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Jacobsen1, K. Joy4, J. Krüger2, J. Meredith3, P. Messmer6, G.
Ostrouchov3, V. Pascucci2, K. Potter2, Prabhat1, D. Pugmire 3, O.
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Abstract. One of the central challenges facing visualization research is how to effectively
enable knowledge discovery. An effective approach will likely combine application architectures
that are capable of running on today’s largest platforms to address the challenges posed by
large data with visual data analysis techniques that help find, represent, and effectively convey
scientifically interesting features and phenomena.

1. Introduction
The principle of Occam’s Razor, which is attributed to the 14th century English logician and
Franciscian Friar William of Ockham, is roughly translated from Latin as “entities must not be
multiplied beyond necessity”1. The principle suggests that when there are multiple competing
hypotheses, the simplest one is usually the correct explanation. Another interpretation, and one
we focus on here, is that “less is more.” Within the context of modern computational science and
visual data exploration and analysis, applying this principle yields a fruitful course of research
and development: simulations and experiments produce larger and more complex data, yet the
sheer size and complexity of these results confounds attempts to gain insight; insights are drawn
from simple yet elusive observations.

Our colleagues in the computational and experimental sciences are using increasingly powerful
computational technology to their advantage. The advantage for science is that there is the
opportunity to model scientific phenomena with increasing physical realism and to collect and
store data at increasingly finer spatiotemporal resolution. Data from both simulations and
experiments exhibits increasing spatial resolution: climate models, for example, are moving
towards sub-kilometer resolution, resulting in data files that are unwieldy at best and that at

1 http://en.wikipedia.org/wiki/Occam’s_razor



worst confound existing analysis and visualization algorithms and implementations. The grid
or sample values are evolving from simple scalars or vectors to more complex types like tensors,
functions, and distributions. For some of these data types, there do not exist any satisfactory
method for visual data exploration. Large and distributed systems enable larger ensemble runs,
which produce many more datasets. The process of studying the relationships between many
datasets and input parameters grows increasingly difficult due to the sheer volume of data
and the potential complexity of the analysis. More powerful platforms enable codes to model
phenomena for a longer duration in simulation time, thereby increasing temporal complexity.

From a visual data analysis perspective, the resulting challenges are numerous and profound
and provide the basis for much of the current research in our community. For example, [1]
concludes that our ability to generate data far exceeds our ability to gain insight from such
data using existing techniques, even if scaled up to run on large, parallel platforms. This theme
restates the findings of an earlier work [2] pointing out that the sheer size and complexity of
scientific data is itself an impediment to scientific insight.

Insight comes in many forms and via many different paths. From a visualization perspective,
there are three broad visualization use modalities [3]. “Presentation visualization” is where you
know what is there and want to show it to someone else. “Analytical visualization” is where
you know what you are looking for. “Discovery visualization” occurs when you have no idea
what you’re looking for. Discovery visualization is characterized as an “undirected search,”
or “unconstrained navigation” through visualization or rendering parameter space. One might
expect that most “unexpected” discoveries would occur in discovery and analytical visualization,
with these unexpected results clearly communicated to others through presentation visualization
techniques.

One central thesis of this article is that focusing visualization research on techniques for
discovery and analytical visualization with a special emphasis on the challenges posed by science
in the petascale era will yield the greatest impact, or potential for enabling scientific knowledge
discovery. One conclusion we hope to convey here is that simply making higher resolution
images of higher resolution data exacerbates the problems pointed out in earlier reports, e.g.,
[2], where the scientist is burdened with more work. Instead, our approach is to realize an
effective implementation of Occam’s Razor, where petascale visual data analysis produces less
work for the scientist, thereby increasing the likelihood of scientific insight.

We discuss this theme in several different dimensions in this article. First, we, like many
other scientific fields, seek to leverage increasingly powerful computational platforms to tackle
ever larger problems. We present results in Section 2 where we show effective use, from a visual
data analysis perspective, of today’s largest platforms on problem sizes of unprecedented scale.
While this result is noteworthy in its own right, Section 3 takes a different approach by combining
advances in visualization and data management to tackle a hero-sized problem in accelerator
modeling to replace a manual process that previously required hours with yesterday’s “small”
datasets with one that takes seconds on today’s “hero-sized” datasets. Next in Section 4, we
present work that uses advances in computational geometry to discover elusive and difficult to
quantify features in scientific data to produce insights never before possible using traditional
visualization or analysis technologies. Finally, Section 4 presents advances in visualization
technology that help to convey deeper understanding of flow-based data.

2. Petascale Visual Data Exploration and Analysis
2.1. Introduction
As the by-product of advances in technology is “more and more data,” one issue facing the
visualization and analysis community is the feasibility of using today’s largest computational
platforms for knowledge discovery. To gain better insight into this issue, VACET researchers
recently conducted a series of experiments aimed at fostering a better understanding of



functional and performance limits that might be encountered when running a production-quality
visualization application at extreme levels of concurrency on datasets of unprecedented size. The
results, which we discuss in this section, suggest this approach is viable and that visualization
research and development efforts have produced technology that is today capable of ingesting
and processing tomorrow’s datasets.

(a) Isocontouring of two trillion zones on 32,000
Opteron cores of JaguarPF, a Cray XT5 at
OLCF/ORNL.

(b) Volume rendering of two trillion zones on
32,000 Opteron cores of Franklin, a Cray XT4 at
NERSC/LBNL.

Figure 1. Our functional performance experiments consist of loading extremely large datasets
and executing visualization algorithms at extreme levels of concurrency producing images of
isocontouring (left) and volume rendering (right).

Another purpose of these runs was to prepare for establishing VisIt’s credentials as a “Joule
code,” or a code that has demonstrated scalability at a large number of cores. VisIt is the first
and only visual data analysis code that is part of the ASCR Joule metric, which aims to track
code performance (scalability) over a period of time.

The team’s experiments consisted of running the VisIt software application [4] on several
of the nation’s largest computing platforms and on dataset sizes ranging from 500 billion (two
terabytes per scalar) to 2 trillion cells (eight terabytes per scalar) and at concurrency levels
ranging from 8000 to 32,000 cores. Each experiment consisted of running VisIt in parallel:
loading in data, performing two common visualization tasks (isosurfacing and volume rendering),
and producing an image (Figure 1).

2.2. Parallel Processing of Data
As there is some variation in how tools process data in parallel, we will describe VisIt’s approach
for parallel processing. VisIt employs a client-server model. The VisIt server is parallelized using
an MPI-based communication model and can run on a large, parallel platform. The VisIt client,
which runs on the user’s workstation, communicates with the VisIt server over an IP-based
connection. To begin, the end user sets up the visualization or analysis task from the VisIt
client-side interface. The client then communicates this information to MPI rank 0 of the server.
MPI rank 0, in turn, communicates this information to the other processors through a broadcast
command. Each processor then sets up a data flow network, which consists of modules to read
data, process data, and ultimately to render data to images. VisIt’s parallelization approach



uses domain decomposition so that each MPI process, which runs data I/O, processing, and
rendering, operates only on its data subset. The partitioning occurs by operating on meta-data,
for example by partitioning pre-defined domains.

Once the data flow networks are set up on each MPI process, execution begins. First, each
process sets up its reader to load only the data for its subset of the larger data set. Next, each
process executes one or more algorithms (e.g., isocontouring) with user-specified parameters
(e.g., isocontouring level). For processing sequences that includes rendering, each processor
renders its portion of the problem into an image, then the resulting images from all processes
are assembled into a final image. The resulting image is then transferred to the client and
displayed to the user. The processing and rendering for volume rendering is somewhat different;
the volume rendering algorithm is not embarrassingly parallel. Our approach is described in
more detail in [5].

2.3. Experiment Description
One goal of this experiment was to demonstrate the viability of these techniques across
diverse supercomputing environments, in terms of operating system, I/O performance, FLOPs,
and network bandwidth. We performed these tests on on Crays (OLCF/ORNL’s Jaguar &
NERSC/LBNL’s Franklin), a Sun Linux machine (TACC’s Ranger), a CHAOS Linux machine
(LLNL’s Juno), and an AIX machine (LLNL’s Purple).

Because each machine has a different number of cores, we performed a weak scaling study. We
started with a single data set, which we then upsampled to an appropriate resolution. This data
set was from a core-collapse supernova simulation done by the CHIMERA code, on a curvilinear
mesh of more than three and one half million cells2. We chose the upsampling approach since
we are not aware of any current datasets containing 2T cells and since the primary objective for
our studies is to better understand the performance and functional limits of parallel visual data
analysis software. These objectives can be achieved using upscaled data.

The upsampling process involved interpolating a scalar field onto a high resolution rectilinear
mesh and then writing the data out as compressed binary data (gzipped). There were ten files
for every core used, and every file contained 6.25 million data points, for a total of 62.5 million
data points per core. In our experience, the visualization tool often has one tenth (or less) of
the resources (e.g., cores) as the simulation code and simulations codes often write out one file
per core. Hence, having multiple files per core was our best approximation at emulating these
common real world conditions.

We ran with 16000 cores on each machine visualizing one trillion cells3. On the Jaguar and
Franklin machines, we ran additional, larger-sized problems consisting of two trillion cells on
32000 cores. Although times varied from machine to machine, I/O was the dominant factor
(taking two or more minutes at 16000 cores), with contouring taking approximately ten seconds
and rendering taking one to ten seconds.

2.4. Issues Discovered During Scaling Study
Although the majority of VisIt’s infrastructure scaled well to a large number of cores, we ran
into several obstacles along the way:

• VisIt’s MPI rank 0 was collecting status information from all other processors through
point-to-point communications, which is non-scalable. We worked around this issue for our
study and plan on implementing a complete solution for a future release of VisIt.

2 Sample data courtesy of Tony Mezzacappa (ORNL), Bronson Messer (ORNL), Steve Bruenn (Florida Atlantic
University) and Reuben Budjiara (University of Tennessee).
3 We ran with only 8000 cores and one half trillion cells on Purple, because the full machine has only 12208 cores,
and only 8000 are easily obtainable for large jobs.



• VisIt’s volume rendering algorithm was attempting an optimization for sample point
communication that required a buffer that had an O(nProcs×nProcs) space requirement.
This “optimization,” while appropriate for low levels of concurrency, proved to cause
problems at high levels of concurrency. The workaround for these tests was to remove
this “optimization.” We are evaluating the best course of action for a solution for a future
release of VisIt.

• We observed that the loading of shared libraries took quite a long time at scale (as much as
five minutes) and VisIt’s plugin model may need to adapt for this case, likely by switching
to a static binary with precompiled plugins.

2.5. Lessons Learned
The primary objective for these experiments was to gain a better understanding of functional
and performance limits when running visual data analysis applications at extreme levels of
concurrency and and problem sizes. We encountered a couple of minor problems that will be
rectified and appear in a future public VisIt release.

From a visual data analysis perspective, these problem sizes and concurrency levels are a
“first.” The successful completion of these functional and performance tests show progress
towards petascale computing by demonstrating that today’s technology is capable of ingesting
and processing tomorrow’s datasets.

The performance data the team collected during the experiments reveals insights into
potential bottlenecks and opportunities for performance optimization on different machine
architectures at high levels of concurrency and ultrascale datasets. Future work will include
a more detailed, end-to-end performance study of several different visualization algorithms to
better understand performance limits and opportunities for VisIt, a production-quality visual
data analysis software application.

3. Accelerator Modeling
3.1. Background
Laser wakefield simulations model the behavior of individual particles as well as the behavior
of the plasma electric and magnetic fields. Output from these simulations can become quite
large: today’s datasets, such as the ones we study here, can grow to be on the order of 200GB
per timestep, with the simulation producing ≈ 100 timesteps. The scientific challenge we help
address in this study is first to quickly find particles that have undergone wakefield acceleration,
then trace them through time to understand acceleration dynamics, and perform both visual
and quantitative analysis on the set of accelerated particles. This approach better serves science
needs than attempting to visualize and analyze all particles at once.

To solve this problem, we focused on combining and extending two different but
complementary technologies aimed at enabling rapid, interactive visual data exploration and
analysis of contemporary scientific data [6]. To support highly effective visual data exploration,
knowledge discovery and hypothesis testing, we have adapted and extended the concept of
parallel coordinates, in particular binned or histogram-based parallel coordinates, for use with
high performance query-driven visualization of very large data. In the context of visual data
exploration and hypothesis testing, the parallel coordinates display and interaction mechanism
serves multiple purposes. First, it acts as a vehicle for visual information display. Second, it
serves as the basis for the interactive construction of compound Boolean data range queries.
These queries form the basis for subsequent “drill down” or data mining actions. To accelerate
data mining, we leverage state-of-the-art index/query technology to quickly mine for data of
interest as well as to quickly generate multiresolution histograms used as the basis for the
visual display of information. This combination provides the ability for rapid, multiresolution
visual data exploration, and implements an easy-to-use interface for composing multivariate and



multidimensional queries in a high performance, query-driven visualization and analysis system
[7].

We apply this new technique to large, complex scientific data created by a numerical
simulation of a laser wakefield particle accelerator. In laser wakefield accelerators, particles are
accelerated to relativistic speeds upon being “trapped” by the electric fields of plasma density
waves generated by the radiation pressure of an intense laser pulse fired into the plasma. These
devices are of interest because they are able to achieve very high particle energies within a
relatively short amount of distance when compared to traditional electromagnetic accelerators.
The VORPAL [8] simulation code is used to model experiments, such as those performed at the
LOASIS facility at LBNL headed by W. Leemans [9], and is useful in helping to gain deeper
understanding of phenomena observed in experiments [10], as well as to help formulate and
optimize the methodology for future experiments.

One scientific impact of our work is that we have vastly reduced the duty cycle in visual data
exploration and mining. In the past, accelerator scientists would perform the “trace backwards”
step using serial scripts that performed a search at each timestep for a set of particles. Runtimes
for this operation were on the order of hours. Using our implementation, those runtimes are
reduced from hours to seconds.

In our implementation, a user will see an “overview” of all data in the multidimensional
dataset, then select subsets for subsequent visual data exploration and analysis. The
multidimensional presentation of data – both the “overview” as well as subset selections – is a
statistical display known as a parallel coordinates plot. Examples of such visual data exploration
and analysis are shown in Figure 2, and are described in more detail in [6].
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Figure 2. The interface on the left, which shows a multivariate view of particle distribution
across all simulation variables, is a vehicle for selecting particles having high acceleration and
spatial coherency. All particles are shown in gray, and selected particles shown in red. This
selection interface is linked with other forms of visual data exploration, so that a physical
view of selected particles (middle, red particles) helps the scientist to quickly gain insight into
the relationship between statistical-space and physical-space features. Paths of “interesting”
particles over a range of timesteps, shown on the right, are colored to indicate particle
momentum. That image shows particles are constantly accelerated over this range of time.
This new capability, developed as part of VACET’s research and development portfolio, is
now part of widely distributed, production-quality, parallel capable visual data exploration
software infrastructure (VisIt). Image, courtesy O. Rübel et al., LBNL, generated from VORPAL
simulation results, courtesy C. Geddes et al., LBNL.



3.2. Multidimensional Data Display: Histogram-Based Parallel Coordinates
Parallel coordinates, believed to be introduced in 18854, provide an effective interface for
displaying multivariate data and for defining multi-dimensional queries (range selections) based
on thresholding. The idea of combining parallel coordinates displays with physical space views
of subset selections is not new. Applications range from multidimensional geometry [11, 12],
GIS/remote sensing [13], data mining [14], currency and economic analysis [15]. These concepts
have had success in the visual data exploration and analysis of particle-based data in life sciences
data [16–18], and multiple teams concurrently and explored applying these concepts to fusion
simulation data [19].

Using sliders attached to each axis of the parallel coordinates plot, a user defines range
thresholds in each displayed dimension. By rendering the user-selected data subset (the focus
view) in front of a parallel coordinates plot created from the entire data set (or in many cases a
subset of it) (the context view), the user receives immediate feedback about general properties
of the selection. Data outliers stand out visually as single or small groups of lines diverging from
the main data trends. Data trends appear as dense groups of lines (bright colored bins in our
case). A quick visual comparison of the focus and context views helps to convey understanding
about similarities and differences between the two.

In practice, parallel coordinates have disadvantages when applied to very large datasets.
First, each data record is represented with a single polyline that connects each of the parallel
coordinates axes. As data size increases, the plot becomes more cluttered and difficult to
interpret. Second, data records drawn later will occlude information provided by data records
drawn earlier. Finally and worst of all is the fact this approach has computational and rendering
complexity that is proportional to the size of the dataset. As data sizes grow ever larger, these
problems become intractable.

To address these problems, which stem from the attempt to use an existing visualization
technique on very large datasets, we developed an efficient rendering technique based on two-
dimensional (2D) histograms. Rather than viewing the parallel coordinates plot as a collection
of polylines, one per data record, we approach rendering by considering instead the relationships
of all data records between pairs of parallel coordinate axes. That relationship can be discretized
as a 2D histogram and then later rendered. This idea was introduced in earlier work [20], and
we extended the basic idea to accomodate very large datasets through a combination of adaptive
histograms, novel rendering, and rapid histogram computation.

Complementary to the histogram-based rendering technique is the need to quickly compute
histograms from large data and user selections. Our approach is to leverage FastBit to quickly
generate conditional histograms. This approach has proven useful in the past in a “hero-sized”
cybersecurity visual analytics and data mining application [21]. The key here is to provide an
implementation that runs sufficiently quickly as to enable interactive visual data exploration of
large particle-based datasets. Our implementation, described in more detail in [6], achieves such
performance levels through extensions to FastBit and use on parallel computing platforms to
accelerate I/O and histogram computation.

3.3. Particle Paths and Visual Data Analysis
Once “interesting” particles are located, the next step in the knowledge discovery process is to
learn something about the temporal characteristics of these particles. In our earlier work [6],
we iteratively formulate complex multidimensional queries to isolate interesting particles and
display them. Typically, the multidimensional query is applied at a timestep after particles
have begun to undergo acceleration. From that query results a list of particles; we then use
the FastBit machinery to find those named particles across all simulation timesteps and display

4 See http://en.wikipedia.org/wiki/Parallel_coordinates
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Figure 3. Particle paths colored by x-momentum so that color indicates the level of acceleration.
The spiral structure of the paths illustrates the particles’ oscillating motion over time. Image
courtesy O. Rübel et al., LBNL.

Figure 3 shows recent results where we employ visual data analysis techniques to help reveal
scientifically interesting information. Figure 3 shows a subset of high-energy particles traced
through time. The paths are shown in (x, y, py) space (x and y are positions in space, while
py is a particle’s momentum in the y direction) colored by px, a particle’s momentum in the
x direction, so that color indicates the level of acceleration of particles. The particles move
along the paths from left to right. The spiral structure of the paths illustrates the oscillating
motion of the particles in y. Along any given particle pathline, color transitions reveal interesting
phenomena. First, particles exhibit low momentum in x when they first enter the simulation
(blue at the left). Second, after being injected, the particle are constantly accelerated (transition
from blue to red). Finally, later in the simulation – at x ≈ 1250µm – the particles “outrun”
the wave and decelerate (transition from red to blue). As they accelerate, the tracks show the
particles oscillate transversely in the focusing field. Figure 3 shows the paths only until the
particles have completed the deceleration process.

3.4. Knowledge Discovery: Traditional Analysis
Complementary to high performance visual data exploration technology, which helps with
discovering characteristics of particles undergoing acceleration, are automated methods for
finding and analyzing such particles of interest. Recent work [22] combines signal processing
and machine learning techniques to locate particles undergoing a high degree of acceleration and
that are spatiotemporally compact. Once individual particles of interest have been identified,
they are grouped into compact “bunches” using unsupervised fuzzy clustering. Concurrently,
the pathlines of the bunches are derived using a graph-based algorithm. This approach proved
sufficiently robust to successfully identify high-energy beams in multiple datasets that exhibit
markedly different characteristics and behavior. This type of approach holds promise for helping



to accelerate scientific knowledge discovery by finding and analyzing “features” that are difficult
to define and that vary from dataset to dataset.

4. Topologically Based Feature Detection and Tracking
4.1. Introduction: Topological Data Analysis
In recent years, topological structures have proven to be very useful for building very general
“feature” definitions [23] in both visualization and quantitative data analysis. The success of
these feature definitions stems from the fact that topological structures are based on fundamental
properties of isosurfaces. An isosurface [24, 25] connects all locations in a domain where the
scalar field assumes a specified isovalue and is an extremely versatile and ubiquitous visualization
and analysis component. By varying the isovalue and observing changes to the corresponding
isosurface, one gains considerable insights into properties of that scalar. Isosurfaces arise
naturally in data analysis since distinct isosurfaces often have a useful physical interpretation
directly related to the application domain. For example, in premixed combustion simulations, an
isotherm (a surface of constant temperature) of an appropriate temperature is often associated
with the location of the flame.

In the context of scalar field analysis, topological properties provide a quantifiable
characterization of fundamental isosurface properties: the number of connected isosurface
components and the genus of an isosurface (i.e., the number of independent tunnels or “holes”
in the surface). Morse theory [26] provides insight into the topological evolution of isosurfaces
of scalar functions: isosurface topology changes at distinct isolated critical points in the scalar
field that can be identified and analyzed analytically or combinatorially.

Critical points identified by the Morse theory constructions provide hints about the location
of interesting behavior in a scalar field. However, as a set of individual disconnected points they
are only of limited use to decipher global structures in a data set. Topological structures relate
critical points to each other and provide a means for ranking topological features and simplifying
the global topological structure [27, 28]. This simplification supports further “boiling down” of
the data to essential features and extracting a simpler, overall coarser structure.

The Reeb graph [29] is one of these structures; it expresses the evolution of individual contours
as a graph that is defined by these critical points and their relationships. The Reeb graph
describes the evolution of contours, i.e., individual connected components of a level set, as the
value for which we extract the level set changes. Essentially, the Reeb graph is a skeleton
of the manifold. Edges of the Reeb graph correspond to families of topologically equivalent
contours, and nodes correspond to critical points where the number of contours change. For
simply connected domains, the Reeb graph is always a tree structure, called a contour tree [30].

The Morse complex and the Morse-Smale complex [31–33] comprise alternate means of
relating critical points to each other. Assuming the function on the manifold is differentiable,
and thus the gradient is defined at each location, it is possible to start at any location in
the domain and follow a gradient line either to its origin or its destination, i.e., follow a line
of steepest descent or ascent from that point. This line of steepest ascent/descent will end
in a local maximum/minimum. The Morse complex is the segmentation of the domain into
ascending or descending manifolds of the critical points. An ascending/descending manifold of
a maximum/minimum is the union of all locations in the domain for which the path of steepest
ascent/descent ends at that maximum/minimum. Superimposing ascending and descending
manifolds results in the Morse-Smale complex.

Using contour tree simplification, it is possible to manipulate isosurfaces in terms of fewer,
important connected components [27]. Furthermore, one can represent the contour tree in
a hierarchical layout that makes it possible to explore the global structure of a data set
and subsequently obtain a more detailed topological representation in regions of interest [34].
Finally, it is possible to represent the topological information contained in the contour tree



in a more intuitive fashion [35]. Use of a multiresolution-representation of the Morse-Smale
complex [28, 33] has also proven useful in analyzing scientific simulation data. For example,
it is possible to specify features, such as bubbles, that are difficult to characterize using
traditional feature detection methods, and use this definition for analyzing turbulent mixing
simulations [36]. More recent work used the Morse-Smale complex for calculating clean distance
fields in porous solids hit by a projectile [37] and used the results to calculate measures like
filament density. Other topological structures, such as Jacobi sets, allow relating critical points
between different functions/simulations [38]. Recently, Bremer et al. [23] gave an overview of
topology-based feature definition and feature tracking.

4.2. Science Application: Analysis of Turbulent, Premixed Hydrogen Flames
Understanding combustion processes over a broad range of operational regimes is of great interest
for a variety of applications like engine or power plant design. To this end, there has been
considerable recent interest in developing premixed burners capable of stably burning ultra-lean
hydrogen-air fuel mixtures. Such burners could, for example, be used as one component of
a clean-coal power plant utilizing hydrogen extracted from coal gasification. Lean premixed
systems are subject to a variety of hydrodynamic and combustion instabilities that render
practical flame stabilization, and traditional approaches to flame analysis, extremely difficult.
The flames burn in a cellular mode that is highly nonuniform, time-dependent, and difficult to
characterize [39].

To study this combustion process, researchers at the Center for Computational Sciences
and Engineering at Lawrence Berkeley National Laboratory performed numerical simulations
of lean premixed hydrogen flames at three different levels of turbulence: no turbulence, weak
turbulence, and strong turbulence. Each flame burns in a volume periodic in the x- and y-
coordinate with pre-mixed fuel being injected through the plane z = 0. The flame simulations
were carried out with a low Mach number model that incorporates a detailed description of the
combustion kinetics and differential species transport. For more details of the model and its
implementation, see [40]; for example analysis of lean hydrogen flames in this regime, see [41].
Each solution analyzed here is represented as a sequence of three-dimensional snapshots, taken
at uniform intervals in time, where each snapshot consists of cell-centered data on a uniform
Cartesian grid describing the temperature, chemical composition, and effective fuel consumption
rate. The “flame” is represented as an isotherm extracted from the datasets using standard
techniques. The local fuel consumption rate, interpolated to these isosurfaces, is used to divide
the surface into burning “cells” separated by non-burning regions, as defined by a threshold in
the consumption rate. To gain new insights into the combustion process, scientists are interested
in two types of analysis: time-aggregate statistics and detailed analysis of cell evolution.

4.3. Characterizing Influence of Turbulence
The top row of Figure 4 shows isotherms of combustion simulations performed at the three
turbulence levels under consideration. Mapping the fuel consumption rate to isotherm color,
the cellular structure of the burning process becomes immediately obvious. Essentially we are
interested in the influence of turbulence level on the size and evolution of these burning cells.

It is possible to use the Morse complex to study the evolution of the cellular burning patterns
observed in lean premixed hydrogen-air flames. One can construct a quantitative analysis
through segmentation of this flame isotherm based on threshold values of the local burning rate.
This thresholding divides the isotherm contour into individual burning cells that evolve in time.
Such a definition allows a quantitative analysis of the influence of turbulence on the evolution
of these flame structures, for example. However, the network of these burning cells (and its
dual, the network of extinction regions) may depend strongly on the threshold that determines
the segmentation, and there is no universally accepted threshold value. It is crucial then to



Figure 4. The top 3D panels show flame surfaces of a lean premixed hydrogen flame at different
levels of turbulence colored by the local fuel consumption. In the bottom 3D panels a small set
of burning cells is randomly colored to show the irregularity of the more turbulent cells.

examine the statistical characterization of these flame cells as a function of the threshold value
to ensure that the conclusions drawn from the analysis do not depend on the detailed values of
this rather arbitrary parameter [39]. The Morse complex [42] provides a framework to represent
segmentations for all possible thresholds and thus for evaluating the segmentation for a range of
thresholds and determining the stability of these arbitrary parameters. Furthermore, it supports
simplifying the topological structure of burning regions, merging very small burning regions into
larger ones, thus simplifying analysis.

Once an appropriate choice of parameters has been determined we track the corresponding
cells over time. A tracking graph can be constructed efficiently from a three-dimensional
hypersurface (embedded in four-dimensional space-time) of the evolution of the flame isotherm
over time. Based on this hypersurface and a segmentation in each time step, boundaries of
burning regions as they evolve over time can be constructed. The Reeb graph of this system
(Figure 5) can efficiently represent a complete tracking graph of the evolution of the burning
regions over time, including their creation, destruction, splitting and merging behavior, and
provides a basis for quantitative analysis of their evolution.

4.4. Lessons Learned
Our methods allow, for the first time, a quantitative analysis of the cellular burning structures
(Figure 6), and yield important scientific insights: Contrary to common intuition, higher
turbulence levels, which generally lead to increased energy in the finer length scales of the
approach flow to the flame, apparently lead to larger cellular burning structures. Moreover,
these larger cells tend to burn more intensely than would be expected from simple theories
of flame propagation. The combination of these two effects dramatically increases the global
propagation speed of the turbulent flames over the steady flat flame case.



Figure 5. Subsection of the tracking graph of a combustion simulation of the “no turbulence”
case that is compressed to only show two merge and two split events. Arc color corresponds
to region color in corresponding segmentations. Round nodes correspond to cells explicitly
segmented by the Morse complex, diamonds to topological events between time steps. Red
signifies a merge, green a split, and turquoise a birth/death event. The figure shows three zoom
levels of the graph: graph for the entire simulation (bottom graph), a portion corresponding to
several subsequent time steps (middle graph) and a zoom into the two merge and split events
annotated with colored segmentations of the isotherm.

Figure 6. Cumulative density function of cell area distributions. The graph reveals that more
turbulence creates larger cells with a wider distribution of normalized surface areas indicating
a more intense burning process.



Figure 7. Integral curves illustrate the paths of massless particles in a vector field. The left
image is generated from the numerical simulation of vortex merging (simulation courtesy ANAG,
LLNL [44]). On the right, streamlines illustrate the magnetic field of a collapsing stellar core
(simulation from E. Endeve et al., ORNL).

5. High Performance, Parallel, and Accurate Computation of Particle
Trajectories, Integral Curves and Integral Surfaces
5.1. Introduction: Integration-Based Visualization
Modern methods for the analysis and visualization of vector fields, which play a key role in
many application domains like flow simulation, astrophysics and fusion, are built on empirically
studying the behavior of massless particles advected with the vector field. These so-called
integration-based or Lagrangian methods offer unparalleled insight into vector field structures
especially for time dependent vector fields [43].

One simple yet effective visualization approach for vector fields is the straightforward
depiction of particle trajectories, as described by vector field integral curves. For a vector field
v(t, x), an integral curve started at a point x0 at time t0 is defined by the ordinary differential
equation

φ̇(t) = v(t, φ(t)), with initial condition φ(t0) = x0,

and is readily approximated using numerical integration schemes. The resulting curves can then
be directly depicted graphically to allow an identification of general vector field behavior (see
Figure 7).

5.2. Integral Surfaces
Recently, VACET scientists have developed a novel approach of grouping trajectories of particles
emanating from a common curve seeding into so-called integral surfaces. Technically, an integral
surface S corresponding to a seeding curve C is defined by

∂

∂t
S(s, t) = v(t, S(s, t)) where S(s, t0) = C(s).

The resulting visualizations are a significant improvement over visualizing individual curves due
to the fact they offer the possibility for greatly improved visual understanding of complex 3D
flow (see Figure 8).



To approximate integral surfaces, the continuum of integral curves over s is reduced to a finite
number of such curves that represent a skeleton of the integral surface. However, due to the
strong deformation by the flow a fixed discretization does not result in a good approximation of
the surface; rather, the newly developed algorithm adapts the discretization to the observed
distortion of the surface as it progresses through the vector field [45, 46]. This allows the
generation of high-quality surfaces exhibiting fine detail using a vastly reduced number of integral
curve computations in comparison to a naive approach. Moreover, care is taken to preserve
temporal locality during the surface propagation, permitting computation of surfaces in large
time-dependent vector fields in an out-of-core, streaming fashion.

5.3. Lagrangian Coherent Structures
The recently introduced notion of Lagrangian Coherent Structures (LCS) and the associated
Finite-Time Lyapunov Exponents (FTLE) measure (e.g. [47, 48]) have garnered much attention
in both visualization and application science communities for their ability to visualize and
analyze time-varying vector fields in terms of the convergence and divergence of neighboring
particles. FTLEs are a finite-time analogue of Lyapunov exponents in dynamical systems;
they measure the average exponential separation rate between neighboring particles over a time
interval ∆t via

σ :=
1

|∆t|
log ‖Dφ‖2,

where ‖Dφ‖2 denotes the spectral norm of the spatial derivative of the particle advection over
∆t. LCS are then identified as ridge lines in the resulting scalar measure σ. It can be shown that
these LCS represent particle trajectories of maximal hyperbolicity and hence form a “dynamic
skeleton” of a vector field. Through these structures, it is possible to accurately visualize the fully
dynamic nature of vector fields, as exemplified in Figure 9. In contrast, earlier techniques such
as topological analysis are unable to easily capture time-varying structures [49]. Furthermore,
FTLEs enable the representation of the structural dynamics in terms of scalar fields, opening up
vector field structural analysis to a host of existing methods developed in the context of scalar
fields. VACET scientists have delivered visualization tools that enable fast computation and
interactive visualization of vector fields using these techniques. Furthermore, they continue to
examine the value of FTLEs and closely related measures can be generalized to other applications
domains beyond fluid flow such as dynamical systems and medical visualization (see Figure 10).

Figure 8. A path surface illustrates the flow of air around a car. The surface represents a
dense sheet of massless particles, and the surface color coding provides insight into the lifetime
of individual particles. The most notable features identified in this visualization are the vortices
behind the rear-view mirror, where the particles are drawn into a vortex (close-up on the right).
The path surface is constructed from several thousand integral curves (simulation courtesy M.
Rütten, German Aerospace Research Center).



instantaneous time-dependent

Figure 9. The two-dimensional flow behind a cylinder is visualized using a direct color coding
of FTLE measures for forward (red) and backward (blue) advection. The left image shows an
analysis of the instantaneous flow, whereas the right image is computed from the fully time-
dependent flow field. In comparison, it is apparent that the instantaneous depiction does not
adequately reveal the flow dynamics. The time-varying FTLE analysis reveals strongly localized
ridge-like LCS that capture the characteristic vortex street downstream of the cylinder (cf. [50]).

Unfortunately, the computation of FTLE measures entails computing a huge number of
particle traces that densely cover the domain of interest. Even for medium-sized datasets,
it is not uncommon that application of Lagrangian visualization techniques requires computing
millions of trace particles. VACET researchers have proposed a variety of methods to address
this problem. For smaller data, they leveraged the massive parallel nature of GPUs to allows
a direct FTLE computation [50] and corresponding visualization with a 30× to 50× speedup
compared to a CPU implementation, resulting in interactive computation and visualization.
For large to very large data, an approach was presented that evaluates FTLEs adaptively by
varying the density of seeded particles in dependence of the spatial variation of the FTLE
measure. Depending on the vector field, this can reduce the number of required integral curve
computations to between 5% and 20% of the naive, full implementation [52].

Figure 10. Lagrangian Visualization using FTLE measures is applicable over a wide variety
of application domains. The right image visualizes the LCS over a Delta wing using a direct
volume rendering of FTLE measures for forward (red) and backward (blue) advection (simulation
courtesy M. Rütten, German Aerospace Research Center). The center image depicts an FTLE-
like measure that captures coherent structures in a Poincaré section from a Tokamak fusion
simulation (data from NIMROD project [51]). The rightmost image depicts a FTLE-like
coherency measure for fiber bundles in medical DT-MRI data.



5.4. High-Performance, Scalable Integral Curves
For all integration-based visualization techniques, very large datasets represent a significant
challenge. The non-local, non-linear nature of integral curve computation defies established
parallelization paradigms and requires novel approaches to distribution of both data and
computation. Furthermore, the sheer number of integral curves that must be computed to
apply these techniques poses a significant challenge. Even though VACET researchers have
successfully worked to reduce this number using adaptive approximation and other techniques,
the computational effort required to apply Lagrangian methods to very large, petascale datasets
is still significant. This problem will be addressed by the development of novel parallelization
techniques that will allow integral curve computation to scale to large supercomputers. These
new capabilities, together with the Lagrangian visualization techniques that are build on them,
will be implemented in production-quality, parallel-capable visual data exploration software that
runs on virtually all modern platforms, ranging from desktop-class machines to DOEs petascale
computer systems. This work represent a major new capability for domain scientists concerned
with vector field analysis, as it will enable broad use of modern visualization methods and allow
the treatment of petascale datasets when run on large parallel computing platforms.
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