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ABSTRACT

The increasing cost of achieving sufficient I/O bandwidth for high
end supercomputers is leading to architectural evolutions in the I/O
subsystem space. Currently popular designs create a staging area on
each compute node for data output via solid state drives (SSDs), lo-
cal hard drives, or both. In this paper, we investigate whether these
extensions to the memory hierarchy, primarily intended for com-
puter simulations that produce data, can also benefit visualization
and analysis programs that consume data. Some algorithms, such
as those that read the data only once and store the data in primary
memory, can not draw obvious benefit from the presence of a deeper
memory hierarchy. However, algorithms that read data repeatedly
from disk are excellent candidates, since the repeated reads can be
accelerated by caching the first read of a block on the new resources
(i.e. SSDs or hard drives). We study such an algorithm, streamline
computation, and quantify the benefits it can derive.

Index Terms: Programming Techniques [D.1.3]: Concurrent
Programming—Parallel Programming, Computation by Abstract
Devices [F.1.2]: Modes of Computation—Parallelism and Con-
currency, Computer Graphics [I.3.3]: Picture/Image Generation—
Display Algorithms

1 INTRODUCTION

As supercomputers get ever larger, the cost of achieving sufficient
I/O bandwidth is, unsurprisingly, increasing. But supercomputing
architects have been experimenting with a new approach to de-
crease this cost. Where the typical approach has a simulation write
data directly to a parallel file system (i.e. “spinning disk”), the new
approach introduces a new participant, solid state drives (SSDs),
and has the simulation write data to the SSDs instead. The simula-
tion can then immediately resume, while, concurrently, the data is
copied from the SSDs to the file system, shielding the simulation
from slow parallel file system performance. Although the SSDs in-
troduce a new cost, they lessen the importance of I/O bandwidth,
allowing for the SSDs to be coupled with a slower (and less expen-
sive) parallel file system, providing a cost reduction overall.

To applications, this I/O configuration appears to have two dis-
tinct bandwidth characteristics. On write, the bandwidth appears
to be good, since it is be accelerated by SSDs. On read, however,
the bandwidth will be poor, since the reads are backed by a slower
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parallel file system and the presence of SSDs can not accelerate this
activity.

I/O is often the slowest part of a visualization pipeline [10],
hence suboptimal I/O read performance will result in poor overall
visualization performance. However, in this paper, we ask whether
SSDs can effectively increase I/O performance – and therefore vi-
sualization performance – by treating them as an extended part of
the memory hierarchy. While the first read of any block of data
will remain slow, the SSDs can be used as a cache to store those
blocks, considerably accelerating subsequent reads. Further, local
hard drives are appearing increasingly commonly in the I/O sub-
system and can similarly be used as an extension to the memory
hierarchy in the same fashion as SSDs. We also study how these
hard drives can accelerate I/O and visualization performance.

Although many paradigms for processing data do not read blocks
of data repeatedly, streamline calculations do. Streamlines, or
more generally integral curves, are one of the most illuminating
techniques to obtain insight from simulations that involve vector
fields and they serve as a cornerstone of visualization and anal-
ysis across a variety of application domains. Drawing on an in-
tuitive interpretation in terms of particle movement, they are an
ideal tool to illustrate and describe a wide range of phenomena
encountered in the study of scientific problems involving vector
fields, such as transport and mixing in fluid flows. Moreover, they
are used as building blocks for sophisticated visualization tech-
niques (e.g., [14, 17, 19]), which typically require the calculation
of large amounts of integral curves. Successful application of such
techniques to large data must crucially leverage parallel computa-
tional resources to achieve well-performing visualization.

Among visualization techniques in general, streamline-based ap-
proaches are notoriously hard to parallelize in a distributed memory
setting [23], because runtime characteristics are highly problem-
and data-dependent. In terms of parallelization approach, stream-
line computations may be parallelized over data, parallelized over
streamlines, or some hybrid between the two. When parallelizing
over streamlines (or, equivalently, over their seed points), particles
are advected and blocks of data loaded dynamically based on the
trajectory taken. This is exactly the data processing pattern that
can benefit from an extended memory hierarchy and we study this
approach here.

In this paper, we study the benefits a local disk – either SSD
or local hard drive – can provide to accelerate a parallel streamline
algorithm. We perform a variety of tests and present results to show
what I/O benefits can be gained with the use of an SSD or local hard
drive compared to a parallel file system.

2 RELATED WORK

2.1 Parallel Particle Advection

The parallel solution of streamline-based problems has been con-
sidered in previous work using a multitude of differing approaches.
Generally, both data set, represented as a number of disjoint blocks,
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Figure 1: The parallelize-over-seeds algorithm with no local cache (left) and local cache (right) versions. Each process integrates streamlines
(INT) and manages its own memory cache by loading blocks from disk (I/O). In the local cache version, each MPI task has an extra block
cache on the local file system which it can check for data blocks before going to the global file system. Each MPI task is identical and only
one is shown here. Similarly, MPI communication is limited to gathering results and is also not shown. See Section 3 for more discussion of
this algorithm.

and computation, in the form of integration work, can be dis-
tributed. An early treatment of the topic was given by Sujudi and
Haimes [27], who made use of distributed computation by assign-
ing each processor one data set block. A streamline is communi-
cated among processors as it traverses different blocks. Other ex-
amples of applying parallel computation to streamline-based visual-
ization include the use of multiprocessor workstations to parallelize
integral curve computation [18], and research efforts that focus on
accelerating specific visualization techniques [4]. Similarly, PC
cluster systems were leveraged to accelerate advanced integration-
based visualization algorithms, such as time-varying Line Integral
Convolution (LIC) volumes [21] or particle visualization for very
large data [11].

Focusing on data size, out-of-core techniques are commonly
used in large-scale data applications where data sets are larger than
main memory. These algorithms focus on achieving optimal I/O
performance to access data stored on disk. For vector field visual-
ization, Ueng et al. [29] presented a technique to compute stream-
lines in large unstructured grids using an octree partitioning of
the vector field data for fast fetching during streamline construc-
tion using a small memory footprint. Taking a different approach,
Bruckschen et al. [3] described a technique for real-time particle
traces of large time-varying data sets by isolating all integral curve
computation in a pre-processing stage. The output is stored on disk
and can then be efficiently loaded during the visualization phase.

More recently, different partitioning methods were introduced
with the aim of optimizing parallel integral curve computation. Yu
et al. [30] introduced a parallel integral curve visualization that
computes a set of representative, short trajectory segments termed
pathlets in time-varying vector fields. A preprocessing step com-
putes a binary clustering tree that is used for seed point selection
and block decomposition. This seed point selection method mostly
eliminates the need for communication between processors, and the
authors are able to show good scaling behavior for large data. How-
ever, this scaling behavior comes at the cost of increased prepro-
cessing time and, more importantly, loses the ability to choose arbi-
trary, user-defined seed-points, which is often necessary when using
streamlines for data analysis as opposed to obtaining a qualitative
data overview. Chen and Fujishiro [8] applied a spectral decompo-
sition using a vector-field derived anisotropic differential operator
to achieve a similar goal with similar drawbacks.

Finally, recent studies have aimed to better understand the char-
acteristics of parallel streamline performance. Pugmire et al. pre-
sented a comparison of three parallelization algorithms [23]: the
first two correspond to parallelization over seed points and over
data blocks, respectively, while the third algorithm (termed Master-

Slave) adapts its behavior between these two extremes based on the
observed behavior during the algorithm run. Peterka et al. focused
on streamlines at extreme scale, including concurrency levels up
32K cores and data sets as big as 2304×4096×4096 [22].

2.2 SSDs in Supercomputing
In the past few years, solid-state storage has successfully transi-
tioned from small, embedded devices such as media players or mo-
bile phones, to larger systems, e.g. desktop computers. Trends such
as rising storage density, lower power consumption and higher per-
formance with respect to conventional hard drives, coupled with
decreasing price, has made SSDs an attractive technology for data
centers and high performance computing (HPC). The increasing
cost to achieve sufficient bandwidth has led HPC architects to re-
think and redesign the I/O subsystem of supercomputers [7], using
SSDs to increase bandwidth and reduce latency. The Dash clus-
ter [15] at San Diego Supercomputer Center and the Hyperion clus-
ter at Lawrence Livermore National Laboratory [16] are two fore-
runners in adopting this approach and demonstrating the advantages
in the HPC space. The Dash cluster, which we used to perform our
experiments, uses NAND Flash I/O nodes on a SATA bus, whereas
the Hyperion cluster uses Fusion-I/O PCI-express cards. The HPC
community has been eager to explore this new design and perfor-
mance modeling of Flash-augmented HPC clusters is an area of
active research ([2], [7], [20]).

Szalay et al. [28] showed that you can combine energy efficient
CPUs with SSDs to increase sequential read throughput by an order
of magnitude while keeping power consumption constant.

He et al. [15] describe three data analysis applications – external
memory breadth first search, astrophysics analysis from the Palo-
mar Transient Factory, and biological pathways analysis – where
performance improves from 5X to 100X by using solid-state mem-
ory instead of spinning disk storage. Each of the algorithms con-
sidered in their paper use a data processing paradigm that benefits
from the extended memory hierarchy that SSDs provide. In this pa-
per, we further the evidence for the benefits of an extended memory
hierarchy, by demonstrating its utility in the visualization space.

3 STREAMLINE CALCULATION

Streamline computation for visualization purposes typically relies
on numerical integration methods that access vector field data in
random-access fashion to iteratively construct a streamline. Since
individual streamlines are computationally mutually independent,
the problem of computing streamlines lends itself well to paral-
lelization over the individual particles. For other parallelization ap-
proaches, we refer the reader to the discussion in [23].
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Figure 2: Configurations for loading data. See Section 4.1 for a complete description.

As previously stated, we are studying the parallelize-over-seeds
approach (see Figure 1). We assume that the problem mesh is de-
composed into a number of spatially disjoint data blocks and that
any of these blocks can be loaded when required, i.e. when a
streamline integration must continue into a block that is not present
in memory. The algorithm partitions the set of seed points over
MPI tasks, assigning each MPI task a fixed number of seed points
from which streamlines are then integrated. The initial partitioning
of seed points to nodes is based on spatial proximity of the seeds,
following the reasoning that the particles traced from spatially close
seed points are likely to traverse the same regions, and thus blocks,
of a data set. Parallelize-over-seeds benefits from a small amount
of communication; it only occurs at initialization and termination.

Each MPI task maintains a cache in its primary memory for
loaded data blocks, relieving the need to load blocks repeatedly
from the parallel file system. A new block is loaded when no
streamline can continue with the current block or with any blocks
in the memory cache. Naturally, only a small number of blocks
can be cached and still satisfy primary memory constraints. In
our algorithm, blocks are removed from the memory cache when
a fixed maximal number of blocks is exceeded (20 for this study).
They are evicted in least recently used order to make room for new
blocks. We find this approach effective in reducing overall I/O
cost, and especially for dense seeding. Overall, the performance of
the parallelize-over-seeds scheme depends crucially on loading and
caching of blocks, with small cache size meaning that blocks must
be brought in from the parallel file system repeatedly (cf. [23, 5] for
an in-depth investigation of these properties).

The extended memory hierarchy considered in this paper effec-
tively increases the size of the cache, albeit with additional over-
head for sending and retrieving blocks. When utilizing the SSDs or
local hard drives, a block evicted from the primary memory cache
is then saved to the local disk. Further, when a data block is needed
and is not found in the primary memory cache, the algorithm checks
first to see if the data block is on the local disk before loading it
from the remote file system. With this change we expect to gain
performance both from the faster local disks loads and also from
the reduced load on the parallel file system.

4 EXPERIMENTAL CONFIGURATION

To best understand the performance characteristics of a parallelize-
over-seeds streamline algorithm with an extended memory hier-
archy, we perform a series of tests that vary both I/O configura-
tion (4.1) and streamline configuration (4.2). We also describe the

machine and software framework used to perform the experiment
(4.3).

4.1 I/O configurations

We examine five different I/O configurations (see Figure 2). In the
first variant, which we denote GPFS, each MPI task loads data
blocks directly from the parallel file system, establishing a base-
line for performance without an extended memory hierarchy. The
acronym GPFS stands for the “General Parallel File System” [25].
In the second variant, Cache SSD, each MPI task can load data
blocks from either the SSD or from the parallel file system. For
each load, it starts by checking the SSD, since its load are consid-
erably faster. If the SSD does not contain the data, then it loads the
block from the parallel file system and stores it back to the SSD,
meaning subsequent loads of the block will come from the faster
SSD. In the third variant, Local SSD, a preprocessing step is ap-
plied where the entire data set is copied to each SSD before exe-
cution begins. In this variant, every processor is able to fetch data
directly from its SSD and does not have to deal with the parallel file
system. Note that this scenario is only possible when the data to be
processed is smaller than the size of the SSD and, further, requires
a large initialization cost. The fourth and fifth variants, Cache HD
and Local HD, are identical to the second and third, except that the
local hard drive is used in the place of the SSD. These tests de-
termine the performance differences between SSDs and local hard
drives.

4.2 Streamline Configuration

In [23], the authors present an overview of the complexities of
characterizing parallel streamline performance. We briefly summa-
rize their points here. The time to calculate streamlines primarily
comes down to three factors: integration time, block retrieval time,
and idle time. These four factors in turn depend on the input data
set and the seed points. Specifically:

• Seed Set Size The amount of integration time will be closely
related to the number of seeds.

• Seed Set Distribution In the parallelize-over-seeds algorithm
(studied in this paper), dense seed sets are favorable, since
they lead to less block loads, as so many are re-used from the
memory cache. Note that in a parallelize-over-data algorithm,
however, this configuration leads to significant idle time.
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Figure 3: A core-collapse supernovae simulation from the GENA-
SIS code. The streamlines show activity in the magnetic field at the
core.

• Data Set Size High resolution meshes do not necessarily
equate to prohibitive numbers of block loads. A single stream-
line, for example, likely only traverses a few blocks. However,
an increase in mesh resolution typically results in proportion-
ally higher number of block loads. Additionally, the ability to
fit the entire data set in primary memory or the entire data set
in the extended memory hierarchy is a crucially determining
factor for performance. In this paper, we consider data sets
that fit in the extended memory hierarchy, although consider-
ably larger data sets will continue to reap benefits from larger
caches.

• Vector Field Complexity The structure of the vector field de-
termines the path taken by particles, which affects both the
number of blocks to load and the computation time. Further-
more, particles can converge to relatively small regions or di-
verge from a small region into a large part of the dataset, re-
sulting in analogous characteristics to those found when con-
sidering the influence of the seed set distribution. For the
parallelization-over-seeds approach, converging streamlines
represent the most favorable case as block reuse is increased
in this scenario.

In order to account for these factors, our study looks at three data
sets, using a varying number of seed points.

Astrophysics This data set results from a simulation of the
magnetic field surrounding a solar core collapse resulting in a su-
pernova (see Figure 3). The search for the explosion mechanism
of a core-collapse within a supernovae and the computation of the
nucleosynthesis in these spectacular stellar explosions is one of the
most important and most challenging problems in computational
nuclear astrophysics. Understanding the magnetic field around the
core is very important and streamlines are a key technique for doing
so. The simulation was computed by a GENASIS simulation [12],
a multi-physics code being developed for a simulation of astrophys-
ical systems involving nuclear matter [6]. GENASIS computes the
magnetic field at each cell face. For the purposes of this study, a
cell-centered vector is created by differencing the values at faces
in the X, Y and Z directions. Node-centered vectors are generated
by averaging adjacent cells to each node. To see how this algo-
rithm would perform on very large data sets, the magnetic field was
upsampled to a total of 512 blocks with 1 million cells per block,
for a total resolution of 8003 and a data size of 4 gigabytes. The
seed set was placed randomly in a small box around the collapsing
core. The small and large seed sets contained 2,500 and 10,000 seed

Figure 4: A tokamak simulation from the NIMROD code. The
streamlines wrap around the tokamak many times, demonstrating
the streamlines used for Poincare analysis [24].

points respectively. Both small and large seed sets are integration
with a time of 4,000 time units.

Fusion The second data set is from a simulation of magneti-
cally confined fusion in a tokamak device (see Figure 4). The de-
velopment of magnetic confinement fusion, which will be a future
source of low cost power, is an important area of research. Physi-
cists are particularly interested in using magnetic fields to confine
the burning plasma in a toroidal shape device, known as a toka-
mak. To achieve stable plasma equilibrium, the field lines of these
magnetic fields need to travel around the torus in a helical fashion.
Using streamlines the scientist can visualize the magnetic fields.
The simulation was performed using the NIMROD code [26]. This
data set has the unusual property that most streamlines are approx-
imately closed and traverse the torus-shaped vector field domain
repeatedly which stresses the data cache. For the tests conducted
here, we resampled the data to 512 blocks with 1 million cells per
block. The seed set was placed randomly on a small box inside the
torus. Here, 2,500 seed points were used for the small seed, and
the large seed sets contain 10,000 seeds with both cases using an
integration time of 20 time units.

Thermal Hydraulics The third data set results are from a ther-
mal hydraulics simulation (see Figure 5). Here, twin inlets pump
air into a box, with a temperature difference between the air in-
serted by each inlet; eventually the air exits through an outlet. The
mixing behavior and the temperature of the air at the outlet are of
interest. Non-optimal mixing can be caused by long-lived recircu-
lation zones that effectively isolate certain regions of the domain
from the heat exchange. This simulation was performed by us-
ing the NEK5000 code [13] on an unstructured grid comprised of
twenty-three million hexahedral elements. Again, resampling was
performed to a regular mesh of 512 blocks with 1 million cells per
block. The seed set was placed densely around one of the inlets to
examine the behavior of particles entering through it. The result-
ing streamlines illustrate the turbulence in the immediate vicinity
of the inlet. Small seed sets contained 2,500 seed points and the
large case consists of 10,000 seed points. Both cases were advected
for 12 time units.

4.3 Runtime Environment
All experiments were conducted on the Dash machine (see Sec-
tion 2.2). Dash is a data intensive compute cluster comprising of
thirty-two compute and two I/O nodes connected by DDR Infini-
band. All nodes are equipped with two Intel 2.4 GHz Xeon Ne-
halem E5530 processors with 48 GB of local DDR3 DRAM mem-
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Figure 5: A thermal hydraulics simulation from the NEK5000
code. The streamlines show the behavior of warm and cool air in-
lets (orange and blue respectively) and representative behavior for
how long particles remain in the assembly before exiting through
the outlet (top left).

ory. Each I/O node has an additional 16 Intel X25-E 64 GB flash-
based SSD with the total capacity of 1TB. For local hard drives,
compute nodes are equipped with Seagate Momentus 7200 RPM
hard drive with approximately 250 GB capacity. Finally, we used
Dash’s GPFS “spinning disk” for all remote file access in our tests.

Our measurements are based on the software infrastructure pro-
vided by the VISIT [1, 9] visualization system, an end user visu-
alization and analysis tool for large data sets. We augmented the
existing implementation of parallelize-over-seeds that is included
in recent VisIt releases to support the caching mechanism outlined
above and added instrumentation for the measurements described
in Section 5.1.

Benchmarks were performed during full production use of the
system to capture a real-world scenario. No special measures were
taken to exclude operating system I/O caching. The default queu-
ing system (QSUB) was used to distribute the nodes and cores as
required. Each benchmark run was performed using 64 cores (8
nodes).

5 EXPERIMENTS

5.1 Measurements

To obtain insight into the relative benefits of the local cache ap-
proach to streamline integration, we have obtained a number of
timings and other statistics beyond the pure execution time TTotal
of the corresponding combination of algorithm and test cases.

The application keeps track of the time spent executing various
functions using an event log consisting of pairs of timestamp and
event identifier. Events include, for instance, start and end of in-
tegration for a particular streamline, begin and end of an I/O oper-
ation, and time spent performing communication using MPI calls.
Timestamps are taken as wall time elapsed since the start of the
MPI task. These event logs are carefully implemented to have neg-
ligible impact on the overall runtime behavior, and analyzed later
to provide the summary statistics discussed in the following and
represented in Table 1.

The pure integration time represents the actual computational
workload. This time should be almost independent across each data
set with the same seed point size, since the integration workload is
in terms of the number of integration steps taken are identical in
each of the small or large test case. Therefore we have not listed
the integration time for each test, although the integration time is
part of the total running time for each test. In total, we perform
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Figure 6: An overview of timings spent for performed tests. Tests
are grouped according to dataset and seed set size. Within each
group, timings are indicated relative to the time measured for the
GPFS I/O configuration. Yellow is TGF , the I/O time from GPFS
Fetches, red is TInt , the Integration time, blue is TLS, the time for
Local disk Stores, green is TLF , time for Local disk Fetches, and
gray is Tcopy, the initialization time to copy data to the local disk.
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I/O Conf. TTotal TTotal∗ TIO NGF TGF NLF TLF NLS TLS %Accel

A
st

ro

sm
al

l

GPFS 25.17s 25.17s 24.89s (98%) 5275 24.89s – – – – 0%
Cache HD 21.81s 21.81s 21.60s (99%) 4456 18.31s 819 0.20s 3275 3.10s 16%
Cache SSD 20.47s 20.47s 20.20s (98%) 4456 19.14s 819 0.18s 3275 0.88s 16%
Local HD 117.37s 1.80s 1.37s (76%) – – 5275 1.37s – – 100%
Local SSD 82.85s 1.97s 1.53s (77%) – – 5275 1.53s – – 100%

la
rg

e

GPFS 40.80s 49.80s 39.21s (96%) 9994 39.21s – – – – 0%
Cache HD 18.26s 18.26s 16.71s (91%) 7059 10.40s 2935 0.77s 5890 5.55s 29%
Cache SSD 16.48s 16.48s 14.75s (89%) 7059 12.03s 2935 0.78s 5890 1.95s 29%
Local HD 119.83s 4.26s 2.54s (59%) – – 9994 2.54s – – 100%
Local SSD 85.16s 4.28s 2.57s (59%) – – 9994 2.57s – – 100%

Fu
si

on

sm
al

l

GPFS 80.90s 80.90s 77.20s (95%) 51251 77.20s – – – – 0%
Cache HD 46.79s 46.79s 42.48s (90%) 8642 15.55s 42609 12.55s 8453 14.38s 83%
Cache SSD 36.07s 36.07s 31.68s (87%) 8642 15.05s 42609 12.85s 8453 3.78s 83%
Local HD 128.07s 17.31s 13.61s (78%) – – 51251 13.61s – – 100%
Local SSD 101.13s 19.68s 15.53s (78%) – – 51251 15.53s – – 100%

la
rg

e

GPFS 107.04s 107.04s 93.16s (87%) 79467 93.16s – – – – 0%
Cache HD 56.79s 56.79s 42.39s (74%) 9907 12.59s 69560 20.16s 9714 9.64s 87%
Cache SSD 53.07s 53.07s 38.78s (73%) 9907 14.57s 69560 20.14s 9714 4.07s 87%
Local HD 144.65s 33.89s 20.60s (60%) – – 79467 20.60s – – 100%
Local SSD 117.75s 36.30s 22.62s (62%) – – 79467 22.62s – – 100%

T
he

rm
al

H
yd

ra
ul

ic
s

sm
al

l

GPFS 98.88s 98.88s 98.22s (99%) 19085 98.22s – – – – 0%
Cache HD 61.81s 61.81s 60.85s (98%) 10278 42.88s 8807 2.39s 9888 15.58s 46%
Cache SSD 55.92s 55.92s 54.95s (98%) 10278 49.20s 8807 2.16s 9888 3.59s 46%
Local HD 116.48s 6.04s 5.13s (84%) – – 19085 5.13s – – 100%
Local SSD 88.85s 7.38s 6.29s (85%) – – 19085 6.29s – – 100%

la
rg

e

GPFS 220.68s 220.68s 217.23s (98%) 48188 217.23s – – – – 0%
Cache HD 115.39s 115.39s 111.47s (96%) 14099 57.38s 34089 12.54s 13717 41.54s 71%
Cache SSD 72.56s 72.56s 68.80s (94%) 14099 54.56s 34089 9.13s 13717 5.10s 71%
Local HD 126.84s 16.40s 12.93s (78%) – – 48188 12.93s – – 100%
Local SSD 100.44s 18.97s 15.14s (79%) – – 48188 15.14s – – 100%

Table 1: Results from our thirty tests. For each of the thirty tests, four runs were performed (130 total) and the fastest result was reported,
in an effort to remove effects from contention. Section 5 contains complete test descriptions. We summarize notation from that section that
relates to this table:

• TTotal is the total execution time, averaged over all MPI tasks.
• TTotal∗ is the total execution time with out the transfer time of the data set to local disk, averaged over all MPI tasks.
• TIO is the time spent doing I/O, averaged over all MPI tasks.
• NGF is the number of GPFS block Fetches, averaged over all MPI tasks.
• TGF is the time spent doing GPFS block Fetches, averaged over all MPI tasks.
• NLF is the number of Local disk block Fetches, averaged over all MPI tasks.
• TLF is the time spent doing Local disk block Fetches, averaged over all MPI tasks.
• NLS is the number of Local disk block Stores, averaged over all MPI tasks.
• TLS is the time spent doing Local disk block Stores, averaged over all MPI tasks.
• %Accel is the percentage of block fetches that were accelerated via local disk.
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30 different tests, to cover a wide range of configurations and real-
world scenarios. They consist of three different data sets, two dif-
ferent seed point set sizes, and the five I/O configurations described
in Section 4.1. Each of these tests were run four times and the best
time was used in reporting results.

5.2 Global Parallel File System (GPFS)
In this test, each MPI process loads data directly from GPFS and
advects the particle trajectory. This test represents a baseline and
is used to quantify the relative improvements the other I/O config-
urations can achieve. In Figure 6, we use the GPFS tests as a refer-
ence value of 1.0. Furthermore, we track the number of blocks NGF
fetched and the average time spent (over all MPI tasks) fetching
blocks TGF from GPFS.

5.3 Local SSD and Local HD
In the local disk tests, each MPI process loads data directly from
the local SSD or HD to calculate the streamline. This is theoreti-
cally optimal since all of the data is local and can be read quickly.
To compare the performance difference between them, we examine
both the use of an SSD and a hard drive disk.

In order for this test to be executed, the data set has to be trans-
ferred from the remote file system to each of the processing nodes;
this adds significant overhead if included in the tests. Note that due
to the data-dependent nature of block accesses, the entire dataset
must be copied. In our experiments, the transfer is performed in
parallel with each node copying the data set to the local drive be-
fore streamline integration is started. Refer to Figure 6 or Table 1
for exact transfer times, denoted TCopy. Again, we track the number
of blocks fetched, NLF, and the average time (over all MPI tasks) to
fetch blocks from local disk TLF.

5.4 Cache SSD and Cache HD
In these tests, each MPI process loads the data block from GPFS
upon first occurrence and caches the data block to local storage
when the memory cache is full. Naturally, if a block was earlier
evicted to local storage, it is reloaded from there.

Storing block on local storage adds to overall I/O time, and num-
ber of blocks and corresponding I/O time are measured as above
(NLS and TLS). Furthermore, we again track frequency and time
spent reloading blocks (NLF and TLF).

6 RESULTS AND ANALYSIS

We were most interested in the “Cache HD” and “Cache SSD” tests.
“Local HD” and “Local SSD” suffered from such prohibitively
large initialization costs that only the Thermal Hydraulics tests ran
long enough to amortize them. And “GPFS” tests do not use the ex-
tended memory hierarchy; they were only run to provide a baseline.
On the whole, most “Cache HD” or “Cache SSD” configurations
ran twice as fast as compared to its baseline “GPFS” configuration.
The ”small, Thermal Hydraulics” had a positive outlier with the
Cache SSD configuration (three times faster) and a negative outlier
with ”large, Astrophysics” (only 20% faster).

We can consider a rough model in determining how much the
extended memory hierarchy can benefit a streamline calculation.
Assume a “GPFS” version of a test has TInt integration time, fetches
NGF blocks from the file system, and takes AGF seconds to fetch a
block. Then the time to run the test is:

TTotal = TInt +NGF ·AGF (1)

Now assume that ALS is the time to store a block to local disk and
ALF is the time to fetch a block from local disk. Further, assume that
NA of the reads can be accelerated and NĀ can not be accelerated
(NA +NĀ = NGF ). Then we can predict the performance with an
extended memory hierarchy:

TTotal = TInt +NĀ ·AGF +NĀ ·ALS +NA ·ALF (2)

Given this framework, we can make additional observations
about the tests:

• AGF is not constant. Block loads took between 11ms and
51ms, and seemed to get faster with more blocks were loaded.
We speculate that operating system-level caching provided
this gain. However, we feel that the increasing performance
with increasing usage underscores the importance of having a
diverse set of streamline tests.

• ALS and ALF remained more steady for both SSDs and local
hard drives. For both technologies, ALF , the fetch time for
a block, was approximately 0.25ms. However, their storage
times, ALS, did vary. For SSDs, storage ranged from 0.25ms
to 0.40ms, while HDs ranged from 1ms to 3ms. Both tech-
nologies got slower with increased usage, presumably due to
contention issues.

• The number of blocks stored to local cache varied greatly in
our tests, from 3,275 to 13,717. SSDs performed from two to
eight times faster than the hard drives, making an appreciable
differences in the overall performance. This is clearly seen
in “large, Thermal Hydraulics,” which had 72.56s for “Cache
SSD” and 115.39s for “Cache HD.”

• %Accel , the number of block loads that can be accelerated by
local cache, is a good predictor of performance gain. This fol-
lows from our framework above, but is also supported by our
tests. “small, Astro” has only 16% of its blocks accelerated,
and only is 20% faster. But “large, Fusion” has 87% of its
blocks accelerated and is 50% faster. Of course, streamline
performance is complex; “large, Thermal Hydraulics” has a
smaller number of blocks accelerated, 71%, but gets almost a
three times performance increase, partially because that test is
almost entirely I/O-bound (and does much less integration).

Our experiments appear to have well-covered the complex space
of parallel streamline computation. Despite identical data sizes and
similar numbers of seed points, our six basic tests had an order of
magnitude variation in the number of block loads, from 5,275 to
79,467. Further, as discussed in the preceding paragraph, we feel
that a key factor in predicting the benefits of the extended memory
hierarchy is %Accel , the percentage of block loads that can be ac-
celerated. Our tests had values of 16%, 29%, 46%, 71%, 83%, and
87%, providing reasonable coverage of this space.

7 CONCLUSION AND FUTURE WORK

We presented a study measuring the benefits of an extended mem-
ory hierarchy for parallel streamline algorithms. Overall, maintain-
ing a local cache created an overall speedup of approximately a
factor of two. Further, our experiments were designed to empha-
size different aspects of streamline performance and those aspects
in turns emphasized different hardware characteristics. Specifically,
we found that the fast storage times of SSDs led to significant gains
over local hard drives in some cases. Further, we found that the ap-
proach of having the operating system copy the data to local cache
as a pre-processing step was prohibitively slow, and that progres-
sively bringing data off the parallel file system and having the ap-
plication cache the data manually was a superior strategy.

In this study, each MPI task uses the local disk without coordi-
nating with the other MPI tasks on a node. In the future, we wish
to better make collective use of the local disk and study further
performance gains. Of course, this sort of scheme would require
a mechanism for synchronizing writes between the MPI tasks, as
well as knowledge of blocks in the cache.

Finally, this study looked at a data set that could fit entirely
within the local disk provided by the Dash machine. As SSDs are
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an optimization intended for the truly huge next generation of su-
percomputers, and since the storage available in an SSD is likely to
stay relatively constant, it is not reasonable to assume that the data
will always be able to fit. As the extended memory hierarchy effec-
tively extends the cache size, and since a larger cache size is always
beneficial, the extension to the parallelize-over-seeds algorithm will
continue to help. However, a study considering even larger data
(larger than the size of local disk) would be useful in quantifying
the effect. We would also like to repeat these tests on the upcoming
Gordon supercomputer at SDSC which will have faster and larger
capacity SSD cache.
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