Chromium Renderserver: Scalable and Open
Remote Rendering Infrastructure

Brian Paul, Member, IEEE, Sean Ahern, Member, IEEE, E. Wes Bethel, Member, IEEE, Eric Brug-
ger, Rich Cook, Jamison Daniel, Ken Lewis, Jens Owen, and Dale Southard

Abstract—

Chromium Renderserver (CRRS) is software infrastruc-
ture that provides the ability for one or more users to
run and view image output from unmodified, interactive
OpenGL and X11 applications on a remote, parallel
computational platform equipped with graphics hardware
accelerators via industry-standard Layer 7 network proto-
cols and client viewers. The new contributions of this work
include a solution to the problem of synchronizing X11 and
OpenGL command streams, remote delivery of parallel
hardware-accelerated rendering, and a performance anal-
ysis of several different optimizations that are generally
applicable to a variety of rendering architectures. CRRS
is fully operational, Open Source software.

Index Terms—remote visualization, remote rendering,
parallel rendering, virtual network computer, collaborative
visualization, distance visualization

I. INTRODUCTION

The Chromium Renderserver (CRRS) is software in-
frastructure that provides access to the virtual desktop
on a remote computing system. In this regard, it is
similar in form and function to previous works, but
provides important new capabilities driven by contempo-
rary needs and architectural opportunities. First, CRRS
provides seamless presentation of rendering results from
both Xlib and hardware-accelerated OpenGL command
streams: it is a vehicle for delivering imagery produced
by remote, hardware-accelerated rendering platforms.
Most previous remote desktop systems are capable of
delivering imagery produced only by the Xlib command
stream; they typically have no knowledge of or access to
the imagery produced by hardware-accelerated OpenGL
rendering. Second, it supports operation on parallel back-
end systems composed of either shared- or distributed-
memory computers — it is capable of harnessing the
capabilities of a parallel rendering platform for the

B. Paul, K. Lewis and J. Owen are with Tungsten Graphics, Inc.,
Steamboat Springs, CO. brian.paul @tungstengraphics.com.

E. W. Bethel is with Lawrence Berkeley National Laboratory.

S. Ahern and J. Daniel are with Oak Ridge National Laboratory.

E. Brugger, R. Cook, and D. Southard are with Lawrence Liver-
more National Laboratory.

)

Fig. 1. An unmodified molecular docking application run in parallel
on a distributed memory system using CRRS. Here, the cluster is
configured for a 3x2 tiled display setup. The monitor for the “remote
user machine” in this image is the one on the right. While this
example has “remote user” and “central facility” connected via LAN,
the typical use model is where the remote user is connected to the
central facility via a low-bandwidth, high-latency link. Here, we see
the complete 4800x2400 full-resolution image from the application
running on the parallel, tiled system appearing in a VNC viewer
window on the right. Through the VNC Viewer, the user interacts
with the application to change the 3D view and orientation, as well
as various menus on the application to select rendering modes. As
is typically the case, this application uses Xlib-based calls for GUI
elements (menus, etc.) and OpenGL for high performance model
rendering.

purpose of generating imagery and sending it to a remote
viewer.

CRRS design and development has been motivated by
the explosive growth in data produced by simulations,
collected by experiments and stored at centrally located
computing and data warehousing facilities. Correspond-
ingly, as network traffic continues to increase by an
order of magnitude every 46 months [3], it is increas-
ingly important to locate data-intensive applications —
visualization, rendering and analysis — “close to” the
data [2] where such applications have access to more
capable resources. This trend is increasingly important
as large-scale computational and experimental science
teams combine forces to solve the world’s most chal-



lenging science problems [15].

The rest of this paper is organized as follows. In
Section II we describe the background, previous work
and motivation for CRRS. Next, in Section III we present
the CRRS architecture. We characterize CRRS end-to-
end performance in Section IV and show how various op-
timizations impact overall end-to-end performance. We
conclude in Section V with discussion and suggestions
for future work.

II. BACKGROUND AND PREVIOUS WORK

The idea of using remote desktops and applications
is not new. Activity over the past decade includes
proprietary (SGI’'s OpenGL Vizserver [9], HP’s Remote
Graphics Software [5], and Mercury’s ThinAnywhere
[14]) and Open Source (VNC [17], VirtualGL [4], [18])
solutions. Orthogonal projects, like NX [11], aim to
improve the efficiency of Layer 7 communications [21]
through a combination of compression, caching, and
minimizing round-trips across high-latency links. NX is
better thought of as a “protocol accelerator” rather than
as “remote desktop infrastructure.”

VNC [17] is a client-server system for remote desktop
access that uses a simple, platform-independent protocol.
We use the term “VNC” to refer to any of the multi-
ple Open Source implementations. The VNC protocol,
known as “Remote Framebuffer” (RFB), resides at OSI
Layer 7. Via RFB messages, the VNC Viewer authen-
ticates to a VNC Server, sends event messages (mouse
and keyboard events) and requests screen updates from
the server. The VNC server responds to RFB Update
Request messages with RFB Update messages, which
contain blocks of pixels that have changed since the time
of the previous an RFB Update Request from the client.

There exist many different VNC “servers” that vary
in implementation. XF4VNC (xf4vnc.sf.net) provides an
X server module that “snoops” Xlib traffic to determine
which regions of the screen are modified. Others, like
GNOME'’s vino-server and KDE’s krfb server, operate
outside of the X server: they periodically grab the desk-
top image and scan it for changes. The XF4VNC method
is more efficient at detecting screen changes, but does
not detect changes that result from direct rendering with
OpenGL as such changes occur outside the X server.
This shortcoming is solved with CRRS.

OpenGL Vizserver [9] is a proprietary product from
SGI that consists of a custom display client and server-
side software libraries and executables. It allows a remote
user to run hardware-accelerated graphics applications
on a server then display the resulting imagery on a
remote client. Once a user connects from the client to
the server, he may run OpenGL and Xlib applications

the server system with the resulting Xlib- and OpenGL-
based imagery appearing on the client’s display. No
modification to applications is needed for use in the
Vizserver environment. Vizserver “snoops” the OpenGL
protocol, and internally triggers a framebuffer capture
when it detects the presence of glFlush, glFinish,
or glXSwapBuffers [13].

VirtualGL [4], [18] is an Open Source package
that provides the ability to deliver hardware-accelerated
OpenGL rendering to remote clients. In “direct mode,”
images pixels resulting from OpenGL rendering are com-
pressed with an optimized JPEG codec and transmitted
over a socket to the client; Xlib commands are sent over
a separate socket to the client. In this configuration, the
client must run an X server as well as a special Virtual GL
client application. In “raw mode,” OpenGL pixels are
written into an uncompressed X-managed bitmap. X
itself, or an X proxy (e.g., VNC) manages encoding the
framebuffer pixels and transmitting them to the client.

Virtual GL achieves excellent remote image display
performance through two vehicles. The first is its use
of TurboVNC as a X proxy for mediating the interface
between remote client and application image generation.
TurboVNC implements some of the same CRRS features
we describe later, notably multibuffering, to effectively
overlap rendering, image acquisition, encoding and trans-
mission. The second is a highly optimized encoding
path: TurboJPEG is a vector-optimized version of the
JPEG encoder built with Intel’s Integrated Performance
Primitives, a set of highly-optimized multimedia libraries
for x86 processors. One significant difference between
CRRS and VirtualGL is the fact that CRRS is engineered
specifically for use in a parallel, hardware-accelerated
rendering configuration. Another is that CRRS provides
access to a remote desktop; VirtualGL lets a user run
a single application. CRRS explicitly supports client
applications that run in parallel.

HP’s Remote Graphics Software [5] supports remote
desktop access, including access to hardware-accelerated
graphics applications. This system consists of two soft-
ware components — a client and server. As with VNC,
the client sends keyboard and mouse events over the
wire to the server. The server forwards events to desktop
applications, then harvests and compresses image up-
dates and sends them along to the client where they are
displayed. This system uses a proprietary image codec to
achieve high compression rates. It also uses a combina-
tion of graphics API call interception (for OpenGL) and
framebuffer state monitoring to determine which portions
of the display have changed and need to be sent to
the client. It provides session-level authentication using
Microsoft password authentication protocol NTLM and



Kerberos under Windows and PAM under Unix. RGS
also supports multiple viewers simultaneously connected
to a single server for a collaborative session mode. While
RGS supports “multi-screen” mode, it does not appear to
support fully configurable distributed- or shared-memory
parallelism like CRRS.

Mercury International Technology’s ThinAnywhere
[14] products support remote desktop access including
OpenGL. In its most flexible configuration, this system
uses the proprietary interactive Internet Protocol (ilP) for
image delivery from a server to ThinAnywere client(s)
running under Linux or Windows. The server supports
both RDP/iIP and X11/GLX, so it can provide access
to either Windows or Unix application servers. The
iIP protocol supports AES-128 encryption for transport
armoring, but the mechanism of key generation isn’t
specified in the public documentation. ThinAnywere also
supports RDP and Citrix ICA with client and server
plugins, but does not support many-to-one or many-to-
many clustered rendering.

IBM’s Deep Computing Visualization (DCV) system
[8] offers a combination of scalable rendering infras-
tructure and remote delivery of imagery in a client-
server configuration. On the back end, DCV intercepts
the OpenGL command stream and routes subsets of
the command stream to nodes of a distributed memory
system for rendering. Sub-images from each are then
collected and combined into a final image, which is
then compressed and sent out to a remote client for
display. Like VirtualGL, the DCV system sends Xlib
protocol directly to the client for processing and the usual
host-based ACLs govern security policy. OpenGL pixels
are compressed and sent over a separate communication
channel to a custom OpenGL client. The communication
protocol for transporting OpenGL imagery is proprietary.

While DCV appears to support a mode of operation
whereby remote clients connect and interact through
a VNC server, it does not appear to support parallel
rendering operation in this mode of operation. CRRS,
in contrast, implements a general and elegant solution
to the problem of providing pixels from both Xlib and
OpenGL command streams — from potentially parallel
applications — to multiple remote clients.

Chromium is a “drop-in” replacement for OpenGL
that provides the ability for any OpenGL application
to run on a parallel system equipped with graphics
hardware, including distribute memory clusters [7]. It
intercepts OpenGL commands issued by the application,
and routes them to the appropriate node for rendering.
CRRS uses Chromium to implement the distributed
memory parallel rendering capability. During the course
of CRRS design and development, we added a new

RFB (mouse/keyboard events)

[T] RFB
(images
VNC module

Xlib| Xlib ooe
Backend X Server (=

+ VNC module

]

IDMX X Servej

Backend X Server
+ VNC module

Xlib

CRServer
+ VNC SPU

VNC Proxy

OpenGL
Application

+
Tilesort SPU CRServer

+ VNC SPU

RFB

VNC Viewer(s)

Fig. 2. CRRS system components for a two-tile DMX display wall
configuration. Lines indicate primary direction of data flow. System
components outlined with a thick line are new elements from this
work to implement CRRS; other components outlined with a thin
line existed in one form or another prior to the CRRS work.

Rendering Cluster

Network
Gateway

Chromium Stream Processing Unit (SPU) (see Section
III-A.3) — the VNC SPU - that implements OpenGL
framebuffer grabs, image encoding and transmission to
a remote client via a specialized VNC server known as
the VNC Proxy (Section III-A.5).

III. ARCHITECTURE

CRRS consists of six general system components
(below), many of which are built around VNC’s RFB
protocol. We leverage the RFB protocol because it is
well understood and there exist viewers for nearly all
current platforms. One of our design goals for CRRS is
to allow an unmodified VNC viewer application to be
used as the display client in a CRRS application. The
CRRS general components are:

o The application, which generates OpenGL and Xlib

drawing calls.

« The VNC Viewer, which displays the rendering
results from the application.

¢ The Chromium VNC Stream Processing Unit,
which obtains and encodes the image pixels pro-
duced by the OpenGL command stream from the
application and sends them to a remote viewer.

o Distributed Multihead X (DMX), which is an X-
server that provides the ability for an Xlib applica-
tion to run on a distributed memory parallel cluster.

o The VNC Proxy, which is a specialized VNC Server
that takes encoded image input from VNC Servers
and VNC SPUs running on each of the parallel
rendering nodes and transmits the encoded image
data to the remote client(s). The VNC Proxy solves
the problem of synchronizing the rendering results
of the asynchronous Xlib and OpenGL command
streams.

o The VNC Server X Extension is present on the X
server at each parallel rendering node. This com-



ponent harvests, encodes and transmits the portion
of the framebuffer modified by the Xlib command
stream.

A. CRRS System Components

CRRS is a system of components that interact through
the Chromium, Xlib and RFB protocols. Figure 2 illus-
trates the CRRS components and connections for a two-
tile DMX display wall configuration. Descriptions of the
main components follow.

1) Application: The application is a graphics or vi-
sualization program that uses OpenGL and/or Xlib for
rendering. Applications need no modifications to run on
CRRS, but they must link with the Chromium faker
library rather than the normal OpenGL library.

2) VNC Viewer: VNC Viewers (or just Viewer for
short in this paper) are available for virtually all com-
puter systems. There are no special Viewer requirements
— we tested many common Viewers with CRRS. The
result is maximum flexibility for users and developers
since there is no “special” CRRS client-side viewer other
than the standard, ubiquitous VNC Viewer.

3) VNC Chromium Stream Processing Unit: In
CRRS, all OpenGL rendering is done through Chromium
[7]. A new Chromium SPU, the VNC SPU, intercepts
OpenGL rendering commands and returns the rendering
results to VNC clients (the Proxy in this case). In a
tiled/DMX rendering system, the Chromium Tilesort
SPU sends OpenGL rendering to the back-end servers,
each of which hosts a VNC SPU.

The VNC SPU, which is derived from Chromium’s
Passthrough SPU, is multi-threaded to perform ren-
dering and RFB services simultaneously. The main
thread renders the incoming OpenGL command stream
and then, upon SwapBuffers or glFinish or
glF1lush, retrieves the rendered image from OpenGL
with glReadPixels and stores the image pixels in a
holding buffer. A second thread acts as a VNC server. It
accepts connections from any number of VNC viewers
and responds to RFB Update Request messages by
encoding RFB Update responses using image pixel data
from the holding buffer.

4) DMX: DMX (Distributed Multi-head X) is a spe-
cial X server for controlling multi-screen displays [16].
To an Xlib application, the DMX X server appears
as an ordinary X server. For CRRS, we added several
enhancements to the DMX X server to support the RFB
protocol. Specifically, the DMX server needed the ability
to accept RFB mouse and keyboard events. The DMX
server, however, does not need the ability to send RFB
images updates since the Proxy handles that task. DMX
is not required to run CRRS in a single-tile configuration.

5) VNC Proxy: The VNC Proxy (or just Proxy for
short) is derived from the VNC Reflector project[6]. It
operates as an agent between the application desktop
(which may be a multi-screen DMX display) and some
number of VNC Viewers. To the application desktop, the
Proxy appears as a VNC client. To the VNC Viewers, it
appears as a VNC server.

The Proxy collects images rendered by OpenGL and
Xlib into a virtual framebuffer (VFB), which is then used
to satisfy requests from the Viewers. When using a DMX
display wall, the Proxy queries DMX for the identity of
the back-end X servers and their tile boundaries. The
Proxy directly connects to each of the back-end servers
in order to collect imagery, bypassing the DMX server
itself. Otherwise, all RFB traffic would need to make an
intermediate trip through the DMX server.

On the Viewer side, the Proxy processes some RFB
commands and passes others along. It processes RFB
Authentication messages (see Section III-C for security-
related discussion) as part of the initial Viewer-Proxy
connection. During operation, it sends mouse and key-
board RFB event messages directly to the front-end
X/DMX server for further processing. The Proxy an-
swers RFB Update Request messages from all Viewers
by encoding RFB Update messages from its internal
framebuffer. In turn, the Proxy sends RFB Update Re-
quest messages to all back-end VNC Servers. The source
of Xlib image data comes from the VNC Server running
on each back-end X server, while the OpenGL image
data comes from the Chromium VNC SPU, which we
describe in Section III-A.3.

All the “parallel aware” aspects of CRRS are con-
solidated into the Proxy. Thus, any ‘“standard” VNC
Server may be used in the CRRS back-end: no special
“parallel VNC Server” code is required in the back-
end. As the Proxy acts as a message router — brokering
communication between a set of hosts in the back-
end and one or more Viewers — it has the potential to
become a performance bottleneck. This concern led us to
pursue optimization strategies (see Section III-B) as well
as conduct a battery of performance tests (see Section
IV) to better understand end-to-end system performance
characteristics. The VNC Proxy has been set up as an
Open Source project at SourceForge [19].

B. Optimizations

In this section, we describe a number of optimizations
in CRRS that can have a profound impact on end-to-end
performance:

o RFB caching. Improves performance by maintain-

ing a cache of RFB Update messages that contain
encoded image data. The VNC Proxy responds to



RFB Update Requests by sending cached responses
rather than encoding, possibly multiple times, the
contents of its internal VFB. This optimization helps
to reduce end-to-end latency.

o Bounding box tracking. Here, only the portions of
the scene rendered by OpenGL that have changed
are rendered and transmitted to the remote client.
This optimization helps to reduce the amount of
RFB image payload.

e Double buffering. By maintaining a double-buffered
VEB in the VNC SPU, two operations can occur
simultaneously — application rendering and image
encoding/transmission. This optimization helps to
reduce end-to-end latency.

e Frame synchronization. While not strictly an opti-
mization, this feature is needed to synchronize par-
allel rendering streams as well as to prevent frame
dropping (spoiling) when images are rendered more
quickly than they can be delivered to the remote
client.

1) RFB Caching: Normally, the Proxy decodes in-
coming RFB Updates to its VFB, which is a full res-
olution image. When a Viewer sends an RFB Update
Request to the Proxy, the Proxy responds by extracting
pixels from its VFB, compresses/encodes them into an
RFB Update response and sends to the Viewer. It is often
the case that the Proxy will receive an RFB Update
from an X-server VNC module or VNC SPU, decode
then store results in its VFB only to shortly thereafter
regenerate the same data in response to an RFB Update
Request from a Viewer. The purpose of the RFB Caching
optimization is to avoid the re-encoding step, thereby
reducing latency and processing load, and thus improve
the VNC Proxy’s overall throughput.

When RFB Caching is enabled, the Proxy saves the
incoming RFB Update messages in their encoded format
in a cache. When a Viewer requests an update from
the Proxy, the Proxy searches its RFB cache to see if
the request can be satisfied by a cached entry. If not,
the Proxy generates a new RFB update message for the
Viewer using its local VFB as the source of pixel data.
Each cache entry consists of screen region bounds and a
block of encoded/compressed pixel data for that region.

At present, the Proxy caches RFB Update messages
only from the VNC SPU(s), and not those from the
XF4VNC VNC server(s). This issue is the result of how
zlib compression is implemented in the fight encoder of
VNC Servers — we “fixed” the z/ib compression problem
for the VNC Server code in the VNC SPU, but did not
propagate those changes to the XFAVNC VNC Server so
as to avoid introducing a version dependency in CRRS.

When the Proxy receives a new RFB Update message

from a Server, the Proxy searches its RFB cache to
determine if any cached regions intersect the new region.
When the Proxy finds a cached region intersecting the
new region, the older cache entry is discarded and the
incoming message is saved as a new cache entry. When
the old and new regions partially overlap (e.g., are not
identical), this algorithm produces the correct results
since for each incoming RFB Update message, the Proxy
first decodes the message by modifying its VFB and then
caches the new message.

The Proxy appends new entries into the cache and
uses a linear cache search algorithm to locate entries
in the cache. The linear search algorithm is acceptable
since the cache typically contains only a small number
of entries. The number of cache entries is less than or
equal to the number of DMX screens multiplied by the
number of OpenGL display windows. For this reason,
the cache memory consumption has an upper bound that
is the size of the Proxy’s VFB if we assume that the size
of a compressed RFB pixel block is always smaller than
the uncompressed image in that pixel block.

It is typically the case that the viewer-requested update
area does not exactly match the area covered by cached
RFB Update messages. In the case of these “partial
intersections,” the Proxy computes an intersection ratio,
which is the quotient of: (1) the intersection area of
the requested and cached regions, and (2) the area of
the cached region. The closer this quotient is to 1.0,
the greater the overlap of the requested and cached
regions. The Proxy compares this ratio to a user-tunable
intersection ratio threshold parameter to determine if the
particular cached entry is a “hit” or a “miss.”

For our typical intended use case — animations of
2D or 3D scientific visualization — the RFB cache can
satisfy all the viewer’s RFB Update Requests, thereby
avoiding the cost of an image compression for each
update. The positive impact on performance stems from
(1) reduced computational cost of the Proxy performing
compression and encoding to satisfy the Viewer’s RFB
Update Request, and (2) a corresponding decrease in
latency when the Proxy answers RFB Update Requests.

2) Bounding Box Tracking: A key feature of an
efficient VNC server implementation is the ability to
track the regions of the screen that have changed and
then perform RFB encoding for only those regions. In
the Xlib-only configuration where the VNC server runs
as an extension to the X server, the VNC server “snoops”
the Xlib protocol to track screen regions that change.
To achieve the same type of capability when rendering
scenes with OpenGL, we have designed and imple-
mented a similar capability in CRRS called “bounding
box tracking.” This optimization, when enabled, restricts



RFB processing to only those window regions that have
changed as a result of OpenGL drawing commands. This
approach avoids having to encode and transmit the entire
OpenGL window if only a small portion has changed.

In a Chromium configuration, the OpenGL “command
snoop” occurs at the tilesort SPU level: application-
generated OpenGL commands are processed by the
tilesort SPU where they are “packaged” and then routed
to the appropriate crserver for rendering. Part of the
“packaging” includes bounding box information for the
primitive represented by the set of OpenGL commands.
When the tilesort SPU’s bounding box tracking feature is
enabled, primitives are sent only to the crservers where
they will be rendered, thereby saving network bandwidth
and processing. This feature existed in Chromium prior
to the CRRS project; however, the crservers did not pass
the bounding box information on to their hosted SPU(s).
The implication is that no other SPUs in the SPU chain
on the rendering hosts would be able to use bounding
box information. We enhanced the crserver so that such
bounding box data is passed along to the first SPU in
the chain. In the CRRS case, the first SPU in the chain
is the VNC SPU. The VNC SPU uses the bounding
box information in an effort to send smaller RFB update
messages to the client (the Proxy). That is, if only a small
part of the OpenGL window is changing, only that small
part of the window should need to be encoded and sent
to the VNC Proxy, not the whole window.

The VNC SPU’s method for using bounding box
information is as follows. As the OpenGL commands are
rendered, the VNC SPU accumulates bounding boxes in
an “accumulated dirty region” data structure. That data
structure maintains information indicating which regions
of the window have been modified by OpenGL drawing
commands. When the VNC SPU needs to send an RFB
Update message to the Proxy, it sends data only from the
accumulated dirty regions rather than the entire window
region.

The glClear command requires special handling. A
naive implementation would simply treat glClear as
a rendering command that changes the entire OpenGL
window: the entire window is the modified region, not
just the region defined by the previous bounding boxes.
This would defeat the purpose of tracking the accumu-
lated dirty region.

Our approach is to maintain two separate dirty regions:
the current frame’s region and the previous frame’s
region. When glClear is executed (at the start of the
frame), the current region is assigned to the previous
region, and the current region is emptied. During ren-
dering, the current region accumulates the bounding box
data. At the end of the frame, we compute the union

of the previous and current region. The union specifies
which window areas need to be read and placed in the
SPU’s virtual framebuffer.

If only the current region were read back, the image
of the object from the previous frame would linger in
the VNC SPU’s VFB. By including the previous frame’s
region in readback, we effectively erase the old image
data with the window’s current background color (set
by glClearColor). This algorithm ensures that the
VNC SPU’s VFB is always up to date with respect to
the current window contents.

The VNC SPU also must cope with the situation in
which it is sending RFB updates at a different (slower)
rate than the application frame rate. For example, in the
time it takes the VNC SPU to send one RFB Update
message to the Proxy, the application may have rendered
many frames. If only the previously described union
region were sent to the Proxy, the Proxy’s VFB may
not be updated correctly. Instead, the VNC SPU needs
to send to the Proxy all framebuffer regions that have
potentially changed since the previous update was sent
to the Proxy. To solve this problem, the VNC SPU
builds and maintains an accumulated dirty region. This
region contains the accumulation of all bounding boxes
between the times when the Proxy sends RFB Updates
to clients. Thus, subsequent RFB Updates sent from the
VNC SPU to the Proxy contain all window regions that
have changed since the previous RFB Update message
was sent.

There are several special cases in which the bounding
boxes are ignored and the entire window contents are
read back and sent. Examples include the first time a
window is rendered to, whenever a window is moved or
resized, and whenever the clear color is changed.

The effectiveness of bounding box tracking for re-
ducing the size of RFB Update messages depends on
how much of the window changes from frame to frame.
In turn, the amount the window contents change from
frame to frame is highly application dependent. In cases
where the entire window contents change between each
frame, as would be the case with video games, bounding
box tracking will provide no performance gain. In other
cases, like scientific visualization applications that often
display a 3D model in the center of the window, a sizable
fraction of the window contents might not change from
frame to frame. In these cases, there is opportunity for
performance gains due to bounding box tracking.

3) Double Buffering: The VNC SPU uses an internal
image buffer — its VFB — to store the pixels it obtains
from each OpenGL window via glReadPixels. That
buffer also serves as the source for the RFB image
compressors (tight, hextile, etc.).



There are two threads in the VNC SPU: the main
application thread and the VNC server thread. The main
application thread will periodically call SwapBuffers
or glFinish or glFlush. The VNC SPU intercepts
those functions and updates its VFB with the current
window image using glReadPixels. Meanwhile, the
second thread accepts RFB Update Request messages
from the Proxy and replies to them with encoded RFB
Update messages. To prevent encoding errors that could
result from the encoder reading the VFB while it is
being updated with new contents, the VFB must not be
modified while encoding is in progress. Since the first
thread’s g1ReadPixels calls do exactly that, we must
synchronize access to the VFB by the two processing
threads.

Our initial VNC SPU implementation synchronized
two-thread VFB access with a mutex so that only one
thread could access the VFB at any time. Performance
and profiling analysis showed that each of the two
threads spent a significant time amount of time simply
waiting for access to the shared framebuffer.

We improved performance — eliminating stalls due to
waiting — by using a double-buffered VFB. The main
application thread can write to the “back” buffer while
the second thread can read from the “front buffer” to
perform RFB image encoding. The main thread per-
forms a VFB buffer exchange after SwapBuffers,
glFinish, or glFlush whenever the RFB encoder
is not reading from the “front buffer.” This approach
allows the application to run at a faster frame rate than
the RFB encoder. If the RFB encoder can’t keep up with
the application’s frame rate, intermediate frames will be
dropped (spoiled).

In some situations (such as with frame synchroniza-
tion, below) we do not want frames to be dropped, so
we have implemented a VNC SPU configuration option
that will prevent frame dropping. When this option is
enabled, there is a handshake signal to regulate VFB
buffer swapping. The VNC SPU’s main thread raises
a signal when a new frame is ready. The VNC SPU’s
server thread waits for this signal, then encodes the
image and sends the RFB Update. During encoding, the
VEB is locked so that the main VNC SPU thread cannot
update it with new contents. When the server thread
is finished encoding, the lock is released and the main
VNC SPU thread can update the VFB with new contents
before returning control to the application.

4) Frame Synchronization: When using a DMX dis-
play, there is a separate VNC SPU for each screen in the
tiled display. Further, there is no explicit synchronization
between the VNC SPUs and the image streams being
sent to the Proxy. The result is that at any given point

in time, the Proxy’s framebuffer may contain data from
tiles produced at slightly different points in time. For an
animated scene, the visual result is that a Viewer may
be displaying results from different points in time. When
the application stops animating, all the SPUs “catch-up”
and the last frame’s image data appear in the Viewer as
expected.

We added a frame synchronization option to the Proxy
to address this problem. The key objective is to prevent
sending RFB Update messages to the Viewer(s) when
the Proxy’s framebuffer is mid-way through an aggregate
update (i.e., receiving updates from one or more VNC
SPUs.) We implement such synchronization using a bar-
rier mechanism in the Proxy that manages the incoming
and outgoing RFB streams, which contains state for each
incoming and outgoing VNC socket connection. Each
incoming (i.e., VNC SPU) socket can be in one of three
barrier states: pre-update, mid-update, and post-update.
The initial state is pre-update. Each outgoing socket
(i.e., VNC Viewer) connection can be in one of two
states: blocked and non-blocked. The initial state is non-
blocked.

When the Viewer receives the first part of an incoming
RFB Update message from the Proxy, the Viewer’s
socket state is set to mid-update. All of the Proxy’s
outgoing socket connections also are blocked so no
intermediate RFB Updates will be sent to the Viewer.
When the Proxy receives the end of the message, it
sets the socket state to post-update. The socket also is
blocked so no further input will be read and no RFB
Update requests will be sent to the VNC SPU. After all
the Proxy sockets connected to SPUs have transitioned
to the post-update state, the barrier is released and all
sockets are unblocked (and the VNC SPU sockets are
set to the pre-update state). At that time, the Proxy’s
outgoing socket(s) will be serviced and an RFB Update
will be sent to the viewer(s). There will be no incoming
RFB Updates pending on the Proxy’s SPU sockets since
no requests will have been sent.

Frame synchronization requires that the VNC SPUs
do not drop frames as described above. Otherwise, if
frames were dropped, one might see different frames of
animation in different image tiles. Another requirement
is that the VNC SPU always sends an RFB Update at
the end of a frame, even when there is no new pixel
data to be sent. When there is no new pixel data to
send, the VNC SPU sends a null/lempty RFB Update
message, which has no content, but serves to satisfy the
synchronization needs of the barrier.

While “frame synchronization” ensures that the con-
tents of the Proxy’s VFB from each VNC SPU are
consistent, it does not prevent “image tearing” in the



Viewer. Image tearing occurs when rendering is not
synchronized to the refresh rate of a monitor. In the
case of the VNC Viewer, image tearing occurs when the
decoding and displaying of the image data in an RFB
Update message takes longer than the monitor’s refresh
rate. The traditional solution to this problem in computer
graphics involves double-buffering. In this case, double-
buffering in the VNC Viewer would alleviate image
tearing during Viewer image display. At least one VNC
distribution, TurboVNC, is known to offer a double-
buffered Viewer. We have not explored using this double-
buffered Viewer with CRRS.

Under some circumstances, we have observed CRRS
frame synchronization results in improved performance
due to more efficient VNC SPU operation. When frame
synchronization is enabled, the VNC SPU is prevented
from dropping frames as the two threads in the VNC
SPU are synchronized. Without this synchronization, the
VNC SPU’s server thread may sometimes be starved or
preempted by the main thread, resulting in an overall
decrease in RFB throughput.

C. Security

Because CRRS is a system of components acting
though multiple protocols, implementation of security
can be problematic. Each of the underlying protocols
have their own pre-established authorization mecha-
nisms, and one of the CRRS design requirements is that
it is based on open standards. Thus, our security analysis
focuses on categorizing the risk of the connections and
ensuring that sites have avenues to “tighten the security
screws” as required by their policies.

A pictorial view of the connections and their types
in CRRS is shown in Figure 3. In that Figure, the
connections between one or more Viewers and the Proxy
occur in Zone 1. These Zone 1 connections typically
occur in the open internet and consist exclusively of
RFB traffic. Inside the CRRS back end, connections
that occur between the Proxy, the VNC servers in each
of the tiles of a DMX display, and DMX itself occur
in Zone 2. Traffic in Zone 2 consists of a mixture of
RFB and Xlib protocols. Further inside the CRRS back
end, the (potentially parallel) rendering application emits
OpenGL and Xlib rendering commands. OpenGL com-
mands are routed to one or more Chromium crservers,
while Xlib traffic is routed to the DMX server, which in
turn, snoops the Xlib protocol and routes Xlib commands
to the appropriate tile for rendering. This traffic occurs
in Zone 3.

For many sites, security in Zone 1 will be the most
critical issue. The Zone 1 RFB connection might occur
from remote locations and are thus outside the control

CRRS Connections

Xlib ql
l
proxy |-##a.& Xiib —I
ckend Xserver(s) I

—
CrVNC SPU(s)

VNC clients(s) I

application
&
Chremium

Zone 3

Fig. 3. CRRS Security Zones. Zone 1 traffic consists exclusively of
RFB protocol messages, and typically occurs over the open internet.
A commonly accepted practice to “secure” this connection is to
force all such traffic through SSH tunnels, where site-wide policy
can enforce authentication and the connection is armored. Inside the
center, Zone 2 traffic consists of a mixture of RFB and Xlib messages
between the Proxy and the VNC servers. Zone 3 traffic consists of
application-generated OpenGL and Xlib command streams, and is
typically where services like MPI are provided for parallel application
operation.

of the site. Additionally, the RFB protocol itself has
only a basic mechanism for authentication and provides
no encryption or other protection during transport. To
mitigate security concerns, the Proxy supports binding
the listening socket to a specific IP address. That feature
can be used in conjunction with SSH or SSL tunneling
software to provide both stronger authentication and
transport layer encryption. Additionally, the CRRS team
has provided client patches that implement SSL directly
in the java-based viewer to the upstream maintainers of
that code.

The standards for Zone 2 and 3 security likely will be
driven by site-specific deployment models and require-
ments. In general, both Zone 2 and Zone 3 connections
occur within the interconnect fabric 