ur = 0.8) for Re. = 0.95 (p—. = 0.7), which has shock speed
o =2x107*. Methods used are: AERW /SPDE hybrid (red); DPDE (blue);
vertical green lines delineate the AERW particle region of the hybrid.

stationary shock. The general problem has been analyzed for the AERW
and many results are known [2, 1, 14, 20] but here we focus on the variance
of the shock location as a function of time. We define a shock location, s(t)
by fitting a Heaviside function of equal integrated density, that is,

s() L/2 L/2
/ ur, dx+/ ugpdxr = / u(z,t) de (32)
—L/2 s(t) —L/2
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Figure 8: Instantaneous density u(z,t) versus position z for a moving shock
(ur, = 0.1,ur = 0.8) for Re. = 1.87 (p—. = 0.8), which has shock speed
o = 3x107%. Methods used are: AERW /SPDE hybrid (red); DPDE (blue);
vertical green lines delineate the AERW particle region of the hybrid.

from which we find

u(t) — o(ur + ur)

t)y=1L
s(t) p—

(33)

where @ = L1 f_LﬁQ u(x,t) dx is the instantaneous average density. The

shock location fluctuates with a diffusion similar to that of a simple random
walk [14] so averaging over ensembles from the same initial state gives,

(65?) ~ 2Dt (34)
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with a shock diffusion coefficient, D, that depends on Reynolds number,
shock strength, etc. Note that this expression for the variance is not accurate
at very short times (due to relaxation transient from initial state) or at very
long times (due to finite system size). Also note that the variance of the
total mass, (L2§u?), diffuses in the same fashion. This indicates that the
diffusion of s is different than other shock profile variables (e.g., center-of-
mass location) that fluctuate even if u is constant.

Figure 9 shows typical results for the variance in the shock position
from an ensemble of runs versus time. The hybrid algorithm is used for
p_ = 0.55, 0.7 and 0.8 with a time step of 0.05 integrated for two million
steps; for each of these simulations the dynamic shock refinement criteria was
used (see Section 4.3). The statistics were computed from 400 samples for
p—. = 0.55, 800 samples for p_, = 0.7, and 1200 samples for p_, = 0.8, which
reflects increasing fluctuations in the shock drift at higher Reynolds number,
Re.. For the intermediate case (p_, = 0.7) we also ran the pure AERW
for 400 sample over a shorter interval, demonstrating that SPDE/AERW
hybrid accurately captures the behavior of the system. (Only this case was
compared and the pure AERW results are for a shorter time because of
the large computational expense of running the ensemble of pure particle
simulations.) As expected, the shock diffusion depends on the shock strength
with the strongest shock (p—, = 0.8) exhibiting the most drift.

The most interesting feature observed in these simulations was the ab-
sence of shock diffusion in the AR hybrid using a deterministic PDE solver.
This deficiency persisted even when the refined (i.e., particle) region was
widened by eight cells, roughly doubling its size. The absence of shock dif-
fusion may be, in part, due to the definition of shock location yet alternative
ways of measuring the position of the shock are expected to also exhibit sig-
nificantly reduced diffusion. Given that the localization of shock fronts is
an important question addressed in gas dynamics simulations, the suppres-
sion of shock diffusion is a cautionary warning that the fidelity of multiscale
hybrids may depend on the accuracy of the stochastic modeling.

6 Conclusions and further work

We have constructed a hybrid algorithm that couples an excluded ran-
dom walk with a viscous Burgers’ equation that represent the mean field
approximation to the dynamics. The algorithm allows the random walk to
be used locally to approximate the solution while modeling the system us-
ing the mean field equations in the remainder of the domain. In tests of the
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Figure 9: Variance of shock location (§s(¢)?) versus time ¢ for a determin-
istically steady shock (ur = 0.1,ugr = 0.9). Methods used are: AERW
with p_, = 0.7 (green); SPDE/AERW hybrid with p_, = 0.55 (blue);
SPDE/AERW hybrid with p_, = 0.7 (red); SPDE/AERW hybrid with
p— = 0.8 (black); DPDE/AERW hybrid with p_, = 0.7 with 8 cells of
additional buffering (magenta).

method we have demonstrated that it is necessary to include the effect of
fluctuations, represented as a stochastics flux, in the mean field equations to
ensure that the hybrid preserved key properties of the system. As expected,
not representing fluctuations in the continuum regime leads to a decay in
the variance of the solution that penetrates into the particle region. Some-
what more surprising is that the failure to include fluctuations was shown
to introduce spurious correlations of fluctuations in equilibrium simulations
and for rarefactions. Even more troubling is the observation that using a
deterministic PDE solver coupled to the random walk model suppresses the
drift of shock location seen with the pure random walk model and with the
AR hybrid using a stochastic PDE solver.

We plan to extend this basic hybrid framework to the solution of the com-
pressible Navier Stokes equations in multiple dimension. For that extension
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we will use a Direct Simulation Monte Carlo algorithm for the microscopic
model coupled to a finite difference approximation to the continuum equa-
tions, as described in [15]. The Landau-Lifshitz fluctuating hydrodynamic
equations will be used to represent microscopic fluctuations at the contin-
uum level. [16, 21] At present, the challenge remains to establish accurate
finite difference schemes for solving these stochastic PDEs.
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